FREE LATTICES OVER HALFLATTICES

Jaroslav Ježek and Václav Slavík

0. INTRODUCTION. Although the word problem for free lattices is well known to be solvable (cf. Dean [1]), the question still remains open to characterize the finite partial lattices P for which the free lattice $F(P)$ over P is finite.

There are partial answers to this question. In Wille [5] the problem is solved for the partial lattices P that are both meet- and join-trivial in the sense that whenever the meet $x y$ or the join $x+y$ of two elements x, y is defined in P then the elements are comparable. In [3] the problem is solved for join-trivial partial lattices. In the papers [2] and [4] free lattices over partial lattices from some other special classes are investigated.

In the present paper we shall be concerned with free lattices over halflattices. By a halflattice we mean a partial lattice P such that $x y$ is defined for all pairs $x, y \in P$ and $x+y$ is defined whenever x, y are two elements with a common upper bound in P. It is easy to see that a partial lattice P is a halflattice iff there exists a lattice L containing P as a relative sublattice such that P is an order-ideal in L (i.e., $a \in P$ implies $b \in P$ for all $b \in L$ with $b \leq a)$; for a given P we can define L by $L=P \cup\{1\}$ where 1 is the greatest element of L.

We shall not solve in this paper the problem for which halflattices P is the free lattice over P finite. However, we shall prove that $F(L)$ can be finite under a very restrictive condition only. Namely, we prove that if $F(P)$ is finite for a finite halflattice P then the set of the elements of $F(P)-P$ that can be expressed as $x+y$ for some $x, y \in P$ is a chain of at most four elements. And we give an example showing that the number four is possible in this context.

For the terminology and notation see our paper [3]; here we shall only briefly recall the construction of the free lattice $F(P)$ over a partial lattice P. The algebra of terms over P is denoted by $T(P)$. For every term t define an ideal $\downarrow t$ and a filter $\uparrow t$ of P by

$$
\begin{aligned}
& \downarrow t=\{a \in P ; a \leq t\} \text { and } \uparrow t=\{a \in P ; a \geq t\} \text { for } t \in P, \\
& \downarrow t=\downarrow t_{1} \vee \downarrow t_{2} \text { and } \uparrow t=\uparrow t_{1} \cap \uparrow t_{2} \text { for } t=t_{1}+t_{2}, \\
& \downarrow t=\downarrow t_{1} \cap \downarrow t_{2} \text { and } \uparrow t=\uparrow t_{1} \vee \uparrow t_{2} \text { for } t=t_{1} t_{2} .
\end{aligned}
$$

Define a binary relation \leq on $T(P)$ as follows: if $u \in P$ and $v \in T(P)$ then $u \leq v$ iff $u \in \downarrow v$; if $u \in T(P)$ and $v \in P$ then $u \leq v$ iff $v \in \uparrow u$; if $u=u_{1}+u_{2}$ then $u \leq v$ iff $u_{1} \leq v$ and $u_{2} \leq v$; if $v=v_{1} v_{2}$ then $u \leq v$ iff $u \leq v_{1}$ and $u \leq v_{2}$; if $u=u_{1} u_{2}$ and $v=v_{1}+v_{2}$ then $u \leq v$ iff either $u \leq v_{1}$ or $u \leq v_{2}$ or $u_{1} \leq v$ or $u_{2} \leq v$ or $u \leq a \leq v$ for an element $a \in P$. Then \leq is a quasiordering and the relation \sim on $T(P)$ defined by $u \sim v$ iff $u \leq v$ and $v \leq u$ is a congruence. The free lattice over P is isomorphic to $T(P) / \sim$.

1. GENERAL PARTIAL LATTICES. Let P be a partial lattice and a, b, c, d be elements of P such that
(1) $a\|c, a\| d, b \| c$;
(2) either $b=d$ or else $b<a$ and $d<c$.

Define elements $t_{0}, t_{1}, t_{2}, \ldots$ of P as follows:
$t_{0}=a+d ;$
$t_{i}=b+c t_{i-1}$ for i odd;
$t_{i}=d+a t_{i-1}$ for $i \geq 2$ even.

