FREE LATTICES OVER HALFLATTICES

JAROSLAV JEZEK AND VACLAV SLAVIK

0. INTRODUCTION. Although the word problem for free lattices is well known to be
solvable (cf. Dean [1]), the question still remains open to characterize the finite partial
lattices P for which the free lattice F'(P) over P is finite.

There are partial answers to this question. In Wille [5] the problem is solved for the
partial lattices P that are both meet— and join—trivial in the sense that whenever the meet
xy or the join x + y of two elements x,y is defined in P then the elements are comparable.
In [3] the problem is solved for join—trivial partial lattices. In the papers [2] and [4] free
lattices over partial lattices from some other special classes are investigated.

In the present paper we shall be concerned with free lattices over halflattices. By
a halflattice we mean a partial lattice P such that xy is defined for all pairs z,y € P and
x + y is defined whenever x,y are two elements with a common upper bound in P. It is
easy to see that a partial lattice P is a halflattice iff there exists a lattice L containing P
as a relative sublattice such that P is an order—ideal in L (i.e., a € P implies b € P for all
b € L with b < a); for a given P we can define L by L = P U {1} where 1 is the greatest
element of L.

‘We shall not solve in this paper the problem for which halflattices P is the free lattice
over P finite. However, we shall prove that F(L) can be finite under a very restrictive
condition only. Namely, we prove that if F'(P) is finite for a finite halflattice P then the set
of the elements of F(P) — P that can be expressed as x + y for some z,y € P is a chain of
at most four elements. And we give an example showing that the number four is possible
in this context.

For the terminology and notation see our paper [3]; here we shall only briefly recall
the construction of the free lattice F'(P) over a partial lattice P. The algebra of terms over
P is denoted by T'(P). For every term t define an ideal |t and a filter 1t of P by

lt={aeP;a<t}and 1t ={a € P;a>t}forteP,

\Lt = \Ltl \/\l,tg and Tt = Ttl ﬂTtQ for t = t1 + tg,

\Lt = \Ltl N \Ltg and Tt = Ttl V th for t = tltg.
Define a binary relation < on T'(P) as follows: if u € P and v € T(P) then u < v iff u € Jv;
ifu e T(P)and v € P then v < v iff v € fu; if u = uy + uz then u < v iff 3 < v and
ugy < w; if v = vyvg then u < v iff v < vy and v < vo; if u = uyus and v = vy + vo then
u < v iff either u < vy oru<wvyoru; <voruy <voru<a<wvfor an element a € P.
Then < is a quasiordering and the relation ~ on T'(P) defined by u ~ v iff u <wv and v < wu
is a congruence. The free lattice over P is isomorphic to T'(P)/ ~.

1. GENERAL PARTIAL LATTICES. Let P be a partial lattice and a,b,c,d be
elements of P such that

(D) alle,ald bl e

(2) either b=d or else b < ¢ and d < c.
Define elements tg,t1,t2,... of P as follows:

to =a+d;

t; = b+ ct;_1 for i odd;

t; =d+at;_1 for i > 2 even.
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We have a +b=1tqg >t >ty >--- > b,d.
1.1. Lemma. Leti > 0 be such that t; =t;y1. Then tiy1 = tiys.

Proof: If i = 0 then to = d+aty = d+atg = d+a = tg. If ¢ > 2 is even then
ti+2 = d+ati+1 = d—l—atl = d+ati,1 = ti. If 7 is odd then ti+2 = b+cti+] = b+ Cti =
b+ct;_1=t;. O

1.2. Lemma. Let i > 0 be such that 1t; = Tt;+1. Then Tt;11 = Ttit2.

Proof: Suppose, on the contrary, that there exists an element x € P with x > t;,2 and
r 2ty

Let ¢ = 0. We have x > ty = d + aty, so that x > d and x > at;. We have
r € Ta VTt = ta V Tty = Ta, so that x > a and consequently x > a+d =ty > t1, a
contradiction.

Let ¢ be odd. We have z > ;12 = b+ ct;41, so that z > b and = > ct;1. We have
x € TeV iy = TeV Tt; = M(ct;). Hence & > ct; = ct;—q and so x > b+ ctj—1 = t; > tiy1,
a contradiction.

Let i > 2 be even. We have x > t;,9 = d + at;+1, so that z > d and « > at;11. We
have x € ta V1ti41 = Ta VvV 1t; = T(at;). Hence © > at; = at;—; and sox > d+at;—1 =t; >
ti+1, a contradiction. O

1.3. Lemma. Leti > 0 be such that 1t; = 1t;41 and t;41 > tive. Then tijo > tiys.

Proof: By 1.1 we have ty > t; > --- > t;42 and by 1.2 we have 1t; = Tt;41 = Ttiqa = ....

