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0. INTRODUCTION. Although the word problem for free lattices is well known to be
solvable (cf. Dean [1]), the question still remains open to characterize the finite partial
lattices P for which the free lattice F (P ) over P is finite.

There are partial answers to this question. In Wille [5] the problem is solved for the
partial lattices P that are both meet– and join–trivial in the sense that whenever the meet
xy or the join x+ y of two elements x, y is defined in P then the elements are comparable.
In [3] the problem is solved for join–trivial partial lattices. In the papers [2] and [4] free
lattices over partial lattices from some other special classes are investigated.

In the present paper we shall be concerned with free lattices over halflattices. By
a halflattice we mean a partial lattice P such that xy is defined for all pairs x, y ∈ P and
x + y is defined whenever x, y are two elements with a common upper bound in P . It is
easy to see that a partial lattice P is a halflattice iff there exists a lattice L containing P
as a relative sublattice such that P is an order–ideal in L (i.e., a ∈ P implies b ∈ P for all
b ∈ L with b ≤ a); for a given P we can define L by L = P ∪ {1} where 1 is the greatest
element of L.

We shall not solve in this paper the problem for which halflattices P is the free lattice
over P finite. However, we shall prove that F (L) can be finite under a very restrictive
condition only. Namely, we prove that if F (P ) is finite for a finite halflattice P then the set
of the elements of F (P )− P that can be expressed as x+ y for some x, y ∈ P is a chain of
at most four elements. And we give an example showing that the number four is possible
in this context.

For the terminology and notation see our paper [3]; here we shall only briefly recall
the construction of the free lattice F (P ) over a partial lattice P . The algebra of terms over
P is denoted by T (P ). For every term t define an ideal ↓t and a filter ↑t of P by

↓t = {a ∈ P ; a ≤ t} and ↑t = {a ∈ P ; a ≥ t} for t ∈ P ,
↓t = ↓t1 ∨ ↓t2 and ↑t = ↑t1 ∩ ↑t2 for t = t1 + t2,
↓t = ↓t1 ∩ ↓t2 and ↑t = ↑t1 ∨ ↑t2 for t = t1t2.

Define a binary relation ≤ on T (P ) as follows: if u ∈ P and v ∈ T (P ) then u ≤ v iff u ∈ ↓v;
if u ∈ T (P ) and v ∈ P then u ≤ v iff v ∈ ↑u; if u = u1 + u2 then u ≤ v iff u1 ≤ v and
u2 ≤ v; if v = v1v2 then u ≤ v iff u ≤ v1 and u ≤ v2; if u = u1u2 and v = v1 + v2 then
u ≤ v iff either u ≤ v1 or u ≤ v2 or u1 ≤ v or u2 ≤ v or u ≤ a ≤ v for an element a ∈ P .
Then ≤ is a quasiordering and the relation ∼ on T (P ) defined by u ∼ v iff u ≤ v and v ≤ u
is a congruence. The free lattice over P is isomorphic to T (P )/ ∼.

1. GENERAL PARTIAL LATTICES. Let P be a partial lattice and a, b, c, d be
elements of P such that

(1) a ‖ c, a ‖ d, b ‖ c;
(2) either b = d or else b < a and d < c.

Define elements t0, t1, t2, . . . of P as follows:
t0 = a+ d;
ti = b+ cti−1 for i odd;
ti = d+ ati−1 for i ≥ 2 even.
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We have a+ b = t0 ≥ t1 ≥ t2 ≥ · · · ≥ b, d.

1.1. Lemma. Let i ≥ 0 be such that ti = ti+1. Then ti+1 = ti+2.

Proof: If i = 0 then t2 = d + at1 = d + at0 = d + a = t0. If i ≥ 2 is even then
ti+2 = d + ati+1 = d + ati = d + ati−1 = ti. If i is odd then ti+2 = b + cti+1 = b + cti =
b+ cti−1 = ti. ⊔⊓

1.2. Lemma. Let i ≥ 0 be such that ↑ti = ↑ti+1. Then ↑ti+1 = ↑ti+2.

Proof: Suppose, on the contrary, that there exists an element x ∈ P with x ≥ ti+2 and
x 6≥ ti+1.

Let i = 0. We have x ≥ t2 = d + at1, so that x ≥ d and x ≥ at1. We have
x ∈ ↑a ∨ ↑t1 = ↑a ∨ ↑t0 = ↑a, so that x ≥ a and consequently x ≥ a + d = t0 ≥ t1, a
contradiction.