We have $a+b=t_{0} \geq t_{1} \geq t_{2} \geq \cdots \geq b, d$.
1.1. Lemma. Let $i \geq 0$ be such that $t_{i}=t_{i+1}$. Then $t_{i+1}=t_{i+2}$.

Proof: If $i=0$ then $t_{2}=d+a t_{1}=d+a t_{0}=d+a=t_{0}$. If $i \geq 2$ is even then $t_{i+2}=d+a t_{i+1}=d+a t_{i}=d+a t_{i-1}=t_{i}$. If i is odd then $t_{i+2}=b+c t_{i+1}=b+c t_{i}=$ $b+c t_{i-1}=t_{i}$.
1.2. Lemma. Let $i \geq 0$ be such that $\uparrow t_{i}=\uparrow t_{i+1}$. Then $\uparrow t_{i+1}=\uparrow t_{i+2}$.

Proof: Suppose, on the contrary, that there exists an element $x \in P$ with $x \geq t_{i+2}$ and $x \nsupseteq t_{i+1}$.

Let $i=0$. We have $x \geq t_{2}=d+a t_{1}$, so that $x \geq d$ and $x \geq a t_{1}$. We have $x \in \uparrow a \vee \uparrow t_{1}=\uparrow a \vee \uparrow t_{0}=\uparrow a$, so that $x \geq a$ and consequently $x \geq a+d=t_{0} \geq t_{1}$, a contradiction.

Let i be odd. We have $x \geq t_{i+2}=b+c t_{i+1}$, so that $x \geq b$ and $x \geq c t_{i+1}$. We have $x \in \uparrow c \vee \uparrow t_{i+1}=\uparrow c \vee \uparrow t_{i}=\uparrow\left(c t_{i}\right)$. Hence $x \geq c t_{i}=c t_{i-1}$ and so $x \geq b+c t_{i-1}=t_{i} \geq t_{i+1}$, a contradiction.

Let $i \geq 2$ be even. We have $x \geq t_{i+2}=d+a t_{i+1}$, so that $x \geq d$ and $x \geq a t_{i+1}$. We have $x \in \uparrow a \vee \uparrow t_{i+1}=\uparrow a \vee \uparrow t_{i}=\uparrow\left(a t_{i}\right)$. Hence $x \geq a t_{i}=a t_{i-1}$ and so $x \geq d+a t_{i-1}=t_{i} \geq$ t_{i+1}, a contradiction.
1.3. Lemma. Let $i \geq 0$ be such that $\uparrow t_{i}=\uparrow t_{i+1}$ and $t_{i+1}>t_{i+2}$. Then $t_{i+2}>t_{i+3}$.

Proof: By 1.1 we have $t_{0}>t_{1}>\cdots>t_{i+2}$ and by 1.2 we have $\uparrow t_{i}=\uparrow t_{i+1}=\uparrow t_{i+2}=\ldots$.
Let us prove $a \not \leq t_{1}$. If $a \leq t_{1}$ then $t_{2}=d+a t_{1}=d+a=t_{0}$, a contradiction.
Let us prove $c \not \leq t_{2}$. If $c \leq t_{2}$ then $t_{2} \geq b+c \geq t_{1}$, a contradiction.
Suppose $t_{i+2}=t_{i+3}$.
Let i be even. Then we have $a t_{i+1} \leq t_{i+3}=b+c t_{i+2}$. There are five cases.
Case 1: $a \leq t_{i+3}$. Then $a \leq t_{1}$, a contradiction.
Case 2: $t_{i+1} \leq t_{i+3}$. Then $t_{i+1} \leq t_{i+2}$, a contradiction.
Case 3: $a t_{i+1} \leq b$. Then $b \in \uparrow a \vee \uparrow t_{i+1}=\uparrow a \vee \uparrow t_{i}$ and so $b \geq a t_{i}=a t_{i-1}$. If $i=0$ then we get $b \geq a$, a contradiction. If $i>0$ and $b=d$ then $b \geq b+a t_{i-1}=t_{i}$, so that $t_{i}=t_{i+1}$, a contradiction. If $i>0$ and $b<a$ and $d<c$ then $t_{i+1}=b+c t_{i} \geq a t_{i-1}+d=t_{i}$, a contradiction.

