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Let us denote by SA the variety of universal algebras with one binary
operation ∧ and two unary operations f, f−1 satisfying the equations

(x ∧ y) ∧ z = x ∧ (y ∧ z),

x ∧ y = y ∧ x,

x ∧ x = x,

f(x ∧ y) = f(x) ∧ f(y),

f−1(f(x)) = f(f−1(x)) = x.

In other words, SA is the variety of semilattices with one automorphism (which
is, as well as its inverse, considered as an additional fundamental operation). The
aim of this paper is to find all subdirectly irreducible algebras in SA .

A universal algebra A is said to be subdirectly irreducible (shortly, an
SI algebra) if it contains more than one element and among all the nontrivial
congruences of A there exists a least one; nontrivial means different from idA =
{(a, a); a ∈ A} .

The largest example of an SI algebra in SA is the algebra P(Z) defined
as follows. Its underlying set is the set of all subsets of Z (where Z denotes the
set of integers); the operations are defined by

A ∧B = A ∩B,

f(A) = A+ 1 = {a+ 1; a ∈ A},

f−1(A) = A− 1 = {a− 1; a ∈ A}.

The least nontrivial congruence of P(Z) is the congruence α defined by (A,B) ∈
α iff either A = B or both A and B are at most one-element subsets of Z .

We shall prove in Section 1 that every SI algebra from SA can be
embedded into P(Z) . This means that the variety SA is residually small, i.e.,
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there is an upper bound for the cardinalities of its SI members. As it is proved
in W. Taylor [3], in the case of a finite similarity type a residually small variety
cannot contain SI algebras of any cardinality greater than 2ℵ0 . Our variety SA

belongs thus to the larger residually small varieties, as it contains uncountable
SI algebras.

There are uncountably many SI algebras in SA and so it is not possible to
give their list. When we say that we shall find all of them, we mean the following.
First of all, we shall show that every such algebra can be embedded into P(Z) .
Then it will turn out that the collection of the SI subalgebras of P(Z) can be
decomposed into the union of a countable family of pairwise disjoint intervals in
the subalgebra lattice of P(Z) ; and we shall be able to give a list of all these
intervals. Further we shall show that two distinct SI subalgebras of P(Z) can
never be isomorphic.

This paper is related to the paper [1] in which all simple semilattices
with two commuting automorphisms are found, and also to the paper [2] in
which Boolean algebras are considered.

1. Embedding into P(Z)

Proposition 1.1. Let A be an algebra from SA and a be any element of A .
Define a mapping h of A into P(Z) by h(x) = {i ∈ Z; f i(a) ≤ x} for any
x ∈ A . Then h is a homomorphism of A into P(Z) . Moreover, if there exists
an element b ∈ A such that a 6≤ b and the pair (a, b) belongs to any nontrivial
congruence of A then h is an isomorphism onto a subalgebra of P(Z) .

Proof. We have

h(x ∧ y) ={i; f i(a) ≤ x ∧ y} = {i; f i(a) ≤ x} ∩ {i; f i(a) ≤ y} =

h(x) ∩ h(y),

h(f(x)) ={i; f i(a) ≤ f(x)} = {i; f i−1(a) ≤ x} =

{i+ 1; i ∈ h(x)} = h(x) + 1 = f(h(x))

and similarly h(f−1(x)) = f−1(h(x)) . This proves that h is a homomorphism,
so that the kernel of h is a congruence. Now, if a 6≤ b then (a, b) cannot belong
to this kernel, since 0 ∈ h(a) and 0 /∈ h(b) . So, if (a, b) belongs to any nontrivial
congruence of A then the kernel of h is trivial, which means that h is injective.

Proposition 1.2. Let A be an SI algebra from SA . Then A is isomorphic to
a subalgebra of P(Z) .

Proof. The least nontrivial congruence of A contains a pair (a, b) such that
a 6≤ b . It remains to apply 1.1.
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2. Necessary conditions for a subalgebra of P(Z) to be SI

In this section let A be an SI subalgebra of P(Z) . We shall denote the
least nontrivial congruence of A by α . The algebra A may but need not contain
the smallest element; if it exists, the smallest element is the empty set.

By a generic element (of A) we shall mean an element M ∈ A for which
there exists another element M ′ ∈ A such that M ′ is a proper subset of M and
(M ′,M) ∈ α . It is evident that A contains at least one generic element and that
any generic element is a nonempty set.

