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0. Introduction

The question of characterizing the lattices of subvarieties of a variety of universal algebras seems
to be very difficult. Some years ago a conjecture was that a lattice is isomorphic to the lattice of all
extensions of an equational theory (or dually isomorphic to the lattice of subvarieties of a variety)
iff it is algebraic and its greatest element is compact. In [2] and [3] W. Lampe proved this to be
false and found further conditions that such a lattice must satisfy. The purpose of the present paper
is to find a class K of lattices with the following properties:

THEOREM.

(1) every lattice from K is isomorphic to the lattice of equational theories extending an equational

theory;

(2) K contains all infinitely distributive algebraic lattices with compact 1;

(3) the parallel join of any pair of lattices from K belongs to K.

(The parallel join of a pair of lattices L1, L2 is defined in this way: it is the lattice obtained from
the disjoint union L1 ∪ L2, in which a ≤ b holds iff a ≤ b holds either in L1 or in L2, by adding a
greatest and a least element.)

The class K is constructed in this paper as the class of congruence lattices of well-behaved 0,1-
semilattices with operators. A universal algebra A is said to be well-behaved if its congruence
lattice is isomorphic in a canonical way (see Section 1 for a precise definition) to the lattice of
equational theories extending the equational theory of the algebra obtained from A by considering
every element as a nullary operation.

Let us remark that there are many lattices representable as lattices of extensions of an equational
theory and not belonging to K. This follows from the fact that congruence lattices of semilattices
are rather special; see the papers [1], [4] and [6].

The methods used in the present paper are related to those employed in D. Pigozzi [5]. Also, it
seems probable that they are related to those in an unpublished paper of W. Lampe and J. Sichler,
in which it is proved that every finite distributive lattice is isomorphic to the lattice of equational
theories extending an equational theory (see a mention in [5]).

1. Universal algebras

Let A be a universal algebra of similarity type τ . Then τ + A denotes the disjoint union of the
two types, where A is conceived as a set of nullary operation symbols. By the nominal expansion
of A we shall mean the algebra of type τ + A whose τ -reduct coincides with A and in which every
element serves as its own name.

In the following let A be an algebra and N be its nominal expansion. Denote by Con(A) the
congruence lattice of A (we have Con(A) = Con(N)) and by L(N) the lattice of the equational
theories extending the equational theory Eq(N) of N .

We shall often neglect to specify the similarity type when speaking about terms, equations,
equational theories, etc. The convention is that by a term we shall mean a term of the type of N ,
and similarly for equations, equational theories, etc. By a strictly constant equation we shall mean
an equation, both sides of which are elements of A; the set of strictly constant equations is thus
equal to A2 = N2. (Equations are identified with the ordered pairs of terms, and an equation (a, b)
will be often denoted by a ≈ b.)

Let us define a mapping ̺ of L(N) into Con(A) by ̺(E) = E ∩ A2. Furthermore, define two
mappings ε1, ε2 of Con(A) into L(N) as follows: for a congruence r of A, let ε1(r) be the equational
theory generated by r ∪ Eq(N) and let ε2(r) be the equational theory of N/r.
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1.1.PROPOSITION. Let A be an algebra and N be its nominal expansion. Then ̺ is a complete

lattice homomorphism of L(N) onto Con(A). The mappings ε1 and ε2 are both injective; ε1 is a

complete join-homomorphism and ε2 is a complete meet-homomorphism; for a congruence r, ε1(r)
is the least and ε2(r) is the largest element of the interval ̺−1(r) in L(N).

Proof. The fact that ̺ is a complete meet-homomorphism follows immediately from the definition
of ̺. In order to prove that it is a complete lattice homomorphism, it remains to prove that if E is
the join of a subset S of L(N) then the congruence ̺(E) is contained in the join of the congruences
̺(H) for H ∈ S. Let (a, b) ∈ ̺(E) = E ∩A2. There exists a finite sequence u0, . . . , uk of terms such
that u0 = a, uk = b and (ui−1, ui) ∈ Ei for some Ei ∈ S, for any i = 1, . . . , k. Take an element
c ∈ A and define a substitution f by f(x) = c for all variables x. The sequence vi = f(ui) has the
properties v0 = a, vk = b and (vi−1, vi) ∈ Ei ∩A2 = ̺(Ei) for all i. It follows that (a, b) belongs to
the join of the congruences ̺(H).

It is clear from the definitions that r = ε2(r) ∩ A2 for any congruence r. From this we get
r = ̺(ε2(r)) and also r = ̺(ε1(r)), since clearly ε1(r) ⊆ ε2(r). Especially, the mapping ̺ is
surjective and both ε1 and ε2 are injective.

