NOTES ON THE NUMBER OF ASSOCIATIVE TRIPLES

J. Ježek and T. Kepka

1. INTRODUCTION

For a quasigroup Q, let

$$
\begin{array}{ll}
\mathrm{A}(Q)=\left\{(x, y, z) \in Q^{3} ; x . y z=x y . z\right\}, & \mathrm{a}(Q)=\operatorname{card}(\mathrm{A}(Q)) \\
\mathrm{B}(Q)=Q^{3}-\mathrm{A}(Q), & \mathrm{b}(Q)=\operatorname{card}(\mathrm{B}(Q))
\end{array}
$$

Obviously, $\mathrm{b}(Q)=0$ iff Q is a group. By [3], if Q is infinite and nonassociative then $\mathrm{a}(Q)=$ $\mathrm{b}(Q)=\operatorname{card}(Q)$. Now, let Q be finite and $n=\operatorname{card}(Q)$. Then $\mathrm{a}(Q)+\mathrm{b}(Q)=n^{3}$; for every $x \in Q$ we can define two elements $f(x), e(x) \in Q$ by $f(x) x=x=x e(x)$; since $f(x) \cdot x e(x)=x=f(x) x . e(x)$, the set $\{(f(x), x, e(x)) ; x \in Q\}$ is contained in $\mathrm{A}(Q)$ and we get $n \leq \mathrm{a}(Q) \leq n^{3}$.

Every quasigroup with at most two elements is a group. On the other hand, for every $n \geq 3$ there are nonassociative quasigroups of order n. We denote by $\mathrm{a}_{\max }(n)$ the maximum and by $\mathrm{a}_{\min }(n)$ the minimum of the numbers a (Q), for Q running over all the nonassociative quasigroups of order $n \geq 3$. The numbers $\mathrm{b}_{\max }(n)$ and $\mathrm{b}_{\text {min }}(n)$ can be defined similarly, and we have $\mathrm{b}_{\max }(n)=n^{3}-\mathrm{a}_{\min }(n)$ and $\mathrm{b}_{\text {min }}(n)=n^{3}-\mathrm{a}_{\max }(n)$.

For every $n \geq 1$ denote by $\operatorname{assspec}(n)$ the set of the numbers a (Q), where Q runs over the quasigroups of order n. This set, called the associativity spectrum of n, is contained in $\{n, n+$ $\left.1, \ldots, n^{3}\right\}$. We have
$\operatorname{assspec}(1)=\{1\}$,
$\operatorname{assspec}(2)=\{8\}$,
$\operatorname{assspec}(3)=\{9,27\}$,
$\operatorname{assspec}(4)=\{16,24,32,64\}$,
$\operatorname{assspec}(5)=\{15, \ldots, 57,59,62,63,74,79,80,89,125\}$,
$\operatorname{assspec}(6)=\{16,19, \ldots, 114,116,117,118,120,121,122,124, \ldots, 128,130, \ldots, 137,141,142$,
$144,148,152,160,162,168,172,184,189,216\}$.
Hence

$$
\begin{array}{ll}
\mathrm{a}_{\min }(3)=\mathrm{a}_{\max }(3)=9 \\
\mathrm{a}_{\min }(4)=16, & \mathrm{a}_{\max }(4)=32 \\
\mathrm{a}_{\min }(5)=15, & \mathrm{a}_{\max }(5)=89 \\
\mathrm{a}_{\min }(6)=16, & \mathrm{a}_{\max }(6)=189
\end{array}
$$

These values can be obtained on a computer. A standard backtracking program can be used to generate all n-element quasigroups with a fixed permutation for the top row of the multiplication table. For $n=6$ there are 1128960 such quasigroups. Then for each quasigroup generated by the backtracking routine, each number of a certain set of permutations is applied to give an isotopic quasigroup. The number of associative triples in each such quasigroup is counted. For $n=6$ only 12 permutations are needed to get all the nonidempotent quasigroups, and the idempotent case is handled separately. The program was written and the computation for $n=6$ was done by J. Berman using the facilities of the Computer Center at the University of Illinois at Chicago.