Let us prove a £ t1. If a <ty then to = d + at; = d+ a = tg, a contradiction.

Let us prove ¢ £ ty. If ¢ <t then t5 > b+ ¢ > t1, a contradiction.

Suppose ti+2 = ti+3.

Let ¢ be even. Then we have at;11 < t;y3 = b+ ct;12. There are five cases.

Case 1: a < t;13. Then a < ¢y, a contradiction.

Case 2: t;31 < t;y3. Then t;11 < t;12, a contradiction.

Case 3: atH_l S b. Then b € TCL \Y Tti—i-l = Ta V Tti and so b Z at,; = at,;_l. Ifi=0
then we get b > a, a contradiction. If ¢ > 0 and b = d then b > b+ at;_1 = t;, so that
t; = t;y1, a contradiction. If i > 0 and b < a and d < ¢ then t;41 = b+ct; > at;—1 +d = t;,
a contradiction.

Case 4: at;41 < ctipo. Then at;; < ¢, c € taVtipr = TaV7Tt;, ¢ > at;. If i =0, we
get ¢ > a, a contradiction. If i > 0 then we get ct; > at; = at;—1, t;41 = b+ct; > ct; > at;—1,
tiv1 > d+at;—1 =t;, a contradiction.

Case 5: at;y1 < x < t;13 for some z € P. We have z € TaV 1t;11 = TaV1t;, so that
x>at;. If i =0, we get a < x <t3 <t1, a contradiction. If ¢ > 0 then = > at; = at;_1, so
that tits > d+ at;_1 = t;, a contradiction.

Let ¢ be odd. Then we have ct;11 < t;43 = d + at; 2. There are five cases.

Case 1: ¢ < t;13. Then ¢ < t3, a contradiction.

Case 2: t;41 < tjy3. Then ¢;11 < t;42, a contradiction.

Case 3: ctiy1 < d. Then d € Tc¢V Ttiy1 = fecV Tt and so d > ct; = ct;—q1. If
b=dthend>b+ct;_1 =1t;, so that ¢; = t;;1, a contradiction. If b < a and d < ¢ then
tiv1 =d+at; > cti—1 +b=1t;, a contradiction.

Case 4: ctiy1 < atjyo. Then ctip1 < a,a € teV Tt = TeV1It, a > cty, at; > ct; =
cti—1, tix1 =d+at; > at; > cti—q, tip1 > b+ cti—1 = t;, a contradiction.

Case 5: ctiy1 < x < t;43 for some z € P. We have x € tcV 1,41 = TcV 1t;, so that
x Z Cti = Cti_l and t1'+3 Z Cti_l; hence ti+3 Z b + Cti_l = ti7 a contradiction. O

1.4. Lemma. Let i > 0 be such that Tt; = Tt;11 and t;y1 > tiyo. Then F(P) is infinite.
Proof: It follows easily from 1.2 and 1.3. O

2. HALFLATTICES: TWO INCOMPARABLE UNDEFINED JOINS.

2.1. Lemma. Let P be a finite halflattice and a, b, c,d be four elements of P such that the
following four conditions are satisfied:

(1) alealldbfe;



FREE LATTICES OVER HALFLATTICES 3

(2) eitherb=d orelseb<a andd < ¢;
3) a+d¢ P andb+c ¢ P;
(4) a€b+candcLa+d.

Then F(P) is infinite.

Proof: Define the elements ¢; as in Section 1, so that tg = a+d, t; = b+ctg and to = d+aty.
Iftg <ty thena <a+d<b+cla+d) <b+ ¢, acontradiction. We get ty > t;. Since
M =10N (teV i (a+d)) =1bN (TeV D) = 1bNte = 0, by 1.4 it is sufficient to prove t; > to.
Suppose t; < to. Then ctg < d + aty; and there are five possible cases.

Case 1: ¢ < tg. Then ¢ < a + d, a contradiction.

Case 2: tg < tg. Then tg < ty, a contradiction.

Case 3: ctog < d. Then d € fcV Ttg = Tc V0 = 1¢, so that d > ¢, a contradiction.

Case 4: ctg < at1. Then ctg < a; as in Case 3, we get a > ¢, a contradiction.

Case 5: ctg < x <ty for some z € P. Thenz € TeVTtg =1Tc,c <z <ty <a-+d,a
contradiction.