Let i be odd. We have x ≥ ti+2 = b + cti+1, so that x ≥ b and x ≥ cti+1. We have
x ∈ ↑c ∨ ↑ti+1 = ↑c ∨ ↑ti = ↑(cti). Hence x ≥ cti = cti−1 and so x ≥ b+ cti−1 = ti ≥ ti+1,
a contradiction.

Let i ≥ 2 be even. We have x ≥ ti+2 = d+ ati+1, so that x ≥ d and x ≥ ati+1. We
have x ∈ ↑a∨ ↑ti+1 = ↑a∨ ↑ti = ↑(ati). Hence x ≥ ati = ati−1 and so x ≥ d+ ati−1 = ti ≥
ti+1, a contradiction. ⊔⊓

1.3. Lemma. Let i ≥ 0 be such that ↑ti = ↑ti+1 and ti+1 > ti+2. Then ti+2 > ti+3.

Proof: By 1.1 we have t0 > t1 > · · · > ti+2 and by 1.2 we have ↑ti = ↑ti+1 = ↑ti+2 = . . . .
Let us prove a 6≤ t1. If a ≤ t1 then t2 = d+ at1 = d+ a = t0, a contradiction.
Let us prove c 6≤ t2. If c ≤ t2 then t2 ≥ b+ c ≥ t1, a contradiction.
Suppose ti+2 = ti+3.
Let i be even. Then we have ati+1 ≤ ti+3 = b+ cti+2. There are five cases.
Case 1: a ≤ ti+3. Then a ≤ t1, a contradiction.
Case 2: ti+1 ≤ ti+3. Then ti+1 ≤ ti+2, a contradiction.
Case 3: ati+1 ≤ b. Then b ∈ ↑a ∨ ↑ti+1 = ↑a ∨ ↑ti and so b ≥ ati = ati−1. If i = 0

then we get b ≥ a, a contradiction. If i > 0 and b = d then b ≥ b + ati−1 = ti, so that
ti = ti+1, a contradiction. If i > 0 and b < a and d < c then ti+1 = b+ cti ≥ ati−1 + d = ti,
a contradiction.

Case 4: ati+1 ≤ cti+2. Then ati+1 ≤ c, c ∈ ↑a∨↑ti+1 = ↑a∨↑ti, c ≥ ati. If i = 0, we
get c ≥ a, a contradiction. If i > 0 then we get cti ≥ ati = ati−1, ti+1 = b+cti ≥ cti ≥ ati−1,
ti+1 ≥ d+ ati−1 = ti, a contradiction.

Case 5: ati+1 ≤ x ≤ ti+3 for some x ∈ P . We have x ∈ ↑a∨ ↑ti+1 = ↑a∨ ↑ti, so that
x ≥ ati. If i = 0, we get a ≤ x ≤ t3 ≤ t1, a contradiction. If i > 0 then x ≥ ati = ati−1, so
that ti+3 ≥ d+ ati−1 = ti, a contradiction.

Let i be odd. Then we have cti+1 ≤ ti+3 = d+ ati+2. There are five cases.
Case 1: c ≤ ti+3. Then c ≤ t2, a contradiction.
Case 2: ti+1 ≤ ti+3. Then ti+1 ≤ ti+2, a contradiction.
Case 3: cti+1 ≤ d. Then d ∈ ↑c ∨ ↑ti+1 = ↑c ∨ ↑ti and so d ≥ cti = cti−1. If

b = d then d ≥ b + cti−1 = ti, so that ti = ti+1, a contradiction. If b < a and d < c then
ti+1 = d+ ati ≥ cti−1 + b = ti, a contradiction.

Case 4: cti+1 ≤ ati+2. Then cti+1 ≤ a, a ∈ ↑c∨ ↑ti+1 = ↑c∨ ↑ti, a ≥ cti, ati ≥ cti =
cti−1, ti+1 = d+ ati ≥ ati ≥ cti−1, ti+1 ≥ b+ cti−1 = ti, a contradiction.

