NOTES ON THE NUMBER OF ASSOCIATIVE TRIPLES

J. Ježek and T. Kepka

1. INTRODUCTION

For a quasigroup Q, let

$$\begin{split} \mathbf{A}(Q) &= \{(x,y,z) \in Q^3; x.yz = xy.z\}, \qquad \mathbf{a}(Q) = \mathrm{card}(\mathbf{A}(Q)), \\ \mathbf{B}(Q) &= Q^3 - \mathbf{A}(Q), \qquad \qquad \mathbf{b}(Q) = \mathrm{card}(\mathbf{B}(Q)). \end{split}$$

Obviously, b(Q) = 0 iff Q is a group. By [3], if Q is infinite and nonassociative then $a(Q) = b(Q) = \operatorname{card}(Q)$. Now, let Q be finite and $n = \operatorname{card}(Q)$. Then $a(Q) + b(Q) = n^3$; for every $x \in Q$ we can define two elements $f(x), e(x) \in Q$ by f(x)x = x = xe(x); since f(x).xe(x) = x = f(x)x.e(x), the set $\{(f(x), x, e(x)); x \in Q\}$ is contained in A(Q) and we get $n \leq a(Q) \leq n^3$.

Every quasigroup with at most two elements is a group. On the other hand, for every $n \ge 3$ there are nonassociative quasigroups of order n. We denote by $a_{max}(n)$ the maximum and by $a_{min}(n)$ the minimum of the numbers a(Q), for Q running over all the nonassociative quasigroups of order $n \ge 3$. The numbers $b_{max}(n)$ and $b_{min}(n)$ can be defined similarly, and we have $b_{max}(n) = n^3 - a_{min}(n)$ and $b_{min}(n) = n^3 - a_{max}(n)$.

For every $n \ge 1$ denote by $\operatorname{assspec}(n)$ the set of the numbers a(Q), where Q runs over the quasigroups of order n. This set, called the associativity spectrum of n, is contained in $\{n, n + 1, \ldots, n^3\}$. We have

 $assspec(1) = \{1\},\$ $assspec(2) = \{8\},\$ $assspec(3) = \{9,27\},\$ $assspec(4) = \{16,24,32,64\},\$ $assspec(5) = \{15,\ldots,57,59,62,63,74,79,80,89,125\},\$ $assspec(6) = \{16,19,\ldots,114,116,117,118,120,121,122,124,\ldots,128,130,\ldots,137,141,142,$ $144,148,152,160,162,168,172,184,189,216\}.$

Hence

 $\begin{aligned} \mathbf{a}_{min}(3) &= \mathbf{a}_{max}(3) = 9, \\ \mathbf{a}_{min}(4) &= 16, \qquad \mathbf{a}_{max}(4) = 32, \\ \mathbf{a}_{min}(5) &= 15, \qquad \mathbf{a}_{max}(5) = 89, \\ \mathbf{a}_{min}(6) &= 16, \qquad \mathbf{a}_{max}(6) = 189. \end{aligned}$

These values can be obtained on a computer. A standard backtracking program can be used to generate all *n*-element quasigroups with a fixed permutation for the top row of the multiplication table. For n = 6 there are 1128960 such quasigroups. Then for each quasigroup generated by the backtracking routine, each number of a certain set of permutations is applied to give an isotopic quasigroup. The number of associative triples in each such quasigroup is counted. For n = 6 only 12 permutations are needed to get all the nonidempotent quasigroups, and the idempotent case is handled separately. The program was written and the computation for n = 6 was done by J. Berman using the facilities of the Computer Center at the University of Illinois at Chicago.

The following are examples of a quasigroup H of order 6 with a(H) = 16 and of a quasigroup Q of order 6 with a(Q) = 189:

Typeset by $\mathcal{AMS}\text{-}T_{\mathrm{E}}X$

H	$1 \ 2 \ 3 \ 4 \ 5 \ 6$	Q	$1\ 2\ 3\ 4\ 5\ 6$
1	$2\ 1\ 4\ 3\ 5\ 6$	1	$2\ 3\ 1\ 5\ 6\ 4$
2	1 2 5 6 4 3	2	$3\ 1\ 2\ 6\ 4\ 5$
3	$6\ 5\ 1\ 2\ 3\ 4$	3	$1\ 2\ 3\ 4\ 5\ 6$
4	5 6 3 4 1 2	4	$6\ 5\ 4\ 1\ 3\ 2$
5	$4\ 3\ 2\ 1\ 6\ 5$	5	$4\ 6\ 5\ 2\ 1\ 3$
6	3 4 6 5 2 1	6	$5\ 4\ 6\ 3\ 2\ 1$

