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Let S be a semigroup and f be a mapping of S into the class of nonzero cardinal numbers. The
mapping f is said to be representable if there exist a groupoid G and a homomorphism h of G onto
S such that Ker(h) is the least congruence of G for which the corresponding factor is a semigroup
and f(a) = Cardh−1(a) for all a ∈ S.

The investigation of representable mappings (see the papers [2] and [3]) is closely connected with
and originates from the study of the notion of associativity semihypergroup, which was introduced
in [4] and further studied e.g. in [1].

The purpose of the present paper is to introduce a new condition (C), necessary for the rep-
resentability of a mapping f on a semigroup S; our condition, which is a refinement of a similar
condition from [3], turns out to be also sufficient on a large class of semigroups. The necessity and
the (restricted) sufficiency of (C) will be the two main results of this paper. In their proofs we shall
make use of the following rather simple observation of set-theoretical character, which we are not
going to prove.

LEMMA. Let A be a nonempty set and K be a system of pairwise disjoint nonempty sets. The
following two conditions are equivalent:

(1) there exists a mapping g of
⋃

K onto A such that A × A is the only equivalence on A
containing all the relations g(K)× g(K) (K ∈ K);

(2) CardA+CardK ≤ 1 + Card
⋃
K.

For a semigroup S and an element a ∈ S we denote by Ma the set of the pairs (b, c) of elements
of S such that bc = a; denote by Ea the equivalence on Ma generated by the pairs ((uv,w), (u, vw))
where u, v, w are elements with uvw = a; and denote by νa the number of the blocks of Ea. (If Ma

is empty then νa = 0.)
We introduce the following condition for a mapping f of S into the class of nonzero cardinals:

(C) f(a) + νa ≤ 1 +
∑

(b,c)∈Ma

f(b)f(c) for any a ∈ S.

THEOREM 1. Let S be a semigroup and f be a mapping of S into the class of nonzero cardinal
numbers. If f is representable then it satisfies the condition (C).

Proof. Let G be a groupoid and h be a homomorphism of G onto S with the properties formulated
above. For an element a ∈ S such that f(a) = 1 the inequality in (C) is trivially true; we shall
therefore consider the case f(a) ≥ 2 only.

Define a binary relation s on G by (u, v) ∈ s iff (u, v) ∈ Ker(h) and if u, v ∈ h−1(a) then either
u = v or u, v ∈ GG. One can easily prove that s is a congruence of G, s ⊆ Ker(h) and G/s is a
semigroup. Consequently, s = Ker(h) and we have thus proved that h−1(a) ⊆ GG.

Define a binary relation r on G as follows: (u, v) ∈ r iff (u, v) ∈ Ker(h) and if u, v ∈ h−1(a) then
there exists a finite sequence u0, . . . , uk (k ≥ 0) of elements of h−1(a) such that u0 = u, uk = v
and such that for any i ∈ {1, . . . , k} there exist elements b, c, d, e ∈ G with ui−1 = bc, ui = de and
((h(b), h(c)), (h(d), h(e))) ∈ Ea.

It is easy to see that r is an equivalence on G. It is a congruence, since if (u, v) ∈ r then in
the case uw, vw ∈ h−1(a) we can put k = 1, u0 = uw, u1 = vw, b = u, c = w, d = v and e = w
to obtain (uw, vw) ∈ r (we have (h(b), h(c)) = (h(d), h(e))). In order to be able to assert that
G/r is a semigroup, we have to prove (uv.w, u.vw) ∈ r for all u, v, w ∈ G. We have, of course,
(uv.w, u.vw) ∈ Ker(h). Let both uv.w and u.vw belong to h−1(a). We can put k = 1, u0 =
uv.w, u1 = u.vw, b = uv, c = w, d = u, e = vw to obtain (uv.w, u.vw) ∈ r.
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Since Ker(h) is the least congruence with the property that the corresponding factor is a semi-
group, we get r ⊇ Ker(h) and consequently r = Ker(h). We have proved that whenever u, v ∈ h−1(a)
then there exists a finite sequence u0, . . . , uk (k ≥ 0) of elements of h−1(a) such that u0 = u, uk = v
and such that for any i ∈ {1, . . . , k} there exist elements b, c, d, e ∈ G with ui−1 = bc, ui = de and
((h(b), h(c)), (h(d), h(e))) ∈ Ea.

For any block B of Ea denote by KB the set of the elements e ∈ h−1(a) such that e = bc for some
b, c with (h(b), h(c)) ∈ B. From what we have proved it follows that the system K of the sets KB

has the following properties: its union equals h−1(a); and h−1(a) × h−1(a) is the only equivalence
on h−1(a) containing all the relations KB ×KB . It need not be a system of pairwise disjoint sets,
but we can take its disjoint union and the canonical mapping g of this disjoint union onto h−1(a);
condition (1) of the Lemma is clearly satisfied and so we get Cardh−1(a)+νa ≤ 1+

∑
K∈K Card(K);

but Cardh−1(a) = f(a) and
∑

K∈K Card(K) ≤
∑

(b,c)∈Ma

f(b)f(c). ⊔⊓

Let S be a semigroup and a be an element of S. If there exists a largest positive integer n with
the property that a = a1 . . . an for some n–tuple a1, . . . , an of elements of S then this number n
is called the breadth of a; in the opposite case a is said to be of infinite breadth. (Notice that a
semigroup without elements of infinite breadth is necessarily infinite.)