Case 5: cti+1 ≤ x ≤ ti+3 for some x ∈ P . We have x ∈ ↑c ∨ ↑ti+1 = ↑c ∨ ↑ti, so that
x ≥ cti = cti−1 and ti+3 ≥ cti−1; hence ti+3 ≥ b+ cti−1 = ti, a contradiction. ⊔⊓

1.4. Lemma. Let i ≥ 0 be such that ↑ti = ↑ti+1 and ti+1 > ti+2. Then F(P) is infinite.

Proof: It follows easily from 1.2 and 1.3. ⊔⊓

2. HALFLATTICES: TWO INCOMPARABLE UNDEFINED JOINS.

2.1. Lemma. Let P be a finite halflattice and a, b, c, d be four elements of P such that the
following four conditions are satisfied:

(1) a ‖ c, a ‖ d, b ‖ c;
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(2) either b = d or else b < a and d < c;
(3) a+ d /∈ P and b+ c /∈ P ;
(4) a 6≤ b+ c and c 6≤ a+ d.

Then F (P ) is infinite.

Proof: Define the elements ti as in Section 1, so that t0 = a+d, t1 = b+ct0 and t2 = d+at1.
If t0 ≤ t1 then a ≤ a + d ≤ b + c(a + d) ≤ b + c, a contradiction. We get t0 > t1. Since
↑t1 = ↑b∩ (↑c∨↑(a+d)) = ↑b∩ (↑c∨∅) = ↑b∩↑c = ∅, by 1.4 it is sufficient to prove t1 > t2.
Suppose t1 ≤ t2. Then ct0 ≤ d+ at1 and there are five possible cases.

Case 1: c ≤ t2. Then c ≤ a+ d, a contradiction.
Case 2: t0 ≤ t2. Then t0 ≤ t1, a contradiction.
Case 3: ct0 ≤ d. Then d ∈ ↑c ∨ ↑t0 = ↑c ∨ ∅ = ↑c, so that d ≥ c, a contradiction.
Case 4: ct0 ≤ at1. Then ct0 ≤ a; as in Case 3, we get a ≥ c, a contradiction.
Case 5: ct0 ≤ x ≤ t2 for some x ∈ P . Then x ∈ ↑c ∨ ↑t0 = ↑c, c ≤ x ≤ t2 ≤ a+ d, a

contradiction.
We get a contradiction in all cases. ⊔⊓

2.2. Lemma. Let P be a finite halflattice and a, b, c ∈ P be such that a+ b /∈ P , b+ c /∈ P
and a+ b ‖ b+ c. Then F (P ) is infinite.

Proof: It follows from 2.1. ⊔⊓

2.3. Lemma. Let P be a finite halflattice and a, b, c, d ∈ P be such that

(1) a+ b /∈ P , c+ d /∈ P , a+ b ‖ c+ d;
(2) b < c;
(3) b+ d /∈ P .

Then F (P ) is infinite.

Proof: If d < a then we can apply 2.1 to the quadruple a, d, c, b. So, we can suppose that
the elements a, c, d are pairwise incomparable. If d 6≤ a + c then we can apply 2.2 to the
triple a, c, d; so, let d ≤ a+ c. If d 6≤ a+ b then we can apply 2.2 to the triple a, b, d; so, let
d ≤ a + b. If a + d /∈ P then we can apply 2.2 to the triple a, d, c; so, let a + d ∈ P . Now
we can apply 2.1 to the quadruple c, b, a+ d, d. ⊔⊓

2.4. Lemma. Let P be a finite halflattice and a, b, c, d ∈ P be such that

(1) a+ b /∈ P , c+ d /∈ P , a+ b ‖ c+ d;
(2) b ≤ cd;
(3) whenever x ∈ P and x ≤ (a+ b)c then x ≤ b;
(4) whenever x ∈ P and x ≤ (a+ b)d then x ≤ b.

Then F (P ) is infinite.

Proof: Consider the three pairwise incomparable elements a, (a+b)c, (a+b)d of the relative
sublattice Q = P ∪ {a + b, (a + b)c, (a + b)d} of F (P ). Put t0 = a + (a + b)c = a + b,
t1 = (a+ b)d+ (a+ b)c, t2 = t1a+ (a+ b)c. In Q we have ↑t0 = ↑t1 = {a+ b}, so that by
1.4 it is sufficient to prove t0 > t1 > t2.

If t0 ≤ t1 then a ≤ (a+b)d+(a+b)c, so that in P we have a ∈ ↓(a+b)d∨↓(a+b)c =
↓b ∨ ↓b = ↓b; but a ≤ b is impossible. We get t0 > t1.