Lemma 2.1. Let M be a generic element. The following are true for any two
elements A,B ∈ A :

(1) A = B iff M + i ⊆ A is equivalent to M + i ⊆ B for any i ∈ Z .

(2) A ⊆ B iff M + i ⊆ A implies M + i ⊆ B for any i ∈ Z .

(3) A 6= Ø implies M + i ⊆ A for some i ∈ Z .

Proof. (1) follows from 1.1 and (2),(3) are consequences of (1).

The period of a generic element M is the nonnegative integer k defined
as follows. If M is a one-element set, then k = 0; otherwise, k is the least
positive integer for which there exist two elements a, b ∈ M with |a − b| = k .
For k > 0 put Ck = {i ∈ Z; i ≡ 0 mod k} .

Lemma 2.2. Let M0 and M be two generic elements; denote by k the period
of M0 . Then there exists a nonnegative integer p such that one of the following
two cases takes place:

(1) a+ qk ∈ M for any a ∈ M and any integer q ≥ p ;

(2) a− qk ∈ M for any a ∈ M and any integer q ≥ p .

Proof. Since M is not the least element of A , it follows from 2.1(3) that
there exists an integer i with M0+ i ⊆ M . Now, M0 contains two elements a, b
with |a−b| = k ; using M0+ i ⊆ M we get that the same must be true for the set
M . This means that the intersection M ∩ (M − k) is nonempty. One can easily
see that no other set than Ø can be the least element of A . So, M ∩ (M − k) is
not the least element and now it follows from 2.1(3) that there exists an integer
j with M + j ⊆ M ∩ (M − k) . In other words, there exists a j ∈ Z such that
whenever a ∈ M then a+ j ∈ M and a+ j + k ∈ M . Evidently, every multiple
of j by a positive integer has the same property and so we can assume that j is
a multiple of k . If j = 0 then (1) is true with p = 0. Let j 6= 0 (so that k 6= 0
too). For a ∈ M we have

a+ j ∈ M, a+ j + k ∈ M,

a+ 2j ∈ M, a+ 2j + k ∈ M, a+ 2j + 2k ∈ M,

a+ 3j ∈ M, a+ 3j + k ∈ M, a+ 3j + 2k ∈ M, a+ 3j + 3k ∈ M,

etc. From this we see that if j > 0 then (1) is true with p = j2/k2 and if j < 0
then (2) is true with, again, p = j2/k2 .
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Lemma 2.3. All generic elements of A have the same period k . Moreover,
exactly one of the following four cases takes place:

(1) every generic element is a one-element set;

(2) k > 0 and every generic element equals Ck + i for a number i ∈
{0, . . . , k − 1} ;

(3) k > 0 and every generic element M is a lower bounded set and contains
an element a such that all the elements a, a+k, a+2k, . . . belong to M ;

(4) k > 0 and every generic element M is an upper bounded set and contains
an element a such that all the elements a, a−k, a−2k, . . . belong to M .

Proof. It follows from 2.2.

Lemma 2.4. Let M be a generic element with period k > 0 . Then a ≡
b (mod k) for any two elements a, b ∈ M .

Proof. It is sufficient to consider the case (3) in Lemma 2.3 only. Denote by
c the least element of M such that all the elements c, c + k, c + 2k, . . . belong
to M . Let a ∈ M be arbitrary. By 2.2 there exists a positive integer q such
that a + qk ∈ M and a + qk ≥ c . We have c + pk ≤ a + qk < c + pk + k for
a nonnegative integer p . Since both c+ pk and a+ qk belong to M , it follows
from the definition of k that c + pk = a + qk . We get a ≡ c (mod k) for any
A ∈ M .

Lemma 2.5. Let M be a generic element with period k > 0 and let A ∈ A be
a set containing a least element a ; let e ≡ a (mod k) for all e ∈ A . Then the
set A \ {a} belongs to A .

Proof. Case (3) of Lemma 2.3 is the only possible here. Denote by p the
unique integer such that p /∈ M and all the elements p + k, p + 2k, p + 3k, . . .
belong to M . We have A \ {a} = A ∩ (M + a− p) .

Lemma 2.6. Let M,M ′ be two generic elements of A . Then M ′ = M + i for
an integer i .

Proof. It is sufficient to consider the case (3) in Lemma 2.3 and to prove that
if M,M ′ are two generic elements such that 0 is the least element of both M
and M ′ then M ⊆ M ′ . By 2.5 we have M ′ \ {0} ∈ A . For i > 0 the set M + i
does not contain 0 and so M + i ⊆ M ′ is true iff M + i ⊆ M ′ \ {0} . By 2.1(1)
there exists an i ≤ 0 such that M + i ⊆ M ′ . Clearly, only i = 0 is possible. But
then M ⊆ M ′ .