We get a contradiction in all cases. O

2.2. Lemma. Let P be a finite halflattice and a,b,c € P be such thata+b ¢ P, b+c ¢ P
and a+b || b+ c. Then F(P) is infinite.

Proof: It follows from 2.1. O

2.3. Lemma. Let P be a finite halflattice and a,b,c,d € P be such that
(1) a+b¢ P,c+d¢ P,a+b|c+d;
(2) b<e
3) b+d¢P.
Then F(P) is infinite.

Proof: If d < a then we can apply 2.1 to the quadruple a,d, ¢,b. So, we can suppose that
the elements a, ¢, d are pairwise incomparable. If d £ a + ¢ then we can apply 2.2 to the
triple a, c,d; so, let d < a+c. If d £ a+ b then we can apply 2.2 to the triple a, b, d; so, let
d<a+b If a+d ¢ P then we can apply 2.2 to the triple a,d, ¢; so, let a + d € P. Now
we can apply 2.1 to the quadruple ¢,b,a + d,d. O

2.4. Lemma. Let P be a finite halflattice and a,b,c,d € P be such that
(1) a+b¢ P,c+d¢P,a+b| c+d;
(2) b<ed;
(3) whenever x € P and x < (a + b)c then x < b;
(4) whenever x € P and x < (a+ b)d then xz < b.

Then F(P) is infinite.

Proof: Consider the three pairwise incomparable elements a, (a+b)c, (a+b)d of the relative
sublattice @ = P U {a + b, (a + b)c, (a + b)d} of F(P). Put to = a+ (a +b)c = a+ b,
t1 = (a+b)d+ (a+b)c, ta = tia+ (a+ b)e. In Q we have 1tg = Tt1 = {a + b}, so that by
1.4 it is sufficient to prove tg > t1 > to.

If tg < 1 then a < (a+b)d+ (a+b)c, so that in P we have a € L(a+b)dV | (a+b)c =
JbV b= 1b; but a < b is impossible. We get to > t1.

Suppose t1 < to. Then (a + b)d < tya + (a + b)c and we have five possible cases.

Case 1: (a+b)d < t1a. Then b < (a4 b)d < a, a contradiction.

Case 2: (a +b)d < (a + b)c. This is impossible.

Case 3: a+ b <ty. Then a <ty <ty,tg < t1, a contradiction.

Case 4: d < ty. Then d < a + b, so that d < b by (4) and consequently d < ¢, a
contradiction.

Case 5: (a+b)d <z < to for some x € P. Then z € f(a+b)V1d =1d, d < ts < a+b,
a contradiction. O

2.5. Lemma. Let P be a finite halflattice and a,b,c,d € P be such that

(1) a+b¢ P,c+d¢P,a+b| c+d;
(2) a,b,c,d are not pairwise incomparable.
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Then F(P) is infinite.

Proof: We can suppose that a,b,c,d is a maximal quadruple with respect to these two
properties. Further, we can suppose that b < c¢. By 2.3 we can assume that b +d € P.
Consider the quadruple a,b,c,b + d; by the maximality of a,b,c,d we get b+ d = d and
hence b < cd. Let © € P and z < (a4 b)c. Then the element y = x + b belongs to P (since
z,b<c¢)and b <y < (a+b)c. If y > b then we can take the quadruple a,y, ¢, d; by the
maximality of a, b, ¢,d we get y = b. But then y < b and the condition (3) of 2.4 is satisfied.
Similarly one can prove that the condition (4) of 2.4 is satisfied. By 2.4 we obtain that
F(P) is infinite. O
2.6. Lemma. Let P be a finite halflattice and a,b,c,d € P be such that

(1) a+b¢ P,c+d¢ P,a+b| c+d;

(2) age+d, cLa+b;

(3) b+cé¢ P.

Then F(P) is infinite.

Proof: Consider the three elements a(c + d), b(c + d) and ¢ of the relative sublattice
Q= PU{c+d,a(c+d),blc+d)} of F(P). Put to = a(c+d)+b(c+d), t1 = toc+b(c+d),
to =tia(c+d)+b(c+d) =tia+blc+d). In Q we have Ttg = Tt; = {c+ d} and so by 1.4
it is sufficient to prove tg > t1 > to. If tg < ¢1 then a(c+ d) < tgc+ b(c + d); in each of the
five possible cases we get easily a contradiction. Similarly, we cannot have t; < t5. O

2.7. Lemma. Let P be a finite halflattice and a,b,c,d € P be such that
(1) a+b¢ P,c+d¢P,a+b|c+d.
Then F(P) is infinite.

Proof: Let a,b,c,d be a maximal quadruple with the property (1). By 2.5 we can assume
that a, b, ¢, d are pairwise incomparable. Since a + b || ¢ + d, we can suppose that a € ¢+ d
and ¢ € a + b. By 2.6 it is sufficient to consider the case when b+ ¢ € P. If b < ¢+ d then
a,b,b+ c,d is a quadruple contradicting the maximality of a, b, ¢, d; hence b £ ¢ + d.