THEOREM 2. Let S be a semigroup (which may but need not contain a zero) in which every
nonzero element is of finite breadth. A mapping f of S into the class of nonzero cardinals is
representable iff it satisfies the condition (C).

Proof. Let (C) be satisfied. For every element a ∈ S take a set Aa of cardinality f(a) and denote
by G the disjoint union of the sets Aa (a ∈ S). Define a mapping h of G onto S by h(x) = a for
x ∈ Aa.

Let a be a nonzero element of SS. We get from (C) that Condition (2) of the Lemma is satisfied
for the system K = {

⋃
{Ab × Ac; (b, c) ∈ B};B ∈ Ma/Ea}. Consequently, there exists a mapping

ga of the union
⋃
{Ab × Ac; (b, c) ∈ Ma} onto Aa such that Aa × Aa is the only equivalence on

Aa containing, for any block B of Ea, the relation (
⋃
{ga(Ab × Ac); (b, c) ∈ B})2. For x ∈ Ab and

y ∈ Ac, where (b, c) ∈ Ma, put xy = ga(x, y).
So far, we have defined xy for all the pairs x, y ∈ G such that x ∈ Ab and y ∈ Ac where bc is

a nonzero element. If S has no zero element, G has become a groupoid. In case when S contains
a zero element 0, we need to complete the definition by considering the pairs x ∈ Ab, y ∈ Ac with
bc = 0. Take a fixed element o ∈ A0 and define xy by xo = x if x ∈ A0 and xy = o in the remaining
cases.

Clearly, h is a homomorphism of G onto S and it remains to prove that if r is a congruence of G
containing all the pairs (xy.z, x.yz), with x, y, z ∈ G, then r ⊇ Ker(h).

We have to prove r ⊇ Aa ×Aa for any element a ∈ S. If S contains a zero 0 then r ⊇ A0 ×A0 is
easy to see: for any element x ∈ A0 − {o} we have xo.x = o and x.ox = x, so that (o, x) ∈ r. (We
could also say that the subgroupoid Aa of G is contra-associative, according to [2].)

So, it remains to prove r ⊇ Aa for any nonzero element a of S. This will be done by induction on
the breadth of a. If a is of breadth 1 (i.e., if a ∈ S−SS), then f(a) = 1 and everything is clear. Let
a ∈ SS. By induction we can suppose that r ⊇ Ab × Ab for any element b ∈ S of breadth smaller
than the breadth of a.

According to the construction of ga, it is sufficient to prove that if B is a block of Ea and if (b, c)
and (d, e) are two elements of B then (xy, zu) ∈ r for any x ∈ Ab, y ∈ Ac, z ∈ Ad, u ∈ Ae. In other
words, to prove that the equivalence Ea is contained in the binary relation E on Ma defined in this
way: E is the set of the ordered pairs (b, c), (d, e)) ∈ Ma ×Ma such that if x ∈ Ab, y ∈ Ac, z ∈ Ad

and u ∈ Ae then (xy, zu) ∈ r.
By the definition of Ea, it is sufficient to prove that E is an equivalence relation containing all the

pairs ((bc, d), (b, cd)) where b, c, d ∈ S are elements with bcd = a. The reflexivity of E can be verified
in the following way: if (b, c) ∈ Ma and x ∈ Ab, y ∈ Ac, z ∈ Ab, u ∈ Ac then (x, z) ∈ r and (y, u) ∈ r
(since b, c have smaller breadth than a), so that (xy, zu) ∈ r, which yields ((b, c), (b, c)) ∈ E. The
symmetry and the transitivity of E are easy to see. Let b, c, d be three elements of S with bcd = a.
Take four elements x ∈ Abc, y ∈ Ad, z ∈ Ab, u ∈ Acd. Further, take an element v ∈ Ac. Since
the elements bc and cd have smaller breadth than a, we have (zv, x) ∈ r and (vy, u) ∈ r; we have
(zv.y, z.vy) ∈ r by the assumption on r; since r is a congruence, we get (xy, zu) ∈ r, which yields
((bc, d), (b, cd)) ∈ r. ⊔⊓
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COROLLARY. Let f be a mapping of the additive semigroup N of positive integers into the class
of nonzero cardinals. Then f is representable iff

f(1) = 1 and f(n) ≤
∑

1≤i≤n−1

f(i)f(n− i) for all n ≥ 2.

This follows from the fact that for all n ∈ N − {1} we have νn = 1 (and ν1 = 0). The result
also shows that the upper bound for the numbers f(n) found in [2] — the sequence of the Catalan
numbers — is the best possible.

Let us remark that the class of semigroups, for which the condition (C) proved to be both
necessary and sufficient, includes all nilpotent semigroups and also all free semigroups and their
subsemigroups.

We close the paper with two open problems.

PROBLEM 1. Find a semigroup S and a mapping of S into the class of nonzero cardinals which
satisfies the condition (C) but is not representable.

PROBLEM 2. Characterize the class of the semigroups S such that any mapping of S into the class
of nonzero cardinals is representable. (Consult [2] for partial results.) Is this class closed for some
algebraic constructions?
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