Evidently, ε1(r) is the least equational theory that is mapped onto r by ̺. In order to prove
that ε2(r) is the largest one, let E be any equational theory with ̺(E) = r and take an equation
(u, v) ∈ E; we need to show that (u, v) is satisfied in N/r. Let f be a homomorphism of the
algebra of terms into N and denote by g the substitution, mapping every variable x onto f(x). It
is easy to see that both (f(u), g(u)) and (f(v), g(v)) are satisfied in N and so belong to E; since
(g(u), g(v)) ∈ E, we get (f(u), f(v)) ∈ E ∩ A2 and consequently (f(u), f(v)) ∈ r. Consequently,
h(u) = h(v) for any homomorphism h of the algebra of terms into N/r.

It is not difficult to show that if ϕ is a complete lattice homomorphism of a complete lattice L1

onto a complete lattice L2 then the two mappings, assigning to any element a ∈ L2 the least and the
greatest element of the interval ϕ−1(a), are a complete join homomorphism and a complete meet
homomorphism, respectively. ⊔⊓

Let an algebra A be given and let N be its nominal expansion. An equation is said to be a
consequence of a set of equations S if it belongs to the equational theory generated by S ∪Eq(N).
An equation is said to be good (more precisely, A-good) if it is a consequence of the set of its own
strictly constant consequences.

1.2.PROPOSITION. The following are equivalent for an algebra A with nominal expansion N :

(1) for any congruence r of A there exists a unique equational theory E extending Eq(N) such

that r = E ∩A2;

(2) the mappings ε1 and ε2 defined above coincide and are an isomorphism of Con(A) onto

L(N);
(3) Every equation is A-good.

Proof. The equivalence of (1) with (2) follows from Theorem 1; condition (3) is a reformulation. ⊔⊓

An algebra A is said to be well-behaved if it satisfies the equivalent conditions of Theorem 2. So, if
A is a well-behaved algebra then the congruence lattice of A is isomorphic to the lattice of equational
theories extending Eq(N) (and consequently dually isomorphic to the lattice of subvarieties of the
variety generated by N).

1.3.PROPOSITION. Let A be an algebra and N be its nominal expansion. Let f(x) and g(x)
be two terms containing no other variable than x. The equation f(x) ≈ g(x) is A− good iff it is a

consequence of the set of equations {f(a) ≈ g(a); a ∈ A}.

Proof. Only the direct implication needs to be proved. Let (u, v) be a strictly constant consequence
of (f(x), g(x)). Then there exists a derivation of this equation, a finite sequence of terms u0, . . . , uk

such that u0 = u, uk = v and if i ∈ 1, . . . , k then either (ui−1, ui) ∈ Eq(N) or ui can be obtained
from ui−1 by replacing either an occurrence of a subterm f(t) by g(t) or an occurrence of g(t) by
f(t), for a term t. Take a substitution ϕ mapping all the variables onto a constant from A. The
sequence ϕ(u0), . . . , ϕ(uk) is a derivation with the following properties: ϕ(u0) = u; ϕ(uk) = v; if
i ∈ 1, . . . , k then either (ϕ(ui−1), ϕ(ui)) ∈ Eq(N) or ϕ(ui) can be obtained from ϕ(ui−1) by replacing
either an occurrence of a subterm f(ϕ(t)) by g(ϕ(t)) or an occurrence of g(ϕ(t)) by f(ϕ(t)). But
(ϕ(t), a) ∈ Eq(N) for some a ∈ A and we have proved that each strictly constant consequence of
(f(x), g(x)) is a consequence of the set {(f(a), g(a)); a ∈ A} (with respect to Eq(N)). It follows
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that if (f(x), g(x)) is a consequence of its strictly constant consequences then it is a consequence of
the set {(f(a), g(a)); a ∈ A}. ⊔⊓

2. Semilattices with operators

By a semilattice with operators we mean an algebra A = A(∧, F ) such that A(∧) is a semilattice
and F is a set of unary operations, acting as endomorphisms of A(∧). If A(∧) contains the least and
the greatest elements then A(∧, F ) is said to be a 0,1-semilattice with operators; the two extreme
elements are denoted by 0A and 1A, or only by 0 and 1. For c ∈ A, we denote by kc the constant
unary operation on A with value c, and by mc the endomorphism a → a ∧ c.

In the following let A = A(∧, F ) be a 0,1-semilattice with operators and N be its nominal
expansion.

We denote by F ′ the least set of unary operations on A containing F , the identity, all the constant
unary operations and closed under superposition and the forming of meets. Every element of F ′ is
an endomorphism of A(∧). For any f ∈ F ′ and any variable x, the expression f(x) can be considered
as a term in an obvious way; this term is uniquely determined up to the equational theory of N .

2.1.PROPOSITION. Let A = A(∧, F ) be a 0,1-semilattice with operators. Then A is well-

behaved iff all the equations f(x) ≈ g(x), where f, g ∈ F ′ and x is a variable, are A-good.

