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This paper pertains to the theory of clones — closed sets of operations on a given finite
set A. For the basic concepts cf. Á. Szendrei [3]. We shall be concerned with the clones
of quasiprojections; quasiprojections are operations f (of an arbitrary arity n) such that
f(a1, . . . , an) ∈ {a1, . . . , an} for all a1, . . . , an ∈ A. The aim of this paper is to give a
complete description of the lattice of clones contained in the clone of quasiprojections
and containing the clone generated by the binary quasiprojections on A. The description
is given in Theorem 3. It turns out that the lattice is finite and its elements are in
a one–to–one correspondence with (binary) antireflexive symmetric relations on A. (A
relation is said to be antireflexive if it containes no ordered pair (a, b) such that a = b.)

On the other hand, the lattice of clones of quasiprojections on an at least three–
element set is uncountable: this is proved in Theorem 4. (Let us remark that the paper
[1] contains an incorrect proof of the same result.)

THEOREM 1. Let A be a finite nonempty set. A binary relation on A is preserved by
all the binary quasiprojections on A iff it is of one of the following three types:

(1) a subset of the diagonal D = {(a, a); a ∈ A};
(2) a product U × V with U, V ⊆ A;
(3) a three–element subset {(a, a), (b, b), (a, b)} where a, b ∈ A, a 6= b.

Proof. Firstly, it is clear that every relation of any of these three types is preserved by
any binary quasiprojection. Let S be a binary relation on A which is neither of type
(1) nor of type (3). Put U = {a; ∃b (a, b) ∈ S} and V = {b; ∃a (a, b) ∈ S}, so that
S ⊆ U × V . In order to prove that S is of type (2), take two elements a ∈ U , b ∈ V and
let us show that the pair (u, v) belongs to S.

If there exist elements a′, b′ such that (a, a′) ∈ S, (b′, b) ∈ S and (a, b′) 6= (a′, b) then
we can take a binary quasiprojection f such that f(a, b′) = a and f(a′, b) = b and we
get (a, b) = (f(a, b′), f(a′, b)) ∈ S. So, it is sufficient to derive a contradiction from the
following assumption: whenever (a, a′) ∈ S then a′ = a and whenever (b′, b) ∈ S then
b′ = b.

Clearly, we have (a, a) ∈ S and (b, b) ∈ S. If c, d is any pair such that (c, d) ∈ S and c 6=
d then, taking an appropriate binary quasiprojection f , we get (a, d) = (f(a, c), f(a, d)) ∈
S and consequently d = a. Quite similarly, c = b. This shows that (b, a) is the only pair
in S not belonging to the diagonal. Since S is not of type (3), there exists an element
e different from both a and b such that (e, e) ∈ S. Since (b, a) ∈ S and (e, e) ∈ S, with
an appropriate binary quasiprojection f we get (c, a) = (f(b, c), f(a, c)) ∈ S. As (b, a) is
the only pair in S not belonging to the diagonal, we get the desired contradiction. ⊔⊓
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THEOREM 2. Let A be a finite nonempty set. An n–ary operation f on A belongs
to the clone generated by the binary quasiprojections on A iff it is a quasiprojection
satisfying the following condition: whenever f(a1, . . . , an) = a where Card{a1, . . . , an} =
2 and whenever b1, . . . , bn is an n–tuple such that ai 6= bi implies bi = a for any i then
f(b1, . . . , bn) = a.

Proof. Denote by Q the clone generated by the binary quasiprojections and by Q′ the
set of the operations satisfying the above condition. It is easy to verify that Q′ is a clone;
since all the binary quasiprojections are contained in Q′, we get Q ⊆ Q′.

The clone Q contains a ternary majority operation m(x, y, z): for example, take an
arbitrary linear ordering on A and put m(x, y, z) = max(min(x, y),min(x, z),min(y, z)).
Now, it is a well known fact that if a clone C contains a ternary majority operation
then an operation belongs to C iff it preserves all the binary invariants of C (cf. [A.S.],
Corollary 1.25). So, in order to prove Q = Q′, it remains to show that every operation
fromQ′ preserves all the binary relations that are preserved by any binary quasiprojection
on A. However, this follows from Theorem 1, as it is clear that all the three types (1),
(2) and (3) of relations are preserved by the operations from Q′. ⊔⊓

THEOREM 3. Let A be a finite nonempty set. Denote by Q the clone of quasiprojec-
tions and by Q′ the clone generated by the binary quasiprojections on A. The interval
[Q′, Q] in the lattice of clones on A is antiisomorphic to the lattice of (binary) antireflex-
ive symmetric relations on A. The clone corresponding to a given antireflexive relation
r can be described as follows: it consists of the quasiprojections preserving the relation
{(a, a), (b, b), (a, b)} for any a, b ∈ r; also, it is the clone generated by the binary quasipro-
jections together with the ternary quasiprojection f defined by

f(x, y, z) =

{

z for x = y and {x, z} /∈ r

x otherwise.