Case 4: $a t_{i+1} \leq c t_{i+2}$. Then $a t_{i+1} \leq c, c \in \uparrow a \vee \uparrow t_{i+1}=\uparrow a \vee \uparrow t_{i}, c \geq a t_{i}$. If $i=0$, we get $c \geq a$, a contradiction. If $i>0$ then we get $c t_{i} \geq a t_{i}=a t_{i-1}, t_{i+1}=b+c t_{i} \geq c t_{i} \geq a t_{i-1}$, $t_{i+1} \geq d+a t_{i-1}=t_{i}$, a contradiction.

Case 5: $a t_{i+1} \leq x \leq t_{i+3}$ for some $x \in P$. We have $x \in \uparrow a \vee \uparrow t_{i+1}=\uparrow a \vee \uparrow t_{i}$, so that $x \geq a t_{i}$. If $i=0$, we get $a \leq x \leq t_{3} \leq t_{1}$, a contradiction. If $i>0$ then $x \geq a t_{i}=a t_{i-1}$, so that $t_{i+3} \geq d+a t_{i-1}=t_{i}$, a contradiction.

Let i be odd. Then we have $c t_{i+1} \leq t_{i+3}=d+a t_{i+2}$. There are five cases.
Case 1: $c \leq t_{i+3}$. Then $c \leq t_{2}$, a contradiction.
Case 2: $t_{i+1} \leq t_{i+3}$. Then $t_{i+1} \leq t_{i+2}$, a contradiction.
Case 3: $c t_{i+1} \leq d$. Then $d \in \uparrow c \vee \uparrow t_{i+1}=\uparrow c \vee \uparrow t_{i}$ and so $d \geq c t_{i}=c t_{i-1}$. If $b=d$ then $d \geq b+c t_{i-1}=t_{i}$, so that $t_{i}=t_{i+1}$, a contradiction. If $b<a$ and $d<c$ then $t_{i+1}=d+a t_{i} \geq c t_{i-1}+b=t_{i}$, a contradiction.

Case 4: $c t_{i+1} \leq a t_{i+2}$. Then $c t_{i+1} \leq a, a \in \uparrow c \vee \uparrow t_{i+1}=\uparrow c \vee \uparrow t_{i}, a \geq c t_{i}, a t_{i} \geq c t_{i}=$ $c t_{i-1}, t_{i+1}=d+a t_{i} \geq a t_{i} \geq c t_{i-1}, t_{i+1} \geq b+c t_{i-1}=t_{i}$, a contradiction.

Case 5: $c t_{i+1} \leq x \leq t_{i+3}$ for some $x \in P$. We have $x \in \uparrow c \vee \uparrow t_{i+1}=\uparrow c \vee \uparrow t_{i}$, so that $x \geq c t_{i}=c t_{i-1}$ and $t_{i+3} \geq c t_{i-1}$; hence $t_{i+3} \geq b+c t_{i-1}=t_{i}$, a contradiction.
1.4. Lemma. Let $i \geq 0$ be such that $\uparrow t_{i}=\uparrow t_{i+1}$ and $t_{i+1}>t_{i+2}$. Then $F(P)$ is infinite.

Proof: It follows easily from 1.2 and 1.3.

2. HALFLATTICES: TWO INCOMPARABLE UNDEFINED JOINS.

2.1. Lemma. Let P be a finite halflattice and a, b, c, d be four elements of P such that the following four conditions are satisfied:
(1) $a\|c, a\| d, b \| c$;
(2) either $b=d$ or else $b<a$ and $d<c$;
(3) $a+d \notin P$ and $b+c \notin P$;
(4) $a \not \leq b+c$ and $c \not \leq a+d$.