Proof. The direct implication follows from Theorem 2. In order to prove the converse, let (f(x), g(x))
be good for any f, g ∈ F ′ and let (u, v) be an arbitrary equation; we are going to prove that (u, v)
is good. Since any term t is equivalent, modulo Eq(N), to the term t∧ p(x) where p is the constant
unary operation with value 1 and x is an arbitrary variable, we can suppose that var(u) = var(v);
moreover, we can suppose that u = f1(x1) ∧ · · · ∧ fn(xn) and v = g1(x1) ∧ · · · ∧ gn(xn) for some
pairwise distinct variables x1, . . . , xn and endomorphisms f, g ∈ F ′. For i = 1, . . . , n put ui = f1(1)∧
· · ·∧fi−1(1)∧fi(xi)∧fi+1(1)∧· · ·∧fn(1) and vi = g1(1)∧· · ·∧gi−1(1)∧gi(xi)∧gi+1(1)∧· · ·∧gn(1).
The equations (ui, vi) are clearly consequences of (u, v); each of them is a consequence of its own
strictly constant consequences, since it is of the form (pi(xi), qi(xi)) for pi, qi ∈ F ′; and (u, v) is
a consequence of (u1, v1), . . . , (un, vn), since the equations (u, u1 ∧ · · · ∧ un) and (v, v1 ∧ · · · ∧ vn)
belong to Eq(N). ⊔⊓

A pair (f, g) of operations from F ′ is said to be good if the equation f(x) ≈ g(x), where x is any
variable, is good.

2.2.PROPOSITION. Let A = A(∧, F ) be a 0,1-semilattice with operators and let f, g, h be three

unary operations from F ′. The following assertions are true:

(1) If either f or g is constant then (f, g) is good.

(2) If (f ∧ g, f) and (f ∧ g, g) are both good then (f, g) is good.

(3) If f ≤ g ≤ h and if both (f, g) and (f, h) are good then (f, h) is good.

(4) If there exist elements c, d ∈ A such that c ≈ d is a consequence of f(x) ≈ g(x) and
f(a) = f(a) ∧ c,
g(a) = g(a) ∧ c,
f(a) ∧ d = g(a) ∧ d

for all a ∈ A then (f, g) is good.

(5) If there exist two elements c, d ∈ A such that c ≈ d is a consequence of f(x) ≈ g(x) and

c ≤ f(a) ≤ d and c ≤ g(a) ≤ d for all a ∈ A then (f, g) is good.

(6) Let the range of f be a two-element set {a, b} with a < b and the range of g be a two-element

set {c, d} with c < d. If either f−1(1) 6= g−1(1) or a ∧ d = b ∧ c then (f, g) is a good pair.

Proof. (1) If f is constant with value c then f(x) ≈ g(x) is equivalent to c ≈ g(0) ≈ g(1). The
assertions (2),(3),(4) and (5) are also obvious. Let us prove (6). If f−1(1) 6= g−1(1) then clearly
f(x) ≈ g(x) is a consequence of its own consequences a ≈ b ≈ c ≈ d. Let f−1(1) = g−1(1) and
a ∧ d = b ∧ c. Then the equations f(x) ∧ d ≈ g(x) ∧ b, f(x) ∧ b ≈ f(x) and g(x) ∧ d ≈ g(x) belong
to Eq(N), so that f(x) ≈ g(x) is a consequence of b ≈ d. ⊔⊓

3. Representing infinitely distributive algebraic lattices with compact 1

3.1.PROPOSITION. Every infinitely distributive algebraic lattice with compact 1 is isomorphic

to the congruence lattice of a well-behaved 0,1-semilattice with operators.
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Proof. It is well known that every infinitely distributive algebraic lattice is isomorphic to the lattice
of hereditary subsets of a partially ordered set P (≤). If the greatest element of the lattice is compact
then it is easy to see that P contains only a finite number of maximal elements p1, . . . , pn and that
for every a ∈ P there exists an i with a ≤ pi. Put

Pi = {a ∈ P ; a < pi&a 6≤ p1& . . .&a 6≤ pi−1}

for any i = 1, . . . , n, so that P1 = {a ∈ P ; a < p1} and P = P1 ∪ P2 ∪ · · · ∪ Pn ∪ {p1, . . . , pn} is a
disjoint union. Take a new element p0 /∈ P , put L = P ∪ {p0} and define a partial ordering � on L
as follows: p0 is the least element of L with respect to �; if a ∈ Pi ∪ {pi} and b ∈ Pj ∪ {pj} then
a � b iff either a = b or i < j or i = j and b = pi. Clearly, L is a lattice; denote by ∧ and ∨ its
lattice operations.

For b, c, d ∈ L define a mapping hb,c,d of L into itself by

hb,c,d(a) =

{

d, for b � a,

a ∧ c otherwise.

Denote by H the set of the mappings hb,c,d such that d < b in P , d ∈ Pi and c = pi−1 for some
i ∈ {1, . . . , n}. It is easy to verify that H is a set of endomorphisms of L(∧).

Claim 1: For hb,c,d ∈ H and a ∈ L we have

(1) hb,c,d(a) ∧ d = hb,c,d(a),
(2) hb,c,d(a) ∧ c = a ∧ c,
(3) hb,c,d(a ∧ b) = hb,c,d(a).