Suppose t1 ≤ t2. Then (a+ b)d ≤ t1a+ (a+ b)c and we have five possible cases.
Case 1: (a+ b)d ≤ t1a. Then b ≤ (a+ b)d ≤ a, a contradiction.
Case 2: (a+ b)d ≤ (a+ b)c. This is impossible.
Case 3: a+ b ≤ t2. Then a ≤ t2 ≤ t1, t0 ≤ t1, a contradiction.
Case 4: d ≤ t2. Then d ≤ a + b, so that d ≤ b by (4) and consequently d ≤ c, a

contradiction.
Case 5: (a+b)d ≤ x ≤ t2 for some x ∈ P . Then x ∈ ↑(a+b)∨↑d = ↑d, d ≤ t2 ≤ a+b,

a contradiction. ⊔⊓

2.5. Lemma. Let P be a finite halflattice and a, b, c, d ∈ P be such that

(1) a+ b /∈ P , c+ d /∈ P , a+ b ‖ c+ d;
(2) a, b, c, d are not pairwise incomparable.
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Then F (P ) is infinite.

Proof: We can suppose that a, b, c, d is a maximal quadruple with respect to these two
properties. Further, we can suppose that b < c. By 2.3 we can assume that b + d ∈ P .
Consider the quadruple a, b, c, b + d; by the maximality of a, b, c, d we get b + d = d and
hence b ≤ cd. Let x ∈ P and x ≤ (a+ b)c. Then the element y = x+ b belongs to P (since
x, b ≤ c) and b ≤ y ≤ (a + b)c. If y > b then we can take the quadruple a, y, c, d; by the
maximality of a, b, c, d we get y = b. But then y ≤ b and the condition (3) of 2.4 is satisfied.
Similarly one can prove that the condition (4) of 2.4 is satisfied. By 2.4 we obtain that
F (P ) is infinite. ⊔⊓

2.6. Lemma. Let P be a finite halflattice and a, b, c, d ∈ P be such that

(1) a+ b /∈ P , c+ d /∈ P , a+ b ‖ c+ d;
(2) a 6≤ c+ d, c 6≤ a+ b;
(3) b+ c /∈ P .

Then F (P ) is infinite.

Proof: Consider the three elements a(c + d), b(c + d) and c of the relative sublattice
Q = P ∪ {c+ d, a(c+ d), b(c+ d)} of F (P ). Put t0 = a(c+ d) + b(c+ d), t1 = t0c+ b(c+ d),
t2 = t1a(c+ d) + b(c+ d) = t1a+ b(c+ d). In Q we have ↑t0 = ↑t1 = {c+ d} and so by 1.4
it is sufficient to prove t0 > t1 > t2. If t0 ≤ t1 then a(c+ d) ≤ t0c+ b(c+ d); in each of the
five possible cases we get easily a contradiction. Similarly, we cannot have t1 ≤ t2. ⊔⊓

2.7. Lemma. Let P be a finite halflattice and a, b, c, d ∈ P be such that

(1) a+ b /∈ P , c+ d /∈ P , a+ b ‖ c+ d.

Then F (P ) is infinite.

Proof: Let a, b, c, d be a maximal quadruple with the property (1). By 2.5 we can assume
that a, b, c, d are pairwise incomparable. Since a+ b ‖ c+ d, we can suppose that a 6≤ c+ d
and c 6≤ a+ b. By 2.6 it is sufficient to consider the case when b+ c ∈ P . If b ≤ c+ d then
a, b, b+ c, d is a quadruple contradicting the maximality of a, b, c, d; hence b 6≤ c+ d.

Let there exist an element x ∈ P such that x ≤ (a + b)(c + d), x 6≤ b and x 6≤ c. If
x + b ∈ P then the quadruple a, x + b, c, d contradicts the maximality of a, b, c, d. Hence
x + b /∈ P and similarly x + c /∈ P . Using b 6≤ c + d and c 6≤ a + b we get x + b ‖ x + c;
by 2.2, F (P ) is infinite. So, we can assume that whenever x is an element of P such that
x ≤ (a+ b)(c+ d) then either x ≤ b or x ≤ c.

If a ≤ (a+b)(c+d)+b then a ∈ ↓(a+b)(c+d)∨↓b ⊆ (↓b∨↓c)∨↓b = ↓b∨↓c = ↓(b+c), so
that a ≤ b+c and the elements a, b have a common upper bound b+c in P , a contradiction.
We get a 6≤ (a+ b)(c+ d) + b.