Lemma 2.7. In the case (2) of Lemma 2.3, every element of A is equal to
(Ck + i1) ∪ . . . ∪ (Ck + ir) for a subset {i1, . . . , ir} of {0, . . . , k − 1} .

Proof. It suffices to prove that if A ∈ A and a ∈ A then Ck + a ⊆ A .
The set A ∩ (Ck + a) is nonempty and belongs to A . However, it follows easily
from 2.1 that no proper nonempty subset of Ck + a can belong to A . We get
A ∩ (Ck + a) = Ck + a and thus Ck + a ⊆ A .

Lemma 2.8. Let the case (3) of Lemma 2.3 take place and let M0 be the
unique generic element of A with the least element 0 . If A ∈ A and a ∈ A then
M0 + a ⊆ A .
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Proof. Put B = A∩ (M0+a) , so that a is the least element of B . Since B is
contained in M0 + a , by 2.4 we get e ≡ a (mod k) for all e ∈ B . Consequently,
Lemma 2.5 yields B \ {a} ∈ A . For i > 0 we have a /∈ M0 + a + i , so that
M0 + a+ i ⊆ B is true iff M0 + a+ i ⊆ B \ {a} . It follows, using 2.1, that there
exists an i ≤ 0 with M0+a+i ⊆ B . Clearly, i = 0 and we get M0+a ⊆ B ⊆ A .

3. Sufficient conditions for a subalgebra of P(Z) to be SI

Lemma 3.1. Let A be a subalgebra of P(Z) containing at least one one-
element set (so that it contains all the one-element subsets, the empty set and
perhaps some more subsets of Z ). Then A is subdirectly irreducible; a pair
(A,B) ∈ A2 belongs to the least nontrivial congruence of A iff either A = B or
both A and B are at most one-element sets.

Proof. It is obvious.

For k ≥ 1 we denote by Bk the set of the subsets A of Z such that
whenever a ∈ A then Ck + a ⊆ A .

Lemma 3.2. Let k ≥ 1 . Then Bk is a subalgebra of P(Z) and any subalgebra
A of Bk containing both Ck and Ø as elements is subdirectly irreducible; a pair
(A,B) ∈ A2 belongs to the least nontrivial congruence of A iff either A = B or
both A and B belong to the set {Ø, Ck, Ck + 1, . . . , Ck + k − 1} .

(Notice that for k ≥ 2, the condition Ø ∈ A is a consequence of Ck ∈ A .)

Proof. It is obvious.

Let k ≥ 1. By a positively k -generic subset of Z we shall mean a subset
M ⊆ Z satisfying the following four conditions:

(1) 0 is the least element of M ;

(2) M ⊂ Ck ;

(3) there exists an element a of M such that Ck ∩ [a) ⊆ M ;

(4) if a ∈ M then M + a ⊆ M .

Given a positively k -generic subset M of Z , we denote by Bk,M the set
of the subsets A of Z such that whenever a ∈ A then M + a ⊆ A .

Lemma 3.3. Bk,M is a subalgebra of P(Z) and the sets Ø, Z,M,Ck ∩ [0) and
M \ {0} belong to Bk,M .

Proof. It is easy to see that Bk,M is a subalgebra containing Ø and Z . The
fact that M belongs to Bk,M follows from (4). Further, with a ∈ M such that
Ck ∩ [a) ⊆ M we have

Ck ∩ [0) = (M ∩ (M − k) ∩ . . . ∩ (M − a))− a

and
M \ {0} = M ∩ ((Ck ∩ [0)) + k).
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Lemma 3.4. Let M be a positively k -generic subset of Z such that M 6=
Ck ∩ [0) and let A be any subalgebra of Bk,M containing M . Define a binary
relation α on A as follows: (A,B) ∈ α iff either A = B or {A,B} =
{M + i, (M \ {0}) + i} for some i ∈ Z . Then α is just the least nontrivial
congruence of A .