Proof: It is easy.

Claim 2: The congruence lattice of L(∧, H) is isomorphic to the lattice of hereditary subsets of

P (≤).
Proof: For a congruence r of L(∧, H) denote by h(r) the set of the elements a ∈ P such that
(a, b) ∈ r for an element b covered by a in L(�). Then h(r) is a hereditary subset of P , since if
(a, b) ∈ r where b is covered by a in L(�) and a′ ∈ P is an element with a′ < a in P then we
can take an element b′ ∈ L covered by a′ and the operator ha,b′,a′ maps (a, b) onto (a′, b′), so that
(a′, b′) ∈ r and we get a′ ∈ h(r).

Conversely, for any hereditary subset U of P (≤) denote by c0(U) the set of the ordered pairs
(a, b) ∈ L2 such that b is covered by a in L and a ∈ U ; and denote by c(U) the equivalence generated
by c0(U). In order to prove that c(U) is a congruence of L(∧, H), it is sufficient to show that if
(a, b) ∈ c0(U) then (a∧z, b∧z) ∈ c(U) for any z ∈ L and (hp,q,r(a), hp,q,r(b)) ∈ idL∪c0(U)∪{(a, b)}
for any hp,q,r ∈ H. The first assertion is trivial in all cases except for the case when a = pi, b, z ∈ Pi

and b 6= z; but then (a ∧ z, b ∧ z) = (z, pi−1), pi−1 is covered by z in L(�) and z ∈ H (since H is
hereditary and z < a ∈ H)), so that (z, pi−1) ∈ c0(U). In order to prove the second assertion, let
(hp,q,r(a), hp,q,r(b)) belong to neither idL nor {a, b}. Then a = p and (hp,q,r(a), hp,q,r(b)) = (r, q) ∈
c0(U), since r < a and H is hereditary.

The mappings h and c are clearly both order-preserving and it remains to prove h(c(U)) = U and
c(h(r)) = r. The first assertion follows from the fact (which is easy to prove) that if (a, b) ∈ c(U)
and b is covered by a in L(�) then (a, b) ∈ c0(U). In order to prove the second assertion, it is
sufficient to show that if (a, b) ∈ c0(h(r)) then (a, b) ∈ r. We have a ∈ h(r) and so there exists an
element b′ covered by a in L(�) with (a, b′) ∈ r. If b = b′ then we are through; so, let b 6= b′. Then
a = pi for some i > 0; the operator ha,pi−1,b′ maps a onto b′ and b′ onto pi−1, so that (b′, pi−1) ∈ r;
we get (a, pi−1) ∈ r and consequently (a, b) ∈ r. This ends the proof of Claim 1.

It follows that the originally given infinitely distributive algebraic lattice with compact 1 is
isomorphic to the congruence lattice of L(∧, H) and so it remains to prove that this semilattice with
operators is well-behaved.

Denote by F the union of H with {kc; c ∈ L} and {mc; c ∈ L}.

Claim 3: F is closed under superposition.

Proof: Take two operators hb,c,d and me from F . If d � e then hb,c,d(a) ∧ e = hb,c,d(a) ∧ d ∧ e =
hb,c,d(a) ∧ d = hb,c,d(a), so that me ◦ hb,c,d = hb,c,d. In the contrary case we have e ∧ d � c and so
hb,c,d(a) ∧ e = hb,c,d(a) ∧ d ∧ e = hb,c,d(a) ∧ c ∧ e = a ∧ c ∧ e, so that me ◦ hb,c,d = mc∧e.

We have hb,c,d(a ∧ e) = hb,c,d(a) ∧ hb,c,d(e) and so it follows from what we have already proved
that hb,c,d ◦me ∈ F .
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Now take two operators hb,c,d and hb′,c′,d′ from F . If b 6� d′ then hb,c,d(hb′,c′,d′(a)) =
hb,c,d(hb′,c′,d′(a) ∧ d′) = hb,c,d(hb′,c′,d′(a)) ∧ hb,c,d(d

′) = hb,c,d(hb′,c′,d′(a)) ∧ c ∧ d′ = hb′,c′,d′ ∧ c ∧ d′,
so that hb,c,d ◦ hb′,c′,d′ ∈ F by the above finished part of the proof. If b = d′ then hb,c,d ◦ hb′,c′,d′ =
hb′,c,d, since for b′ � a we have hb,c,d(hb′,c′,d′(a)) = hb,c,d(d

′) = hb,c,d(b) = d and otherwise
hb,c,d(hb′,c′,d′(a)) = hb,c,d(a ∧ c′) = a ∧ c′ ∧ c = a ∧ c. If b ≺ d′ then b � c′ and hb,c,d(hb′,c′,d′(a)) =
hb,c,d(hb′,c′,d′(a)∧ b) = hb,c,d(hb′,c′,d′(a)∧ c′ ∧ b) = hb,c,d(a∧ c′ ∧ b) = hb,c,d(a∧ b) = hb,c,d(a), so that
hb,c,d ◦ hb′,c′,d′ = hb,c,d.