Let there exist an element « € P such that z < (a +b)(c+d), z £ band = £ ¢c. If
x + b € P then the quadruple a,x + b, ¢, d contradicts the maximality of a,b,c,d. Hence
x+b¢ P and similarly x + ¢ ¢ P. Usingb £ c+dand c L a+bwe get x +b || = + ¢
by 2.2, F(P) is infinite. So, we can assume that whenever z is an element of P such that
z < (a+b)(c+ d) then either z <bor z < c.

Ifa < (a+b)(c+d)+b then a € L(a+b)(c+d)VIb C (1bVic)Vib = [bV.c = (b+c), so
that a < b+ c and the elements a, b have a common upper bound b+ ¢ in P, a contradiction.
We get a £ (a+b)(c+d) + b.

Consider the elements a,b and ¢ + d of the relative sublattice Q@ = P U {c¢ + d} of
F(P). Putto =a+b, t;1 = (a+b)(c+d)+band ta = tya+b. We have 1o =Tt = 0 in
@, so that by 1.4 it is sufficient to prove ty > t; > t5. As we have proved, a £ t; and so
to £ t1. If t; < g then (a+ b)(c+ d) < t1a + b; in each of the five possible cases we get
easily a contradiction; hence ¢; > t5. O

3. HALFLATTICES: A CHAIN OF FIVE UNDEFINED JOINS. For a finite
halflattice P we denote by UJ(P) the set of the elements v € F(P)— P such that u = 24y
for some x,y € P.

For u € F(P) and a € P denote by u ® a the greatest element € P with the
properties < p and z < a (its existence is clear).

3.1. Lemma. Let P be a finite halflattice such that F(P) is finite. Let p,q be two elements
of UJ(P) with p < q and let a,b,c be three elements of P with ¢ = a+b and p = b+ c.
Then b+ (p ®a) = p.

Proof: Put d=p®a. If ¢ < a then b+ d = p is clear. Consider the opposite case; then
a, b, c are pairwise incomparable. Put

tO =p= b+ C,

ti =t;_1a + b for i odd,

t; =ti_1c+ b for i > 2 even.
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We have 1t; = () for all 7.

Let us prove that if tg > ¢1 then t; > to. If t; < t5 then pa < tic+ b and there are
only five cases possible.

Case 1: pa < tyc. Then pa < ¢ and ¢ € 1T(pa) = Ta, a contradiction.

Case 2: pa <b. Then b € 1(pa) = Ta, a contradiction.

Case 3: p < ty. Then ty < t1, a contradiction.

Case 4: a < ty. Then a < p, a contradiction.

Case 5: pa < x <ty for some x € P. Then z € T(pa) =ta and a <z <12 <p, a
contradiction.

It follows from 1.4 that to = ¢;. Hence ¢ < pa+b. From this we get ¢ € |(pa) VIb =
dd Vv |b, so that ¢ < b+ d; but then b+d =p. O

3.2. Lemma. Let P be a finite halflattice such that F(P) is finite. Let p,q,r be three
elements of UJ(P) such that p < q < r and let a,b,c be three elements of P such that
r=a+bandp=>b+c. Thenb+(g®a)=q.

Proof: Put d = ¢ ® a. By 3.1 we can suppose that ¢ < a; then ¢ < d. By 2.7, UJ(P)
is a finite chain. Denote by ¢o the predecessor of ¢ in this chain. Since ¢ € UJ(P), there
exists an element e € P with e < ¢ and e £ qg; let us take a maximal element e with these
properties. If b £ e then b+ e = g and b+ d = ¢ follows from 3.1. So, let b < e. We have
¢ £ e (since b, ¢ have no upper bound in P) and ¢ = c+e.
Consider the quadruple e, b, a, c. Put
tO =qg=e€ + c,
t; =t;_1a + b for i odd,
t; =ti_1e+c for i > 2 even.
We have 1t; = () for all 4.
Let us prove that if tg > t; then t; > to. If t1 < t5 then qa < t1e + ¢ and one of the
following five cases must take place.
Case 1: gqa < tje. Then ga < e and e € 1(qa) = ta, a contradiction.
Case 2: gqa < c¢. Then ¢ € 1(ga) = Ta, a contradiction.
Case 3: ¢ < ty. Then tg < t1, a contradiction.
Case 4: a < ty. Then a < ¢, a contradiction.
Case 5: ga < x <ty for some x € P. Then a < z <ty < ¢, a contradiction.
By 1.4 we have proved ty = t1, so that e < ga +b. We get e € [(ga) V Jb = [d V ]b,
e < b+ d and consequently b+d =g¢q. O