Consider the elements a, b and c + d of the relative sublattice Q = P ∪ {c + d} of
F (P ). Put t0 = a + b, t1 = (a + b)(c + d) + b and t2 = t1a + b. We have ↑t0 = ↑t1 = ∅ in
Q, so that by 1.4 it is sufficient to prove t0 > t1 > t2. As we have proved, a 6≤ t1 and so
t0 6≤ t1. If t1 ≤ t2 then (a + b)(c + d) ≤ t1a + b; in each of the five possible cases we get
easily a contradiction; hence t1 > t2. ⊔⊓

3. HALFLATTICES: A CHAIN OF FIVE UNDEFINED JOINS. For a finite
halflattice P we denote by UJ(P ) the set of the elements u ∈ F (P )−P such that u = x+y
for some x, y ∈ P .

For u ∈ F (P ) and a ∈ P denote by u ⊙ a the greatest element x ∈ P with the
properties x ≤ p and x ≤ a (its existence is clear).

3.1. Lemma. Let P be a finite halflattice such that F (P ) is finite. Let p, q be two elements
of UJ(P ) with p < q and let a, b, c be three elements of P with q = a + b and p = b + c.
Then b+ (p⊙ a) = p.

Proof: Put d = p ⊙ a. If c ≤ a then b + d = p is clear. Consider the opposite case; then
a, b, c are pairwise incomparable. Put

t0 = p = b+ c,
ti = ti−1a+ b for i odd,
ti = ti−1c+ b for i ≥ 2 even.
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We have ↑ti = ∅ for all i.
Let us prove that if t0 > t1 then t1 > t2. If t1 ≤ t2 then pa ≤ t1c + b and there are

only five cases possible.
Case 1: pa ≤ t1c. Then pa ≤ c and c ∈ ↑(pa) = ↑a, a contradiction.
Case 2: pa ≤ b. Then b ∈ ↑(pa) = ↑a, a contradiction.
Case 3: p ≤ t2. Then t0 ≤ t1, a contradiction.
Case 4: a ≤ t2. Then a ≤ p, a contradiction.
Case 5: pa ≤ x ≤ t2 for some x ∈ P . Then x ∈ ↑(pa) = ↑a and a ≤ x ≤ t2 ≤ p, a

contradiction.
It follows from 1.4 that t0 = t1. Hence c ≤ pa+ b. From this we get c ∈ ↓(pa)∨↓b =

↓d ∨ ↓b, so that c ≤ b+ d; but then b+ d = p. ⊔⊓

3.2. Lemma. Let P be a finite halflattice such that F (P ) is finite. Let p, q, r be three
elements of UJ(P ) such that p < q < r and let a, b, c be three elements of P such that
r = a+ b and p = b+ c. Then b+ (q ⊙ a) = q.

Proof: Put d = q ⊙ a. By 3.1 we can suppose that c < a; then c ≤ d. By 2.7, UJ(P )
is a finite chain. Denote by q0 the predecessor of q in this chain. Since q ∈ UJ(P ), there
exists an element e ∈ P with e < q and e 6≤ q0; let us take a maximal element e with these
properties. If b 6≤ e then b + e = q and b + d = q follows from 3.1. So, let b < e. We have
c 6≤ e (since b, c have no upper bound in P ) and q = c+ e.

Consider the quadruple e, b, a, c. Put
t0 = q = e+ c,
ti = ti−1a+ b for i odd,
ti = ti−1e+ c for i ≥ 2 even.

We have ↑ti = ∅ for all i.
Let us prove that if t0 > t1 then t1 > t2. If t1 ≤ t2 then qa ≤ t1e+ c and one of the

following five cases must take place.
Case 1: qa ≤ t1e. Then qa ≤ e and e ∈ ↑(qa) = ↑a, a contradiction.
Case 2: qa ≤ c. Then c ∈ ↑(qa) = ↑a, a contradiction.
Case 3: q ≤ t2. Then t0 ≤ t1, a contradiction.
Case 4: a ≤ t2. Then a ≤ q, a contradiction.
Case 5: qa ≤ x ≤ t2 for some x ∈ P . Then a ≤ x ≤ t2 ≤ q, a contradiction.
By 1.4 we have proved t0 = t1, so that e ≤ qa+ b. We get e ∈ ↓(qa) ∨ ↓b = ↓d ∨ ↓b,

e ≤ b+ d and consequently b+ d = q. ⊔⊓

3.3. Lemma. Let P be a finite halflattice. If there exist three elements u, v, w of UJ(P )
with u < v < w and three elements a, b, c of P with a < b < c, a < w, a 6≤ v and b 6≤ w then
F (P ) is infinite.