Claim 4: F is closed under meets.

Proof: Let hb,c,d and hb′,c′,d′ be two elements of H and e be an element of L. It is easy to prove,
using Claim 1, that hb,c,d ∧ ke belongs to F . Further, we have hb,c,d ∧ idL = hb∨d,c,d and it remains
to consider the meet hb,c,d ∧hb′,c′,d′ . If d ≺ d′ then d � c′ and hb,c,d(a)∧hb′,c′,d′(a) = hb,c,d(a)∧ d∧
hb′,c′,d′(a) = hb,c,d(a)∧ d∧ c′ ∧hb′,c′,d′(a) = hb,c,d(a)∧ d∧ c′ ∧ a = hb,c,d(a)∧ d∧ a = hb,c,d(a)∧ a, so
that hb,c,d∧hb′,c′,d′ = hb,c,d∧idL ∈ F . If d = d′ then c = c′ and hb,c,d∧hb′,c′,d′ = hb∨b′,c,d. If d, d

′ are
incomparable then d∧d′ = c = c′ and so hb,c,d(a)∧hb′,c′,d′(a) = hb,c,d(a)∧hb′,c′,d′(a)∧d∧d′ = a∧c,
so that hb,c,d ∧ hb′,c′,d′ = idl ∧ kc.

Claim 5: H ′ = F .
Proof: It follows from Claims 3 and 4.

Claim 6: L(∧, F ) is well-behaved.
Proof: By 2.1 it is sufficient to prove that the equation f(x) ≈ g(x), for any f, g ∈ F , is good. Denote
by C the set of strictly constant consequences of this equation; we need to prove that f(x) ≈ g(x)
belongs to the equational theory generated by the union of C with the set of equations satisfied in
the nominal expansion of L(∧, F ).

Consider first the case when f = hb,c,d and g = hb′,c′,d′ . We have (d, d′) = (f(pn), g(pn)) ∈ C. If
d, d′ are incomparable in L(�) then c = c′ = d ∧ d′ and so the equations c ≈ d ≈ c′ ≈ d′ belong to
C. If d ≺ d′ then c ≺ d ≺ c′ ≺ d′, (c, d) = (f(d), g(d)) ∈ C and so the equations c ≈ d ≈ c′ ≈ d′

belong to C again. If d′ ≺ d, we can proceed similarly. If d = d′ then c = c′; we can suppose that
b 6� b′; then (c, d) = (f(b′), g(b′)) ∈ C and we see that the equations c ≈ d ≈ c′ ≈ d′ belong to C
in any case. On the other hand, each of the following equations is either satisfied in the nominal
expansion of L(∧, F ) or is an immediate consequence of c ≈ d ≈ c′ ≈ d′:

hb,c,d(x) ≈ hb,c,d(x) ∧ d ≈ hb,c,d(x) ∧ c ≈ x ∧ c ≈ x ∧ c′ ≈ . . . ≈ hb′,c′,d′(x).

It remains to consider the case when f = hb,c,d and g = ma. Since (d, a) = (f(pn), g(pn)), the
equations a ≈ d and a∧d ≈ d belong to C. We further have (c, a∧d) = (f(d), g(d)) and so c ≈ d ≈ a
belong to C. On the other hand, each of the following equations is either satisfied in the nominal
expansion of L(∧, F ) or is an immediate consequence of c ≈ d ≈ a:

hb,c,d(x) ≈ hb,c,d(x) ∧ d ≈ hb,c,d(x) ∧ c ≈ x ∧ c ≈ x ∧ a.

This ends the proof of Proposition 3.1. ⊔⊓

4. An auxiliary construction

In this section let S(∧, F ) be a 0,1-semilattice with operators such that F = F ′. Put T = S∪{1T }
where 1T is a new element not belonging to S (the greatest element of S will be denoted by 1S).
Define a semilattice operation ∧ on T in such a way that S(∧) becomes a subsemilattice of T (∧) and
1T becomes the greatest element of T (∧). For every f ∈ F define an endomorphism f∗ of T (∧) by
f∗ ⊇ f and f∗(1T ) = f(1S). For every (possibly empty) filter X of S(∧) define an endomorphism
eX of T (∧) by

eX(a) =

{

1T for a ∈ X ∪ {1T },

1S otherwise.

Put F ∗ = {f∗; f ∈ F} and denote by G the union of F ∗ with {idT } and the set of the operators
eX , where X runs over arbitrary filters of L(∧).

4.1.PROPOSITION. The congruence lattice of T (∧, G) is isomorphic to the congruence lattice

of S(∧, F ) with a new least element added. We have G′ = G and T (∧, G) is well-behaved whenever

S(∧, F ) is.
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Proof. For a congruence r of S(∧) denote by r∗ the equivalence on T having the same blocks as r
with the exception of the block B containing 1S , which is replaced by B ∪ {1T }. It is easy to verify
that r∗ is a congruence of T (∧, G) and that every congruence of T (∧, G), with the exception of idT ,
is of this form. The first assertion follows and the rest of the proof will be divided into several parts.