Then $F(P)$ is infinite.
Proof: Define the elements t_{i} as in Section 1, so that $t_{0}=a+d, t_{1}=b+c t_{0}$ and $t_{2}=d+a t_{1}$. If $t_{0} \leq t_{1}$ then $a \leq a+d \leq b+c(a+d) \leq b+c$, a contradiction. We get $t_{0}>t_{1}$. Since $\uparrow t_{1}=\uparrow b \cap(\uparrow c \vee \uparrow(a+d))=\uparrow b \cap(\uparrow c \vee \emptyset)=\uparrow b \cap \uparrow c=\emptyset$, by 1.4 it is sufficient to prove $t_{1}>t_{2}$. Suppose $t_{1} \leq t_{2}$. Then $c t_{0} \leq d+a t_{1}$ and there are five possible cases.

Case 1: $c \leq t_{2}$. Then $c \leq a+d$, a contradiction.
Case 2: $t_{0} \leq t_{2}$. Then $t_{0} \leq t_{1}$, a contradiction.
Case 3: $c t_{0} \leq d$. Then $d \in \uparrow c \vee \uparrow t_{0}=\uparrow c \vee \emptyset=\uparrow c$, so that $d \geq c$, a contradiction.
Case 4: $c t_{0} \leq a t_{1}$. Then $c t_{0} \leq a$; as in Case 3, we get $a \geq c$, a contradiction.
Case 5: $c t_{0} \leq x \leq t_{2}$ for some $x \in P$. Then $x \in \uparrow c \vee \uparrow t_{0}=\uparrow c, c \leq x \leq t_{2} \leq a+d$, a contradiction.

We get a contradiction in all cases.
2.2. Lemma. Let P be a finite halflattice and $a, b, c \in P$ be such that $a+b \notin P, b+c \notin P$ and $a+b \| b+c$. Then $F(P)$ is infinite.

Proof: It follows from 2.1.
2.3. Lemma. Let P be a finite halflattice and $a, b, c, d \in P$ be such that
(1) $a+b \notin P, c+d \notin P, a+b \| c+d$;
(2) $b<c$;
(3) $b+d \notin P$.

Then $F(P)$ is infinite.
Proof: If $d<a$ then we can apply 2.1 to the quadruple a, d, c, b. So, we can suppose that the elements a, c, d are pairwise incomparable. If $d \not \leq a+c$ then we can apply 2.2 to the triple a, c, d; so, let $d \leq a+c$. If $d \not \leq a+b$ then we can apply 2.2 to the triple a, b, d; so, let $d \leq a+b$. If $a+d \notin P$ then we can apply 2.2 to the triple a, d, c; so, let $a+d \in P$. Now we can apply 2.1 to the quadruple $c, b, a+d, d$.
2.4. Lemma. Let P be a finite halflattice and $a, b, c, d \in P$ be such that
(1) $a+b \notin P, c+d \notin P, a+b \| c+d$;
(2) $b \leq c d$;
(3) whenever $x \in P$ and $x \leq(a+b) c$ then $x \leq b$;
(4) whenever $x \in P$ and $x \leq(a+b) d$ then $x \leq b$.

Then $F(P)$ is infinite.
Proof: Consider the three pairwise incomparable elements $a,(a+b) c,(a+b) d$ of the relative sublattice $Q=P \cup\{a+b,(a+b) c,(a+b) d\}$ of $F(P)$. Put $t_{0}=a+(a+b) c=a+b$, $t_{1}=(a+b) d+(a+b) c, t_{2}=t_{1} a+(a+b) c$. In Q we have $\uparrow t_{0}=\uparrow t_{1}=\{a+b\}$, so that by 1.4 it is sufficient to prove $t_{0}>t_{1}>t_{2}$.

If $t_{0} \leq t_{1}$ then $a \leq(a+b) d+(a+b) c$, so that in P we have $a \in \downarrow(a+b) d \vee \downarrow(a+b) c=$ $\downarrow b \vee \downarrow b=\downarrow b$; but $a \leq b$ is impossible. We get $t_{0}>t_{1}$.