Proof. It is easy to see that α is an equivalence; its transitivity follows
from the assumption M 6= Ck ∩ [0) , as this implies that we can never have
M + i = (M \ {0}) + j for two integers i and j . Also, it is evident that if
(A,B) ∈ α then (A + 1, B + 1) ∈ α and (A − 1, B − 1) ∈ α . In order to
finish the verification of the congruence property of α , it is sufficient to prove
(M∩A, (M \{0})∩A) ∈ α for any A ∈ A . If 0 /∈ A then M∩A = (M \{0})∩A .
So, let 0 ∈ A . By the definition of Bk,M we have M +0 ⊆ A , which means that
M ⊆ A . But then (M ∩A, (M \ {0}) ∩A) = (M,M \ {0}) ∈ α .

Let now β be any nontrivial congruence of A . There exists a pair
(A,B) ∈ β with A 6⊆ B . Take an element a ∈ A such that a /∈ B . We have
0 ∈ A−a and so M ⊆ A−a by the definition of Bk,M . Since β is a congruence,
((A−a)∩M, (B−a)∩M) ∈ β ; that is, (M, (B−a)∩M) ∈ β . Now, (B−a)∩M
is a subset of M not containing 0 and hence (B− a)∩M ⊆ M \ {0} . From this
we get (M,M \ {0}) ∈ β . But then (M + i, (M \ {0})+ i) ∈ β and thus α ⊆ β .

Lemma 3.5. Let k ≥ 1 and M = Ck∩ [0) , so that M is a positively k -generic
subset of Z . Let A be any subalgebra of Bk,M containing M . Define a binary
relation α on A as follows: (A,B) ∈ α iff either A = B or there exist two
integers i, j such that i ≡ j (mod k), A = M + i and B = M + j . Then α is
just the least nontrivial congruence of A .

Proof. Evidently, α is an equivalence and (A,B) ∈ α implies both (A+1, B+
1) ∈ α and (A−1, B−1) ∈ α . In order to prove that α is a congruence, we need to
show that if A ∈ A , i ≡ j (mod k) and i < j then ((M+i)∩A, (M+j)∩A) ∈ α .
If none of the numbers i, i+k, i+2k, . . . , j−k belongs to A then (M + i)∩A =
(M + j) ∩ A . If some does belong, denote the least of them by p ; by the
definition of Bk,M all the numbers p, p + k, p + 2k, . . . belong to A and so
((M + i) ∩A, (M + j) ∩A) = (M + p,M + j) ∈ α .

Quite similarly as in the proof of 3.4, if β is any nontrivial congruence
of A then (M,M \ {0}) ∈ β , i.e., (M,M + k) ∈ β . But then it is easy to see
that (M + i,M + j) ∈ β whenever i ≡ j (mod k) , so that α ⊆ β .

Lemma 3.6. Let M be a positively k -generic subset of Z . Then any subalgebra
of Bk,M containing M is subdirectly irreducible.

Proof. It is a consequence of 3.4 and 3.5.

4. Formulation of the result

Denote by I the set of the ordered triples (k, r, I) such that k is a
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positive integer, r is a nonnegative integer, I is a finite set of nonnegative integers
and either (r, I) = (0,Ø) or the following are true:

(1) r ≥ 2;

(2) 0 ∈ I ⊆ {0, k, 2k, . . . , (r − 2)k} ;

(3) if a ∈ I then I + a ⊆ I ∪ {rk, (r + 1)k, (r + 2)k, . . . , a+ (r − 2)k} .

For any triple (k, r, I) ∈ I , the union I∪{rk, (r+1)k, . . .} is a k -generic
subset of Z in the sense of Section 3. Conversely, given a k -generic subset M ,
a triple (k, r, I) ∈ I can be defined in this way: r is the least nonnegative
integer such that {rk, (r + 1)k, . . .} ⊆ M , and I = M \ {rk, (r + 1)k, . . .} . We
get a one-to-one correspondence between elements of I and k -generic subsets
of Z . The only reason why we formulate the next result in terms of the triples
(k, r, I) instead of the k -generic subsets is that the triples are finite objects, while
k -generic subsets are not.