The following are examples of a quasigroup H of order 6 with a $(H)=16$ and of a quasigroup Q of order 6 with a $(Q)=189$:

H	1	2	3	4	5	6
1	2	1	4	3	5	6
2	1	2	5	6	4	3
3		6	5	1	2	3
4						
4	5	6	3	4	1	2
5	4	3	2	1	6	5
6	3	4	6	5	2	1

Q	1	2	3	4	5	6
1	2	3	1	5	6	4
2		3	1	2	6	4
5						
3		2	3	4	5	6
4	6	5	4	1	3	2
5	4	6	5	2	1	3
6	5	4	6	3	2	1

2. EXAMPLES.

2.1.EXAMPLE. Let $n \geq 4$ be an even number. Take an abelian group $Q(+)$ of order n and two distinct elements $a, b \in Q-\{0\}$ with $2 a=0$. Let us define a new binary operation, a multiplication, on Q as follows: put $x y=x+y$ for all $x, y \in Q$ such that either $x \notin\{b, a+b\}$ or $y \notin\{b, a+b\}$; put $b b=(a+b)(a+b)=2 b+a$ and $\mathrm{b}(a+b)=(a+b) b=2 b$. It is easy to verify that Q is a commutative loop and that $(x, y, z) \in \mathrm{B}(Q)$ iff either $x \in\{b, a+b\}, y \in\{b, a+b, b-z, a+b-z\}$ and $z \notin\{0, a, b, a+b\}$ or else $x \in\{0, a, b, a+b\}, y \in\{b, a+b, b-x, a+b-x\}$ and $z \in\{b, a+b\}$. Hence $\mathrm{b}(Q)=16 n-64$.

As a consequence we get

$$
\begin{gathered}
n^{3}-16 n+64 \in \operatorname{assspec}(n), \\
\mathrm{b}_{\min }(n) \leq 16 n-64, \\
\mathrm{a}_{\max }(n) \geq n^{3}-16 n+64
\end{gathered}
$$

for any even number $n \geq 6$.
2.2.EXAMPLE. Let $n \geq 3$ be such that $n \neq 4 k+2$ for any k. Then there exist a commutative group $Q(+)$ and an automorphism f of $Q(+)$ such that $f(x) \neq x$ for all $x \in Q-\{0\}$. For example, we can express n as $n=2^{m} d$ where $m \neq 1$ and d is an even number, take $Q(+)=C_{1}(+) \times \cdots \times C_{m}(+) \times D(+)$ where C_{i} is the two-element group and D is the cyclic group of order d and put $f\left(x_{1}, \ldots, x_{m}, y\right)=$ $\left(x_{1}+x_{2}, x_{3}, \ldots, x_{m}, x_{1}, 2 y\right)$. Define a multiplication on Q by $x y=f(x+y)$. In this way we obtain a quasigroup Q and it is easy to see that $\mathrm{A}(Q)=\{(x, y, x) ; x, y \in Q\}$.

As a consequence we get

$$
\begin{gathered}
n^{2} \in \operatorname{assspec}(n), \\
\mathrm{a}_{\min }(n) \leq n^{2}, \\
\mathrm{~b}_{\max }(n) \geq n^{3}-n^{2}
\end{gathered}
$$

for any number $n \geq 3$ such that $n \neq 4 k+2$ for any k.
2.3.EXAMPLE. Let $G(+)$ be an abelian group of an odd order $m \geq 3$ and let $Q(+)=Z_{2}(+) \times$ $G(+)$. Put $f(a, x)=(a, 2 x)$ for any $(a, x) \in Q$. Then f is an automorphism of $Q(+)$ and we can define a multiplication on Q by $p q=f(p)+q$ for all $p, q \in Q$. Clearly, Q becomes a quasigroup and $\mathrm{A}(Q)=\left\{((a, 0),(b, y),(c, z)) ; a, b, c \in Z_{2}, \quad y, z \in G\right\}$.

As a consequence we get

$$
\begin{gathered}
2 n^{2} \in \operatorname{assspec}(n), \\
\mathrm{a}_{\min }(n) \leq 2 n^{2}, \\
\mathrm{~b}_{\max }(n) \geq n^{3}-2 n^{2}
\end{gathered}
$$

for every number $n \geq 6$ such that $n=4 k+2$ for some k.