Suppose $t_{1} \leq t_{2}$. Then $(a+b) d \leq t_{1} a+(a+b) c$ and we have five possible cases.
Case 1: $(a+b) d \leq t_{1} a$. Then $b \leq(a+b) d \leq a$, a contradiction.
Case 2: $(a+b) d \leq(a+b) c$. This is impossible.
Case 3: $a+b \leq t_{2}$. Then $a \leq t_{2} \leq t_{1}, t_{0} \leq t_{1}$, a contradiction.
Case 4: $d \leq t_{2}$. Then $d \leq a+b$, so that $d \leq b$ by (4) and consequently $d \leq c$, a contradiction.

Case 5: $(a+b) d \leq x \leq t_{2}$ for some $x \in P$. Then $x \in \uparrow(a+b) \vee \uparrow d=\uparrow d, d \leq t_{2} \leq a+b$, a contradiction.
2.5. Lemma. Let P be a finite halflattice and $a, b, c, d \in P$ be such that
(1) $a+b \notin P, c+d \notin P, a+b \| c+d$;
(2) a, b, c, d are not pairwise incomparable.

Then $F(P)$ is infinite.
Proof: We can suppose that a, b, c, d is a maximal quadruple with respect to these two properties. Further, we can suppose that $b<c$. By 2.3 we can assume that $b+d \in P$. Consider the quadruple $a, b, c, b+d$; by the maximality of a, b, c, d we get $b+d=d$ and hence $b \leq c d$. Let $x \in P$ and $x \leq(a+b) c$. Then the element $y=x+b$ belongs to P (since $x, b \leq c$) and $b \leq y \leq(a+b) c$. If $y>b$ then we can take the quadruple a, y, c, d; by the maximality of a, b, c, d we get $y=b$. But then $y \leq b$ and the condition (3) of 2.4 is satisfied. Similarly one can prove that the condition (4) of 2.4 is satisfied. By 2.4 we obtain that $F(P)$ is infinite.
2.6. Lemma. Let P be a finite halflattice and $a, b, c, d \in P$ be such that
(1) $a+b \notin P, c+d \notin P, a+b \| c+d$;
(2) $a \not \leq c+d, c \not \leq a+b$;
(3) $b+c \notin P$.

Then $F(P)$ is infinite.
Proof: Consider the three elements $a(c+d), b(c+d)$ and c of the relative sublattice $Q=P \cup\{c+d, a(c+d), b(c+d)\}$ of $F(P)$. Put $t_{0}=a(c+d)+b(c+d), t_{1}=t_{0} c+b(c+d)$, $t_{2}=t_{1} a(c+d)+b(c+d)=t_{1} a+b(c+d)$. In Q we have $\uparrow t_{0}=\uparrow t_{1}=\{c+d\}$ and so by 1.4 it is sufficient to prove $t_{0}>t_{1}>t_{2}$. If $t_{0} \leq t_{1}$ then $a(c+d) \leq t_{0} c+b(c+d)$; in each of the five possible cases we get easily a contradiction. Similarly, we cannot have $t_{1} \leq t_{2}$.
2.7. Lemma. Let P be a finite halflattice and $a, b, c, d \in P$ be such that
(1) $a+b \notin P, c+d \notin P, a+b \| c+d$.

Then $F(P)$ is infinite.
Proof: Let a, b, c, d be a maximal quadruple with the property (1). By 2.5 we can assume that a, b, c, d are pairwise incomparable. Since $a+b \| c+d$, we can suppose that $a \not \leq c+d$ and $c \not \leq a+b$. By 2.6 it is sufficient to consider the case when $b+c \in P$. If $b \leq c+d$ then $a, b, b+c, d$ is a quadruple contradicting the maximality of a, b, c, d; hence $b \not \leq c+d$.