Proof: There are two elements x, y ∈ P with u = x+ y. If av ≤ u = x+ y then there are
only five cases possible and we get a contradiction in each of them. Hence av 6≤ u. Put

t0 = av,
ti = (ti−1 + cu)b for i odd,
ti = (ti−1 + a)v for i ≥ 2 even.

We have ti ≤ bv for all i and t0 ≤ t1 ≤ t2 ≤ . . . ; further, ↑t0 = ↑a and ↑ti = b for i ≥ 1.
If t1 ≤ t0 then t1 ≤ a, a contradiction. We get t0 < t1. Now, we can prove ti < ti+1

by induction for all i. If i is even and ti+1 ≤ ti then (ti + cu)b ≤ ti−1 + a and we are in one
of the following five cases.

Case 1: ti+1 ≤ ti−1. Then ti ≤ ti−1, a contradiction by induction.
Case 2: ti+1 ≤ a. Then a ∈ ↑b, a contradiction.
Case 3: ti + cu ≤ ti−1 + a. Then cu ≤ ti−1 + a ≤ b, so that b ∈ ↑(cu) = ↑c, a

contradiction.
Case 4: b ≤ ti−1 + a. Then b ≤ w, a contradiction.
Case 5: ti+1 ≤ x ≤ ti−1 + a for some x ∈ P . Then b ≤ x ≤ w, a contradiction.
If i ≥ 3 is odd and ti+1 ≤ ti then (ti + a)v ≤ ti−1 + cu and the five cases are:
Case 1: ti+1 ≤ ti−1. Then ti ≤ ti−1, a contradiction by induction.
Case 2: ti+1 ≤ cu. Then av = t0 ≤ cu ≤ u, but we have proved av 6≤ u above.
Case 3: ti + a ≤ ti−1 + cu. Then a ≤ ti−1 + cu ≤ v, a contradiction.
Case 4: v ≤ ti−1 + cu. Then v ≤ c, a contradiction with v ∈ UJ(P ).
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Case 5: ti+1 ≤ x ≤ ti−1 + cu for some x ∈ P . Then b ≤ x ≤ w, a contradiction. ⊔⊓

3.4. Lemma. Let P be a finite halflattice. If UJ(P ) is a chain of at least five elements
then F (P ) is infinite.

Proof: Let u < v < w < r < s be the first five elements of UJ(P ). We have u = x+ y for
some x, y ∈ P . Since s ∈ UJ(P ), there exists an element c ∈ P with c < s and c 6≤ r; we
can assume that c is maximal with these properties. Since c cannot be an upper bound of
both x and y, we can assume that x 6≤ c; then s = c+ x. Two applications of 3.2 yield the
existence of two elements b and a in P such that b < c, r = x + b, a < b, w = x + a. The
assumptions of 3.3 are evidently satisfied, so that F (P ) is infinite. ⊔⊓

4. THE MAIN RESULTS. The following is a consequence of lemmas 2.7 and 3.4:

4.1. THEOREM. Let P be a finite halflattice. If the free lattice F (P ) over P is finite
then the set UJ(P ) of the elements u ∈ F (P )− P that are of the form u = x+ y for some
x, y ∈ P is an at most four-element chain. ⊔⊓

4.2. Example. There exist finite halflattices P such that UJ(P ) is a chain of exactly
four elements. In figures 1 and 2 we present two such examples. In the first of them, P
and F (P ) are of cardinalities 8 and 29, respectively, and in the second example they are
of cardinalities 25 and 58. In both cases full dots represent the elements of P , while blank
dots stand for the elements of F (P )−P ; it is a mechanical task to verify that the pictured
lattice is free over the subset consisting of the full dots.

4.3. Example. If P is a finite halflattice such that UJ(P ) consists of one element only
then F (P ) = P ∪ UJ(P ) is finite. On the other hand, there exist finite halflattices P such
that UJ(P ) is a two-element chain and F (P ) is infinite. For example, the fourteen-element
halflattice obtained from the sixteen-element Boolean algebra by omitting the greatest ele-
ment and one of the coatoms has this property.
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