3. THE GROUP DISTANCE AND THE NUMBERS $\mathrm{b}_{\min }(n)$

Let $Q(*)$ and $Q(\circ)$ be two quasigroups with the same underlying set Q. We put $\operatorname{dist}(Q(*), Q(\circ))=$ $\operatorname{card}\left(\left\{(x, y) \in Q^{2} ; x * y \neq x \circ y\right\}\right)$. This cardinal number is called the distance of the two quasigroups; it is easy to see that it is not less than 4 , provided that the two quasigroups are different.

For a quasigroup Q denote by $\operatorname{gdist}(Q)$ the minimum of the numbers dist $(Q, Q(*)), \quad Q(*)$ being an arbitrary group with underlying set Q. Clearly, $\operatorname{gdist}(Q)=0$ iff Q is a group.

For $n \geq 3$, let $\operatorname{gdist}(n)$ designate the minimum of the numbers $\operatorname{gdist}(Q)$, where Q is a nonassociative quasigroup of order n; further, put $\operatorname{gdist}(2)=4$. Obviously, if $m \geq 2$ and if m divides n then $\operatorname{gdist}(n) \leq \operatorname{gdist}(m)$. In particular, $\operatorname{gdist}(n) \leq \operatorname{gdist}(p), p$ being the least prime number dividing n, and we have $\operatorname{gdist}(n)=4$ for every even number n. Using mechanical means (or making a tedious handwork), one can establish

$$
\operatorname{gdist}(3)=6, \quad \operatorname{gdist}(5)=8, \quad \operatorname{gdist}(7)=9, \quad \operatorname{gdist}(11)=11
$$

By [2], we have $e \ln p+3<\operatorname{gdist}(p)$ and according to a private communication of A. Drápal, $\operatorname{gdist}(p)<4 \sqrt{p}$ for every prime number $p \geq 3$.
A. Drápal has found in [1] some connections between the numbers $\mathrm{b}(Q)$ and $\operatorname{gdist}(Q)$. Namely, he proved the following two propositions.
3.1.PROPOSITION. Let Q be a finite quasigroup of order n; put $b=\mathrm{b}(Q)$ and $g=\operatorname{gdist}(Q)$. Then:

$$
\begin{aligned}
& 4 g n-2 g^{2}-24 g \leq b \leq 4 g n \\
& 4 g n-2 g^{2}-16 g \leq b, \quad \text { provided that } \quad g \geq 24 \\
& 3 g n<b, \quad \text { provided that } \quad 1 \leq b<3 n^{2} / 32
\end{aligned}
$$

3.2.PROPOSITION. Let $n \geq 3$; put $b=\mathrm{b}_{\text {min }}(n)$ and $g=\operatorname{gdist}(n)$. Then $4 n g-2 g^{2}-24 g \leq b \leq$ $4 n g$ and $3 n g<b$. If $b<3 n^{2} / 32, \quad g^{2}+14 g+13<2 n$ and if Q is a quasigroup of order n such that $\mathrm{b}(Q)=b$ then $\operatorname{gdist}(Q)=g$.
3.3.PROPOSITION. Let $n \geq 3$ be such that $\operatorname{gdist}(n)<3 n / 128$. Then $\mathrm{b}_{\text {min }}(n)<3 n^{2} / 32$.

Proof. Put $g=\operatorname{gdist}(n)$. Let Q be a quasigroup of order n such that $\operatorname{gdist}(Q)=g$. By 3.1(1), $\mathrm{b}_{\text {min }}(n) \leq \mathrm{b}(Q) \leq 4 g n$. Since $g<3 n / 128$, we have $4 g n<3 n^{2} / 32$.
3.4.PROPOSITION. Let $n \geq 29124$. Then $\mathrm{b}_{\text {min }}(n)<3 n^{2} / 32$.