Let there exist an element $x \in P$ such that $x \leq(a+b)(c+d), x \not \leq b$ and $x \not \leq c$. If $x+b \in P$ then the quadruple $a, x+b, c, d$ contradicts the maximality of a, b, c, d. Hence $x+b \notin P$ and similarly $x+c \notin P$. Using $b \not \leq c+d$ and $c \not \leq a+b$ we get $x+b \| x+c$; by 2.2, $F(P)$ is infinite. So, we can assume that whenever x is an element of P such that $x \leq(a+b)(c+d)$ then either $x \leq b$ or $x \leq c$.

If $a \leq(a+b)(c+d)+b$ then $a \in \downarrow(a+b)(c+d) \vee \downarrow b \subseteq(\downarrow b \vee \downarrow c) \vee \downarrow b=\downarrow b \vee \downarrow c=\downarrow(b+c)$, so that $a \leq b+c$ and the elements a, b have a common upper bound $b+c$ in P, a contradiction. We get $a \not \leq(a+b)(c+d)+b$.

Consider the elements a, b and $c+d$ of the relative sublattice $Q=P \cup\{c+d\}$ of $F(P)$. Put $t_{0}=a+b, t_{1}=(a+b)(c+d)+b$ and $t_{2}=t_{1} a+b$. We have $\uparrow t_{0}=\uparrow t_{1}=\emptyset$ in Q, so that by 1.4 it is sufficient to prove $t_{0}>t_{1}>t_{2}$. As we have proved, $a \not \leq t_{1}$ and so $t_{0} \not \leq t_{1}$. If $t_{1} \leq t_{2}$ then $(a+b)(c+d) \leq t_{1} a+b$; in each of the five possible cases we get easily a contradiction; hence $t_{1}>t_{2}$.
3. HALFLATTICES: A CHAIN OF FIVE UNDEFINED JOINS. For a finite halflattice P we denote by $U J(P)$ the set of the elements $u \in F(P)-P$ such that $u=x+y$ for some $x, y \in P$.

For $u \in F(P)$ and $a \in P$ denote by $u \odot a$ the greatest element $x \in P$ with the properties $x \leq p$ and $x \leq a$ (its existence is clear).
3.1. Lemma. Let P be a finite halflattice such that $F(P)$ is finite. Let p, q be two elements of $U J(P)$ with $p<q$ and let a, b, c be three elements of P with $q=a+b$ and $p=b+c$. Then $b+(p \odot a)=p$.
Proof: Put $d=p \odot a$. If $c \leq a$ then $b+d=p$ is clear. Consider the opposite case; then a, b, c are pairwise incomparable. Put
$t_{0}=p=b+c$,
$t_{i}=t_{i-1} a+b$ for i odd,
$t_{i}=t_{i-1} c+b$ for $i \geq 2$ even.

We have $\uparrow t_{i}=\emptyset$ for all i.
Let us prove that if $t_{0}>t_{1}$ then $t_{1}>t_{2}$. If $t_{1} \leq t_{2}$ then $p a \leq t_{1} c+b$ and there are only five cases possible.

Case 1: $p a \leq t_{1} c$. Then $p a \leq c$ and $c \in \uparrow(p a)=\uparrow a$, a contradiction.
Case 2: $p a \leq b$. Then $b \in \uparrow(p a)=\uparrow a$, a contradiction.
Case 3: $p \leq t_{2}$. Then $t_{0} \leq t_{1}$, a contradiction.
Case 4: $a \leq t_{2}$. Then $a \leq p$, a contradiction.
Case 5: $p a \leq x \leq t_{2}$ for some $x \in P$. Then $x \in \uparrow(p a)=\uparrow a$ and $a \leq x \leq t_{2} \leq p$, a contradiction.

It follows from 1.4 that $t_{0}=t_{1}$. Hence $c \leq p a+b$. From this we get $c \in \downarrow(p a) \vee \downarrow b=$ $\downarrow d \vee \downarrow b$, so that $c \leq b+d$; but then $b+d=p$.
3.2. Lemma. Let P be a finite halflattice such that $F(P)$ is finite. Let p, q, r be three elements of $U J(P)$ such that $p<q<r$ and let a, b, c be three elements of P such that $r=a+b$ and $p=b+c$. Then $b+(q \odot a)=q$.