2. EXAMPLES.

2.1.EXAMPLE. Let $n \ge 4$ be an even number. Take an abelian group Q(+) of order n and two distinct elements $a, b \in Q - \{0\}$ with 2a = 0. Let us define a new binary operation, a multiplication, on Q as follows: put xy = x + y for all $x, y \in Q$ such that either $x \notin \{b, a + b\}$ or $y \notin \{b, a + b\}$; put bb = (a + b)(a + b) = 2b + a and b(a + b) = (a + b)b = 2b. It is easy to verify that Q is a commutative loop and that $(x, y, z) \in B(Q)$ iff either $x \in \{b, a + b\}, y \in \{b, a + b, b - z, a + b - z\}$ and $z \notin \{0, a, b, a + b\}$ or else $x \in \{0, a, b, a + b\}, y \in \{b, a + b, b - x, a + b - x\}$ and $z \in \{b, a + b\}$. Hence b(Q) = 16n - 64.

As a consequence we get

 $n^3 - 16n + 64 \in \operatorname{assspec}(n),$ $b_{min}(n) \le 16n - 64,$

 $a_{max}(n) \ge n^3 - 16n + 64$

for any even number $n \ge 6$.

2.2.EXAMPLE. Let $n \ge 3$ be such that $n \ne 4k+2$ for any k. Then there exist a commutative group Q(+) and an automorphism f of Q(+) such that $f(x) \ne x$ for all $x \in Q - \{0\}$. For example, we can express n as $n = 2^m d$ where $m \ne 1$ and d is an even number, take $Q(+) = C_1(+) \times \cdots \times C_m(+) \times D(+)$ where C_i is the two-element group and D is the cyclic group of order d and put $f(x_1, \ldots, x_m, y) = (x_1 + x_2, x_3, \ldots, x_m, x_1, 2y)$. Define a multiplication on Q by xy = f(x + y). In this way we obtain a quasigroup Q and it is easy to see that $A(Q) = \{(x, y, x); x, y \in Q\}$.

As a consequence we get

$$n^2 \in \operatorname{assspec}(n),$$

 $a_{min}(n) \le n^2,$
 $b_{max}(n) \ge n^3 - n^2$

for any number $n \ge 3$ such that $n \ne 4k + 2$ for any k.

2.3.EXAMPLE. Let G(+) be an abelian group of an odd order $m \ge 3$ and let $Q(+) = Z_2(+) \times G(+)$. Put f(a, x) = (a, 2x) for any $(a, x) \in Q$. Then f is an automorphism of Q(+) and we can define a multiplication on Q by pq = f(p) + q for all $p, q \in Q$. Clearly, Q becomes a quasigroup and $A(Q) = \{((a, 0), (b, y), (c, z)); a, b, c \in Z_2, y, z \in G\}.$

As a consequence we get

$$2n^2 \in \operatorname{assspec}(n),$$

$$a_{min}(n) \le 2n^2,$$

 $b_{max}(n) \ge n^3 - 2n^2$

for every number $n \ge 6$ such that n = 4k + 2 for some k.

3. THE GROUP DISTANCE AND THE NUMBERS $b_{min}(n)$

Let Q(*) and $Q(\circ)$ be two quasigroups with the same underlying set Q. We put dist $(Q(*), Q(\circ)) =$ card $(\{(x, y) \in Q^2; x * y \neq x \circ y\})$. This cardinal number is called the distance of the two quasigroups; it is easy to see that it is not less than 4, provided that the two quasigroups are different.

For a quasigroup Q denote by gdist(Q) the minimum of the numbers dist(Q, Q(*)), Q(*) being an arbitrary group with underlying set Q. Clearly, gdist(Q) = 0 iff Q is a group.

For $n \ge 3$, let gdist(n) designate the minimum of the numbers gdist(Q), where Q is a nonassociative quasigroup of order n; further, put gdist(2) = 4. Obviously, if $m \ge 2$ and if m divides n then $gdist(n) \le gdist(m)$. In particular, $gdist(n) \le gdist(p)$, p being the least prime number dividing n, and we have gdist(n) = 4 for every even number n. Using mechanical means (or making a tedious handwork), one can establish

gdist(3) = 6, gdist(5) = 8, gdist(7) = 9, gdist(11) = 11.

By [2], we have $e \ln p + 3 < \text{gdist}(p)$ and according to a private communication of A. Drápal, $\text{gdist}(p) < 4\sqrt{p}$ for every prime number $p \ge 3$.

A. Drápal has found in [1] some connections between the numbers b(Q) and gdist(Q). Namely, he proved the following two propositions.