3.3. Lemma. Let P be a finite halflattice. If there exist three elements u,v,w of UJ(P)
with u < v < w and three elements a,b,c of P witha <b<e¢, a <w, a £v and b £ w then
F(P) is infinite.

Proof: There are two elements z,y € P with u =z + y. If av < u = x + y then there are
only five cases possible and we get a contradiction in each of them. Hence av £ u. Put

to = av,

t; = (ti—l + Cu)b for 7 odd,

t; = (ti—1 + a)v for i > 2 even.
We have t; < bv for all i and tg < t; <ty < ...; further, Tt = Ta and 1t; = b for ¢ > 1.

If t1 <ty then t; < a, a contradiction. We get typ < t1. Now, we can prove t; < t;11
by induction for all . If i is even and ¢;11 < ¢; then (¢; + cu)b < t;—1 + a and we are in one
of the following five cases.

Case 1: t;31 <t;—1. Then t; < t; 1, a contradiction by induction.

Case 2: t;31 < a. Then a € Tb, a contradiction.

Case 3: t; + cu < t;—1 +a. Then cu < t;_1 +a < b, so that b € T(cu) = T¢, a
contradiction.

Case 4: b <t;_1 + a. Then b < w, a contradiction.

Case 5: t;41 <z <t;_1 4+ a for some z € P. Then b < x < w, a contradiction.

If i > 3 is odd and t; 1 <t; then (¢; + a)v < t;—1 + cu and the five cases are:

Case 1: t;41 <t;—1. Then t; < t;_1, a contradiction by induction.

Case 2: t;41 < cu. Then av =ty < cu < u, but we have proved av £ u above.

Case 3: t; +a <t;_1 + cu. Then a <t;,_1 + cu < v, a contradiction.

Case 4: v <t;—1 + cu. Then v < ¢, a contradiction with v € UJ(P).
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Case 5: t;11 <z <t;_1 + cu for some x € P. Then b < x < w, a contradiction. O

3.4. Lemma. Let P be a finite halflattice. If UJ(P) is a chain of at least five elements
then F(P) is infinite.

Proof: Let u < v < w < r < s be the first five elements of UJ(P). We have u = z + y for
some z,y € P. Since s € UJ(P), there exists an element ¢ € P with ¢ < s and ¢ € r; we
can assume that ¢ is maximal with these properties. Since ¢ cannot be an upper bound of
both x and y, we can assume that = £ ¢; then s = ¢+ . Two applications of 3.2 yield the
existence of two elements b and a in P such that b < ¢, r=x4+b,a < b, w =z + a. The
assumptions of 3.3 are evidently satisfied, so that F(P) is infinite. O

4. THE MAIN RESULTS. The following is a consequence of lemmas 2.7 and 3.4:

4.1. THEOREM. Let P be a finite halflattice. If the free lattice F(P) over P is finite
then the set UJ(P) of the elements uw € F(P) — P that are of the form w= x +y for some
z,y € P is an at most four-element chain. O

4.2. Example. There exist finite halflattices P such that UJ(P) is a chain of exactly
four elements. In figures 1 and 2 we present two such examples. In the first of them, P
and F(P) are of cardinalities 8 and 29, respectively, and in the second example they are
of cardinalities 25 and 58. In both cases full dots represent the elements of P, while blank
dots stand for the elements of F'(P) — P; it is a mechanical task to verify that the pictured
lattice is free over the subset consisting of the full dots.

4.3. Example. If P is a finite halflattice such that UJ(P) consists of one element only
then F(P) = PUUJ(P) is finite. On the other hand, there exist finite halflattices P such
that UJ(P) is a two-element chain and F(P) is infinite. For example, the fourteen-element
halflattice obtained from the sixteen-element Boolean algebra by omitting the greatest ele-
ment and one of the coatoms has this property.
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