Proof. If $n \geq 29128$ then $4 \sqrt{n}<3 n / 128$ and the result follows from 3.3. The number 29127 is divisible by 3 , the number 29125 by 5 and the numbers 29126 and 29124 are even.
3.5.PROPOSITION. Let $n \geq 29124$ be not a prime number and let Q be a quasigroup of order n such that $\mathrm{b}(Q)=\mathrm{b}_{\text {min }}(n)$. Then $\operatorname{gdist}(Q)=\operatorname{gdist}(n)$.

Proof. By 3.4, $\mathrm{b}_{\text {min }}(n)<3 n^{2} / 32$. Denote by p the least prime number dividing n. Then $p 1 \leq 70$ and $16 p+56 \sqrt{p}+13<2 n$. The result follows from 3.2.

If n is even then a considerably more complete result is known (see [1]):
3.6.PROPOSITION. Let $n \geq 168$ be even. Then $\mathrm{b}_{\min }(n)=16 n-64$ and $\mathrm{a}_{\max }(n)=n^{3}-16 n+64$.
3.7.PROPOSITION. Let $n \geq 194$ be even and let Q be a quasigroup of order n such that $\mathrm{b}(Q) \leq$ $18 n$. Then $\mathrm{b}(Q) \in\{0,16 n-64,16 n-56,16 n-48,16 n-36,16 n-32\}$.

Proof. Assume that Q is not a group. We have $\mathrm{b}(Q) \leq 18 n<3 n^{2} / 32$ and so gdist $(Q)<6$ by $3.1(3)$. Now, it is easy to show that $\operatorname{gdist}(Q)=4$ and the result follows from Proposition 10.4 of [1].
3.8.PROPOSITION. Let n be an even number, $6 \leq n \leq 166$. Then $3 n^{2} / 32 \leq \mathrm{b}_{\text {min }}(n) \leq 16 n-64$.

Proof. The inequality $\mathrm{b}_{\min }(n) \leq 16 n-64$ follows from 2.1. Now, let Q be a quasigroup of order n with $b=\mathrm{b}(Q)=\mathrm{b}_{\text {min }}(n)$. Suppose that $b<3 n^{2} / 32$. By $3.1(3), g=\operatorname{gdist}(Q)<n / 32$. Since $g \geq 4$, we have $n \geq 130$. We have $\operatorname{gdist}(n)=4$ and $g=4$ by 3.2. By Proposition 10.4 of [1] we get $b \geq 16 n-64$, a contradiction.
3.9.REMARK. By $3.8,2584 \leq \mathrm{b}_{\min }(166) \leq 2592$. Let Q be a quasigroup of order 166 with $\mathrm{b}(Q)=\mathrm{b}_{\text {min }}(166)$. Then either $\operatorname{gdist}(Q)=4$ (and then $\mathrm{b}_{\text {min }}(166)=2592$) or $\operatorname{gdist}(Q) \geq 320$ (use 3.1).
3.10.REMARK. We have $\mathrm{b}_{\text {min }}(6)=27$, so that 3.6 is not true for $n=6$. The situation for $8 \leq n \leq 166$ is not clear.
3.11.REMARK. In contrast to the numbers $\mathrm{b}_{\min }(n)$ and $\mathrm{a}_{\max }(n)$, almost nothing is known about the numbers $\mathrm{a}_{\text {min }}(n)$. It follows from 2.2 and 2.3 that

$$
\begin{aligned}
& n \leq \mathrm{a}_{\text {min }}(n) \leq n^{2} \quad \text { for } \quad n \geq 3, n \neq 4 k+2, \\
& n \leq \mathrm{a}_{\text {min }}(n) \leq 2 n^{2} \quad \text { for every } \quad n \geq 3
\end{aligned}
$$

It is not clear whether $n<\operatorname{a} \min (n)$ for every $n \geq 3$. By [3], if Q is a quasigroup of order $n \geq 3$ such that a $(Q)=n$, then Q is idempotent and not isotopic to a group.

References

[1] A. Drápal: On quasigroups rich in associative triples. Discrete Math. 44(1983), 251-265.
[2] A. Drápal, T. Kepka: On a distance of quasigroups and groups. (To appear)
[3] T. Kepka: A note on the associative triples of elements in cancellation groupoids. Comment. Math. Univ. Carolinae 21(1980), 479-487.