Claim 1: G′ = G.
Proof: The set G is closed under the meets and superposition, as

f∗ ∧ g∗ = (f ∧ g)∗,

f∗ ∧ idT = (f ∧ idS)
∗,

f∗ ∧ eX = f∗,

idT ∧ eX = idT ,

eX ∧ eY = eX∩Y ,

f∗ ◦ g∗ = (f ◦ g)∗,

f∗ ◦ eX = kf(1S),

eX ◦ f∗ = ef−1(u) for f(1S) ∈ X,

eX ◦ f∗ = k1S for f(1S) /∈ X,

eX ◦ eY = 1kT
for u 6= ∅,

eX ◦ eY = eY for u = ∅.

Moreover, G contains the identity and all constants. This ends the proof of Claim 1.

Denote by τ the type of the nominal expansion of S(∧, F ) and by τ∗ the type of the nominal
expansion of T (∧, G). For any τ -term t denote by t∗ the term obtained from t by replacing any
f ∈ F with f∗ and denote by f+ the term obtained from t∗ by replacing any variable x with x∧1S .

If we say that an equation is satisfied in S, or in T , we mean that it is satisfied in the nominal
expansion of S(∧, F ), or of T (∧, G), respectively.

Claim 2: Let t = t(x1, . . . , xn) be a τ term. Then t(a1, . . . , an) = t∗(a1, . . . , an) for any elements

a1, . . . , an ∈ S. The equation t∗ ∧ 1S ≈ t+ is satisfied in T .
Proof: It is easy by induction on the length of t.

Claim 3: Let t ≈ u be an equation satisfied in S. Then t+ ≈ u+ is satisfied in T .
Proof: It follows from Claim 2.

Claim 4: If S(∧, F ) is well-behaved then T (∧, G) is well-behaved, as well.
Proof: Let p, q be two operators from G such that p ≤ q. By 2.1 and 2.2(2) it is sufficient to prove
that the equation p(x) ≈ q(x) is good (with respect to T = T (∧, G)). Denote by C the set of the
strictly constant equations p(a) ≈ q(a) with a ∈ T and p(a) 6= q(a) and by Y the equational theory
generated by C together with the equational theory of the nominal expansion of T (∧, G). We need
to prove that p(x) ≈ q(x) belongs to Y .

Consider first the case when p = f∗ and q = g∗ for some f, g ∈ F . Clearly, the set C coincides
with the set of the strictly constant equations f(a) ≈ g(a) where a runs over S with f(a) 6= g(a).
Since S(∧, F ) is well-behaved, by 1.3 there exists a derivation of f(x) ≈ g(x) from C and the
equations satisfied in S; this means that there exists a finite sequence t0, . . . , tm of τ -terms such
that t0 = f(x), tm = g(x) and, for any i ∈ {1, . . . ,m}, either ti−1 ≈ ti is satisfied in S or ti can
be obtained from ti−1 by replacing a constant b with a constant a, for an equation a ≈ b belonging
to C ∪ C−1. If ti−1 ≈ ti is satisfied in S then the equation t+i−1 ≈ t+i is satisfied in T by Claim
3 and thus belongs to Y . If ti results from ti−1 by replacing a constant with a constant, then the
same holds for the terms t+i and t+i−1 and so t+i−1 ≈ t+i belongs to Y again. From this we get, by

transitivity, that f(x)+ ≈ g(x)+ belongs to Y . We have f(x)+ = f∗(x∧1S) and g(x)+ = g∗(x∧1S);
since the equations f∗(x) ≈ f∗(x∧ 1S) and g∗(x) ≈ g∗(x∧ 1S) are satisfied in T , it follows that the
equation f∗(x) ≈ g∗(x), i.e., the equation p(x) ≈ q(x) belongs to Y .

Next consider the case when p = f∗ for some f ∈ F and q = idT . Put r = id∗S . We have
p ≤ r ≤ q; by what we have already proved, the pair (p, r) is good and so, by 2.2(3), it is sufficient
to prove that (r, q) is good. However, the equation r(x) ≈ q(x) is a consequence of its strictly
constant consequence 1S ≈ 1T .

If p = f∗ and q = eX then p(x) ≈ q(x) is a consequence of its strictly constant consequence
f(0) ≈ 1T .
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If p = eX and q = eY where X,Y are two distinct filters then p(x) ≈ q(x) is a consequence of its
strictly constant consequence 1S ≈ 1T .

If p = idT and q = eX then p(x) ≈ q(x) is a consequence of its strictly constant consequence
0 ≈ 1T .

This ends the proof of Proposition 4.1. ⊔⊓

5. The parallel join

In this section let S1(∧, F1) and S2(∧, F2) be two 0,1-semilattices with operators such that F ′

1 =
F1 and F ′

2 = F2, and denote by T1(∧, G1) and T2(∧, G2) the operator semilattices constructed from
S1 and S2 as in Section 4.