Proof: Put $d=q \odot a$. By 3.1 we can suppose that $c<a$; then $c \leq d$. By 2.7, $U J(P)$ is a finite chain. Denote by q_{0} the predecessor of q in this chain. Since $q \in U J(P)$, there exists an element $e \in P$ with $e<q$ and $e \not \leq q_{0}$; let us take a maximal element e with these properties. If $b \not \leq e$ then $b+e=q$ and $b+d=q$ follows from 3.1. So, let $b<e$. We have $c \not \leq e$ (since b, c have no upper bound in P) and $q=c+e$.

Consider the quadruple e, b, a, c. Put
$t_{0}=q=e+c$,
$t_{i}=t_{i-1} a+b$ for i odd,
$t_{i}=t_{i-1} e+c$ for $i \geq 2$ even.
We have $\uparrow t_{i}=\emptyset$ for all i.
Let us prove that if $t_{0}>t_{1}$ then $t_{1}>t_{2}$. If $t_{1} \leq t_{2}$ then $q a \leq t_{1} e+c$ and one of the following five cases must take place.

Case 1: $q a \leq t_{1} e$. Then $q a \leq e$ and $e \in \uparrow(q a)=\uparrow a$, a contradiction.
Case 2: $q a \leq c$. Then $c \in \uparrow(q a)=\uparrow a$, a contradiction.
Case 3: $q \leq t_{2}$. Then $t_{0} \leq t_{1}$, a contradiction.
Case 4: $a \leq t_{2}$. Then $a \leq q$, a contradiction.
Case 5: $q a \leq x \leq t_{2}$ for some $x \in P$. Then $a \leq x \leq t_{2} \leq q$, a contradiction.
By 1.4 we have proved $t_{0}=t_{1}$, so that $e \leq q a+b$. We get $e \in \downarrow(q a) \vee \downarrow b=\downarrow d \vee \downarrow b$, $e \leq b+d$ and consequently $b+d=q$.
3.3. Lemma. Let P be a finite halflattice. If there exist three elements u, v, w of $U J(P)$ with $u<v<w$ and three elements a, b, c of P with $a<b<c, a<w, a \not \leq v$ and $b \not \leq w$ then $F(P)$ is infinite.

Proof: There are two elements $x, y \in P$ with $u=x+y$. If $a v \leq u=x+y$ then there are only five cases possible and we get a contradiction in each of them. Hence $a v \not \leq u$. Put
$t_{0}=a v$,
$t_{i}=\left(t_{i-1}+c u\right) b$ for i odd,
$t_{i}=\left(t_{i-1}+a\right) v$ for $i \geq 2$ even.
We have $t_{i} \leq b v$ for all i and $t_{0} \leq t_{1} \leq t_{2} \leq \ldots$; further, $\uparrow t_{0}=\uparrow a$ and $\uparrow t_{i}=b$ for $i \geq 1$.
If $t_{1} \leq t_{0}$ then $t_{1} \leq a$, a contradiction. We get $t_{0}<t_{1}$. Now, we can prove $t_{i}<t_{i+1}$ by induction for all i. If i is even and $t_{i+1} \leq t_{i}$ then $\left(t_{i}+c u\right) b \leq t_{i-1}+a$ and we are in one of the following five cases.

Case 1: $t_{i+1} \leq t_{i-1}$. Then $t_{i} \leq t_{i-1}$, a contradiction by induction.
Case 2: $t_{i+1} \leq a$. Then $a \in \uparrow b$, a contradiction.
Case 3: $t_{i}+c u \leq t_{i-1}+a$. Then $c u \leq t_{i-1}+a \leq b$, so that $b \in \uparrow(c u)=\uparrow c$, a contradiction.