Theorem 4.1. Any subdirectly irreducible algebra from SA is isomorphic to
exactly one subalgebra of P(Z) . A subalgebra of P(Z) is subdirectly irreducible
iff it belongs to one of the intervals in the subalgebra lattice of P(Z) listed here:

(1) the interval [U ,P(Z)] where U = {Ø} ∪ {{i}; i ∈ Z} ;

(2) for any k ≥ 1 , the interval [Ak,Bk] where Ak = {Ø} ∪ {Ck, Ck +1, . . . ,
Ck+k−1} and Bk = {(Ck+ i1)∪ . . .∪(Ck+ im);m ≥ 0 and i1, . . . , im ∈
{0, . . . , k − 1}} ;

(3) for any e = (k, r, I) ∈ I , the interval [Ae,Be] where Ae is the subalgebra
of P(Z) generated by the element I ∪ {rk, (r + 1)k, . . .} and Be is the
set of all the subsets A of Z such that whenever a ∈ A then I + a ⊆ A
and all the numbers a+ rk, a+ (r + 1)k, . . . belong to A ;

(4) for any e = (k, r, I) ∈ I , the interval [A′
e,B

′
e] where A′

e is the subalgebra
of P(Z) generated by {−i; i ∈ I} ∪ {−rk,−(r + 1)k, . . .} and B′

e is
the set of all the subsets A of Z such that whenever a ∈ A then
{−i; i ∈ I}+ a ⊆ A and all the numbers a− rk, a− (r + 1)k, . . . belong
to A .

Moreover, all these intervals are pairwise disjoint.

Proof. The fact that a subalgebra of P(Z) is subdirectly irreducible iff it
belongs to one of the intervals in the list is just what we proved in the Sections
2 and 3. Taking 1.2 into account, it remains to prove that if A,B are two SI
subalgebras of P(Z) either belonging to two different intervals or belonging to
one but not being equal then A,B are not isomorphic.

A characteristic property of subalgebras in [U ,P(Z)] is that they are
infinite and contain atoms. If h is an isomorphism between two such subalgebras
A and B then h({0}) = {a} for an integer a and the mapping h′ = f−ah is an
isomorphism such that h′({0}) = {0} ; we get h′({i}) = {i} for all i ∈ Z ; but
then h′(A) = A for all A ∈ A and we get A = B .

Let k ≥ 1. The subalgebras in [Ak,Bk] are characterized by being finite
and containing exactly k atoms; it is clear that they are pairwise nonisomorphic.

An algebra A ∈ [Ae,Be] can never be isomorphic to an algebra B ∈
[A′

d,B
′
d] , since it does not share with B the following property: there exists a

positive integer i such that f i(A) < A for all nonextreme elements A ∈ A .
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Let e1 = (k1, r1, I1) and e2 = (k2, r2, I2) be two triples from I and
let h be an isomorphism of an algebra A ∈ [Ae1 ,Be1 ] onto an algebra B ∈
[Ae2 ,Be2 ] ; we must prove that then e1 = e2 and A = B . For i = 1, 2 put
Mi = Ii ∪ {riki, (ri + 1)ki, . . .} . Since M1 is an element of A standing with a
smaller element in the least nontrivial congruence and since the only elements of
B with the same property are the sets M2 + j (j ∈ Z) , there exists an integer
j such that h(M1) = M2 + j . Now, the mapping h′ = f−jh is an isomorphism
of A onto B such that h′(M1) = M2 . Let A ∈ A . For any integer i we have
M1 + i ⊆ A iff h′(M1) + i ⊆ h′(A) , i.e., iff M2 + i ⊆ h′(A) . But M1 + i ⊆ A
is equivalent to i ∈ A and M2 + i ⊆ h′(A) is equivalent to i ∈ h′(A) . We get
A = h′(A) . This proves A = B ; we also get M1 = M2 and hence e1 = e2 .

Proposition 4.2. The algebras in the interval [U ,P(Z)] are all infinite and
there are both countable ones and uncountable ones among them. The algebras
in [Ak,Bk] for k ≥ 1 are all finite. The algebras in [Ae,Be] (and in [A′

e,B
′
e] ,

as well) are all countably infinite for any e ∈ I .

Proof. As the rest is obvious, we need only to prove that if e = (k, r, I) ∈ I
then the algebra Be is countable. But this follows from the fact that any
set A ∈ Be is uniquely determined by its intersections with the sets Ck, Ck +
1, . . . , Ck+k−1 and any of these intersections A∩(Ck+i) is uniquely determined
by the ordered pair (a,X) where a is the least element of A (or either −∞
or +∞ in the cases A ∩ (Ck + i) = Ck + i and A ∩ (Ck + i) = Ø) and
X = A ∩ {a, a+ k, . . . , a+ rk} (or X = Ø if a /∈ Z ).

There are some open questions left:

Are the intervals [Ae,Be] countable for any e ∈ I ?

Is it possible to find all subdirectly irreducible semilattices with an en-
domorphism, and all subdirectly irreducible semilattices with two commuting
automorphisms?
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