Put U(∧) = T1(∧) × T2(∧). If f1 is an endomorphism of T1(∧) and f2 is an endomorphism of
T2(∧) then f1 × f2 denotes (there is a little inconsistency) the endomorphism f of U(∧) defined by
f(a, b) = (f1(a), f2(b)); if Q1 and Q2 are two sets of endomorphisms on T1 and T2 then Q1 × Q2

denotes the set {f1 × f2; f1 ∈ Q1, f2 ∈ Q2}.
Recall that ka denotes the constant endomorphism with value a; in order to avoid too many

indices in formulas, we shall sometimes denote it simply by a. For a, b ∈ Si (where i ∈ {1, 2}) such
that a < b define an endomorphism ka,b of Ti by

ka,b(c) = a for c ∈ Si,

ka,b(1Ti
) = b.

Put

H ={ka,b × kc; a, b ∈ S1, c ∈ S2, a < b} ∪ {kc × ka,b; c ∈ S1, a, b ∈ S2, a < b}∪

{f × idT2
; f ∈ G2} ∪ {idT1

× f ; f ∈ G2}∪

{eX × 1t2 ;X ∈ F1} ∪ {1T1
× eX ;X ∈ F2}

where Fi is the set of filters of Si(∧).

5.1.PROPOSITION. The congruence lattice of U(∧, H) is isomorphic to the parallel join of the

congruence lattices of S1(∧, F1) and S2(∧, F2). If both S1(∧, F1) and S2(∧, F2) are well-behaved then

U(∧, H) is well-behaved, as well.

Proof. For a congruence r of S1(∧, F1) we can define a congruence s of U(∧, H) by ((a, b), (c, d)) ∈ s
iff b = d and either b 6= 1T2

or (a, b) ∈ r∗. In a similar way each congruence on S2(∧, F2) gives a
congruence of U(∧, H) and it is not difficult to prove that any nonextreme congruence of U(∧, H)
is of one of these two kinds. From this the first assertion follows. Let now both Si(∧, Fi) be
well-behaved; we are going to show that U(∧, H) is well-behaved, too.

Recall that H ′ denotes the closure, under superposition and the meets, of H together with the
set of the constant operators and the identity on U . For i = 1, 2 denote by Mi the set of all
endomorphisms of Ti(∧), by Ni the set of the endomorphisms of Ti(∧) mapping Ti into Si, by Ei

the set of the endomorphisms eX for a filter X of Si(∧) and by Ki the union of Ei with the set of
constant endomorphisms of Ti.

Claim 1: H ′ ⊆ (M1 ×N2) ∪ (G1 × {idT2
}) ∪ (K1 × E2).

Proof: Denote the right side by H0. Each of the three sets of operators is clearly closed under
superposition and meets and H0 contains H, all the constants and the identity on U . Further, we
have

(M1 ×N2) ∧H0 ⊆ M1 ×N2,

(G1 × {id}) ∧ (K1 × E2) ⊆ G1 × {id},

(M1 ×N2) ◦H0 ⊆ M1 ×N2,

(G1 × {id}) ◦ (M1 ×N2) ⊆ M1 ×N2,

(K1 × E2) ◦ (M1 ×N2) ⊆ (M1 ×N2) ∪ (K1 × E2),

(G1 × {id}) ◦ (K1 × E2) ⊆ K1 × E2,

K1 × E2) ◦ (G1 × {id}) ⊆ K1 × E2.
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Claim 2: Let f ∈ H ′. Then f = p × q for some p and q; if q(1T2
) = 1T2

then p ∈ G1 and either

q = idT2
or q = eX for some filter X of S2(∧).

Proof: It follows from Claim 1.

Let p1 × q1 and p2 × q2 be two operators from H ′ such that p1 ≤ p2 and q1 ≤ q2. By 2.2(2) and
2.1 it remains to prove that the equation (p1 × q1)(x) ≈ (p2 × q2)(x) is good. Denote by C the set
of strictly constant consequences of this equation and by Z the equational theory of the nominal
expansion of U(∧, H). We need to prove that (p1 × q1)(x) ≈ (p2 × q2)(x) belongs to the equational
theory generated by C ∪ Z.

Consider first the case when p1 6= p2 and q1 6= q2. It follows from p1 6= p2 that there exist
elements a, b ∈ T1 and c ∈ T2 such that a 6= b and (a, c) ≈ (b, c) belongs to C. Using the operator
eX × 1T2

for an appropriate X we get from this that (1S1
, 1T2

) ≈ (1T1
, 1T2

) belongs to C. Quite
similarly, (1T1

, 1S2
) ≈ (1T1

, 1T2
) belongs to C. Using the operators ka,b × kc and kc × ka,b, it is now

easy to see that 0U ≈ 1U belongs to C. The equation (p1 × q1)(x) ≈ (p2 × q2)(x) (or any equation
at all) is a consequence of 0U ≈ 1U .