Proof. Every clone in the interval [Q′, Q] contains a ternary majority operation, since the
clone Q′ contains one, and so is uniquely determined by the set of the binary relations
that it preserves. We have proved in Theorem 1 that the binary relations preserved by Q′

are exactly the relations of types (1), (2) and (3). Now, it is easy to see that the binary
relations preserved byQ are exactly the relations of types (1) and (2). From these facts we
conclude that for every clone C in the interval [Q′, Q] there exists an antireflexive binary
relation r on A such that C equals to the clone Cr of the quasiprojections preserving
the relation {(a, a), (b, b), (a, b)} for any (a, b) ∈ r. However, a quasiprojection preserves
{(a, a), (b, b), (a, b)} iff it preserves {(a, a), (b, b), (b, a)}. As a consequence, the clone Cr

equals Cr′ for an antireflexive symmetric relation r′. Clearly, r ⊆ s implies Cr ⊇ Cs

and it remains to prove that if r, s are two antireflexive symmetric relations such that
Cr ⊇ Cs then r ⊆ s. Take a pair (a, b) ∈ r. If (a, b) /∈ s then the ternary quasiprojection
f defined by f(a, a, b) = b and f(x, y, z) = x for all (x, y, z) 6= (a, a, b) belongs to Cs and
consequently to Cr; but this is not possible, as f does not preserve {(a, a), (b, b), (a, b)}.
We get (a, b) ∈ s. Since (a, b) was an arbitrary pair from r, this shows that r ⊆ s. The
two characterisations of Cr follow easily. ⊔⊓

THEOREM 4. Let A be a finite set of cardinality at least 3. Then the clone generated
by the binary quasiprojections on A has uncountably many subclones.
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Proof. Let us fix three distinct elements a, b, c ∈ A and take a linear ordering ≤ on A
such that a, b, c are the top three elements with respect to ≤ and a < b < c. For every
n ≥ 4 define an n–ary operation fn on A by

fn(x1, . . . , xn) =











b if {x1, . . . , xn} ⊆ {a, b, c} and |{i;xi = a}| =

|{i;xi = c}| = 1,

min(x1, . . . , xn) otherwise.

Quite easily, fn belongs to the clone generated by the binary quasiprojections.
For n ≥ 4 define an n–ary relation Rn on A by

Rn = ({a, b}n − {(b, . . . , b)}) ∪ {(a, c, b, . . . , b), (b, a, c, b, . . . , b), . . . ,(b, . . . , b, a, c),

(c, b, . . . , b, a)}.

It is easy to see that Rn is not preserved by fn. On the other hand, we are going to
prove that if m 6= n (and m,n ∈ {4, 5, 6, . . . }) then Rn is preserved by fm. Let n 6= m.

Let M = (ai,j) be a matrix of type (n,m) whose every column represents an n–tuple
belonging to Rn (so that all the elements ofM belong to {a, b, c}). For i = 1, . . . , n denote
by di the result of fm applied to the i–th row. We need to prove (d1, . . . , dn) ∈ Rn.

If di = c for some i then all the members of the i–th row are equal to c; but then we
easily infer that all the columns of M are equal to the (only) n–tuple from Rn having
c at its i-th place; consequently, (d1, . . . , dn) is equal to an arbitrary column of M ; but
this arbitrary column belongs to Rn, so that (d1, . . . , dn) belongs to Rn, as well.

We can now assume that di 6= c for all i. This means that (d1, . . . , dn) ∈ Rn and it is
sufficient to prove (d1, . . . , dn) 6= (b, . . . , b). Suppose that (d1, . . . , dn) = (b, . . . , b).

At least one of the columns must contain the element a, and consequently at least
one of the rows must contain a; let it be the k–th row. Since fm applied to the k–th
row gives b, the k–th row contains exactly one occurrence of a, and also exactly one
occurrence of c; all the remaining members are equal to b. The (k − 1)-st row (or the
n–th row, if k = 1) also contains a, since the column intersecting with the k–th row in
the element c belongs to Rn. Again, this means that the (k− 1)–st row contains exactly
one a and exactly one c. We can proceed similarly in this way to obtain the element a in
the (k− 2)–nd row, etc. After n steps we return to the original k–th row, exhausting the
whole of the matrix. During the process we have found that each of the rows contains
exactly one member equal to a and exactly one member equal to c. Consequently, both
a and c occur exactly n times in the matrix M . This implies m ≥ n; since no column
can be equal to (b, . . . , b), we get m = n. This is a desired contradiction.

We have proved that fm preserves Rn iffm 6= n. Now it is clear that fn does not belong
to the clone generated by the operations fi with i 6= n. From this it easily follows that
the mapping, assigning to any subset S of {4, 5, 6, . . . } the clone generated by {fi; i ∈ S},
is an injection. As there are uncountably many subsets of {4, 5, 6, . . . }, we conclude that
there are uncountably many minimal clones contained in the clone generated by binary
quasiprojections. ⊔⊓
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