Case 4: $b \leq t_{i-1}+a$. Then $b \leq w$, a contradiction.
Case 5: $t_{i+1} \leq x \leq t_{i-1}+a$ for some $x \in P$. Then $b \leq x \leq w$, a contradiction. If $i \geq 3$ is odd and $t_{i+1} \leq t_{i}$ then $\left(t_{i}+a\right) v \leq t_{i-1}+c u$ and the five cases are:
Case 1: $t_{i+1} \leq t_{i-1}$. Then $t_{i} \leq t_{i-1}$, a contradiction by induction.
Case 2: $t_{i+1} \leq c u$. Then $a v=t_{0} \leq c u \leq u$, but we have proved $a v \not \leq u$ above.
Case 3: $t_{i}+a \leq t_{i-1}+c u$. Then $a \leq t_{i-1}+c u \leq v$, a contradiction.
Case 4: $v \leq t_{i-1}+c u$. Then $v \leq c$, a contradiction with $v \in U J(P)$.

Case 5: $t_{i+1} \leq x \leq t_{i-1}+c u$ for some $x \in P$. Then $b \leq x \leq w$, a contradiction.
3.4. Lemma. Let P be a finite halflattice. If $U J(P)$ is a chain of at least five elements then $F(P)$ is infinite.
Proof: Let $u<v<w<r<s$ be the first five elements of $U J(P)$. We have $u=x+y$ for some $x, y \in P$. Since $s \in U J(P)$, there exists an element $c \in P$ with $c<s$ and $c \not \leq r$; we can assume that c is maximal with these properties. Since c cannot be an upper bound of both x and y, we can assume that $x \not \leq c$; then $s=c+x$. Two applications of 3.2 yield the existence of two elements b and a in P such that $b<c, r=x+b, a<b, w=x+a$. The assumptions of 3.3 are evidently satisfied, so that $F(P)$ is infinite.
4. THE MAIN RESULTS. The following is a consequence of lemmas 2.7 and 3.4:
4.1. THEOREM. Let P be a finite halflattice. If the free lattice $F(P)$ over P is finite then the set $U J(P)$ of the elements $u \in F(P)-P$ that are of the form $u=x+y$ for some $x, y \in P$ is an at most four-element chain.
4.2. Example. There exist finite halflattices P such that $U J(P)$ is a chain of exactly four elements. In figures 1 and 2 we present two such examples. In the first of them, P and $F(P)$ are of cardinalities 8 and 29 , respectively, and in the second example they are of cardinalities 25 and 58. In both cases full dots represent the elements of P, while blank dots stand for the elements of $F(P)-P$; it is a mechanical task to verify that the pictured lattice is free over the subset consisting of the full dots.
4.3. Example. If P is a finite halflattice such that $U J(P)$ consists of one element only then $F(P)=P \cup U J(P)$ is finite. On the other hand, there exist finite halflattices P such that $U J(P)$ is a two-element chain and $F(P)$ is infinite. For example, the fourteen-element halflattice obtained from the sixteen-element Boolean algebra by omitting the greatest element and one of the coatoms has this property.

References

[1] R. A. Dean: Free lattices generated by partially ordered sets and preserving bounds. Canad. J. Math. 16, 1964, 136-148.
[2] F. S. Ibrahim: Untersuchungen zur freien Erzeugung von Verbänden. Dissertation, D17, Darmstadt 1981.
[3] J. Ježek, V. Slavík: Free lattices over join-trivial partial lattices. (To appear in Algebra Universalis)
[4] I. Lienkamp: Freie Verbände über Amalgamen von Verbänden. Mitteilungen aus dem Mathem. Seminar Giessen, Heft 161, Giessen 1984.
[5] R. Wille: On lattices freely generated by finite partially ordered sets. Colloquia Math. Soc. János Bolyai 17. Contributions to Universal Algebra, Szeged (Hungary), 1975, 581-593.

MFF UK, SokolovskÁ 83, 18600 Praha 8
VŠZ, Katedra matematiky, 16021 Praha 6