3.1.PROPOSITION. Let Q be a finite quasigroup of order n; put b = b(Q) and g = gdist(Q). Then:

 $4gn - 2g^2 - 24g \le b \le 4gn;$

 $\begin{array}{ll} 4gn-2g^2-16g \leq b, & provided \ that \quad g \geq 24; \\ 3gn < b, & provided \ that \quad 1 \leq b < 3n^2/32. \end{array}$

3.2.PROPOSITION. Let $n \ge 3$; put $b = b_{min}(n)$ and g = gdist(n). Then $4ng - 2g^2 - 24g \le b \le 4ng$ and 3ng < b. If $b < 3n^2/32$, $g^2 + 14g + 13 < 2n$ and if Q is a quasigroup of order n such that b(Q) = b then gdist(Q) = g.

3.3.PROPOSITION. Let $n \ge 3$ be such that gdist(n) < 3n/128. Then $b_{min}(n) < 3n^2/32$.

Proof. Put g = gdist(n). Let Q be a quasigroup of order n such that gdist(Q) = g. By 3.1(1), $b_{min}(n) \leq b(Q) \leq 4gn$. Since g < 3n/128, we have $4gn < 3n^2/32$.

3.4.PROPOSITION. Let $n \ge 29124$. Then $b_{min}(n) < 3n^2/32$.

Proof. If $n \ge 29128$ then $4\sqrt{n} < 3n/128$ and the result follows from 3.3. The number 29127 is divisible by 3, the number 29125 by 5 and the numbers 29126 and 29124 are even.

3.5.PROPOSITION. Let $n \ge 29124$ be not a prime number and let Q be a quasigroup of order n such that $b(Q) = b_{min}(n)$. Then gdist(Q) = gdist(n).

Proof. By 3.4, $b_{min}(n) < 3n^2/32$. Denote by p the least prime number dividing n. Then $p1 \le 70$ and $16p + 56\sqrt{p} + 13 < 2n$. The result follows from 3.2.

If n is even then a considerably more complete result is known (see [1]):

3.6.PROPOSITION. Let $n \ge 168$ be even. Then $b_{min}(n) = 16n - 64$ and $a_{max}(n) = n^3 - 16n + 64$.

3.7.PROPOSITION. Let $n \ge 194$ be even and let Q be a quasigroup of order n such that $b(Q) \le 18n$. Then $b(Q) \in \{0, 16n - 64, 16n - 56, 16n - 48, 16n - 36, 16n - 32\}.$

Proof. Assume that Q is not a group. We have $b(Q) \le 18n < 3n^2/32$ and so gdist(Q) < 6 by 3.1(3). Now, it is easy to show that gdist(Q) = 4 and the result follows from Proposition 10.4 of [1].

3.8.PROPOSITION. Let n be an even number, $6 \le n \le 166$. Then $3n^2/32 \le b_{min}(n) \le 16n-64$.

Proof. The inequality $b_{min}(n) \leq 16n - 64$ follows from 2.1. Now, let Q be a quasigroup of order n with $b = b(Q) = b_{min}(n)$. Suppose that $b < 3n^2/32$. By 3.1(3), g = gdist(Q) < n/32. Since $g \geq 4$, we have $n \geq 130$. We have gdist(n) = 4 and g = 4 by 3.2. By Proposition 10.4 of [1] we get $b \geq 16n - 64$, a contradiction.

3.9.REMARK. By 3.8, $2584 \le b_{min}(166) \le 2592$. Let Q be a quasigroup of order 166 with $b(Q) = b_{min}(166)$. Then either gdist(Q) = 4 (and then $b_{min}(166) = 2592$) or gdist $(Q) \ge 320$ (use 3.1).

3.10.REMARK. We have $b_{min}(6) = 27$, so that 3.6 is not true for n = 6. The situation for $8 \le n \le 166$ is not clear.

3.11.REMARK. In contrast to the numbers $b_{min}(n)$ and $a_{max}(n)$, almost nothing is known about the numbers $a_{min}(n)$. It follows from 2.2 and 2.3 that

 $n \le a_{min}(n) \le n^2$ for $n \ge 3, n \ne 4k+2$,

 $n \le a_{min}(n) \le 2n^2$ for every $n \ge 3$.

It is not clear whether $n < a_{min}(n)$ for every $n \ge 3$. By [3], if Q is a quasigroup of order $n \ge 3$ such that a(Q) = n, then Q is idempotent and not isotopic to a group.

References

- [1] A. Drápal: On quasigroups rich in associative triples. Discrete Math. 44(1983), 251-265.
- [2] A. Drápal, T. Kepka: On a distance of quasigroups and groups. (To appear)
- [3] T. Kepka: A note on the associative triples of elements in cancellation groupoids. Comment. Math. Univ. Carolinae 21(1980), 479-487.