Next consider the case when p1 6= p2, q1 = q2 = q and q(1T2
) 6= 1T2

. Similarly as in the previous
case, the equation (0T1

, q(1T2
)) ≈ (1T1

, q(1T2
)) belongs to C. Further, the equations

(p1 × q)(x) ≈ (p1 × q)(x) ∧ (1T1
, q(1T2

)),

(p2 × q)(x) ≈ (p2 × q)(x) ∧ (1T1
, q(1T2

)),

(p1 × q)(x) ∧ (0T1
, q(1T2

)) ≈ (p2 × q)(x) ∧ (0T1
, q(1T2

)) ≈ (0T1
× q)(x)

belong to Z; now it is clear that the equation (0T1
, q(1T2

)) ≈ (1T1
, q(1T2

)) belongs to the equational
theory generated by C ∪ Z.

Since the case when p1 = p2 is analogous, it now remains to consider the case when p1 6= p2,
q1 = q2 = q and q(1T2

) = 1T2
. By Claim 2 we have p1, p2 ∈ G1 and q ∈ {id} ∪ E2.

Let q 6= id, so that q ∈ E2. By Claim 1 we have p1, p2 ∈ K1. Denote by a the least element
in the range of p1 and by b the greatest element in the range of p2. Considering the various cases
for p1, p2 ∈ K1, it is easy to verify that a ≈ b is a strictly constant consequence of p1(x) ≈ p2(x);
similarly, (a, 1T2

) ≈ (b, 1T2
) is a strictly constant consequence of (p1 × q)(x) ≈ (p2 × q)(x). Since

the equations
(p1 × q)(x) ≈ (p1 × q)(x) ∧ (b, 1T2

),

(p2 × q)(x) ≈ (p2 × q)(x) ∧ (b, 1T2
),

(p1 × q)(x) ∧ (a, 1T2
) ≈ (p2 × q)(x) ∧ (a, 1T2

) ≈ (a, 1T2
)

belong to Z, it follows that the equation (p1 × q)(x) ≈ (p2 × q)(x) belongs to the equational theory
generated by C ∪ Z.

It remains to consider the case when q = idT2
. For every term t in the signature τ1 of the nominal

expansion of T1(∧, G1) define a term t′ in the signature τ of the nominal expansion of U(∧, H) in the
following way: t′ is obtained from t by replacing any unary operation symbol f ∈ G1 with f × idT2

and any nullary symbol a ∈ T1 with (a, 1T2
). It is easy to prove by induction on the length of t

that if t is a τ1-term containing no other variable than x and if we are given an element (a, b) of U
then t′((a, b)) = (t(a), b) in the case when x occurs in t and t′((a, b)) = (t(a), 1T2

) in the opposite
case. Since (by Proposition 4.1) T1(∧, G1) is well-behaved, the equation p1(x) ≈ p2(x) is good; by
1.3 there exists a finite sequence u0, . . . , um of τ1-terms such that u0 = p1(x), um = p2(x) and such
that for any i ∈ {1, . . . ,m} either ui−1 ≈ ui is satisfied in the nominal expansion of T1(∧, G1) or
ui results from ui−1 by replacing an occurrence of b with a, for an equation a ≈ b belonging to
M ∪M−1 where M = {(p1(c), p2(c)); c ∈ T1}. We can suppose that the terms u0, . . . , um contain
no other variables than x (since in the opposite case we could replace all the other variables by
x) and that x occurs in every one of the terms u0, . . . , um (since otherwise we could replace the
derivation u0, . . . , um by u0, u0∧k, u1∧k, . . . , um∧k, um where k is the constant operator with value
1T1

). If i is such that ui−1 ≈ ui is satisfied in the nominal expansion of T1(∧, G1) then u′

i−1 ≈ u′

i

belongs to Z, since for any (a, b) ∈ U we have u′

i−1((a, b)) = (ui−1(a), b) = (ui(a), b) = u′

i((a, b)) by
the assertion that was above proved by induction on the length of a term. If ui results from ui−1

by replacement of a nullary symbol a with b, for (a, b) ∈ M ∪ M−1, then u′

i results from u′

i−1 by
replacement of (a, 1T2

) with (b, 1T2
), and (a, 1T2

) ≈ (b, 1T2
) clearly belongs to C. We see that for

any i ∈ {1, . . . ,m} the equation u′

i−1 ≈ u′

i belongs to the equational theory generated by C ∪ Z.
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Consequently, the equation (p1 × q)(x) ≈ (p2 × q)(x), which is nothing else than u′

0 ≈ u′

m, belongs
to the equational theory too. ⊔⊓
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[6] G. I. Zhitomirskĭı: O reshetke vsekh kongruèntsĭı polureshetki. (On the lattice of all congruences

of a semilattice.) Uporyadochennye mnozhestva i reshetki (Ordered sets and lattices), No.1,
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