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0. Introduction

Let us call a lattice L representable by a universal algebra A if it is isomorphic
to the lattice of equational theories extending the equational theory of A (or, which
is the same, antiisomorphic to the lattice of subvarieties of the variety generated by
A). There are some restricting conditions on a lattice to be representable; cf. W.
Lampe [3]. We have shown in [1] that in many simple cases when there is a hope for
L to be representable, nominal semilattices with operators are good candidates for
the algebras establishing the representation. (By “nominal” we mean that all the
constants are added as fundamental nullary operations, and by an operator we mean
an endomorphism of a semilattice.) For example, it is not difficult to represent the
pentagon or, more generally, the parallel join of any two finite chains, by a finite
nominal semilattice with operators. Of course, not every representable lattice can
be represented in this way: it follows from D. Papert [5] that the congruence lattice
of any algebra containing a semilattice operation among its fundamental operations
is necessarily pseudodistributive.

For an algebra A denote by Eq(A) the lattice of equational theories extending
the equational theory of A. An algebra A is said to be well-behaved if it is nominal
and the lattice Eq(A) is canonically isomorphic to the congruence lattice of A.
In [1] we were concerned with well-behaved semilattices with operators, and the
concept was further discussed in [4]. In the present paper we are going to investigate
(nominal) semilattices with operators that are not well-behaved.

An equation is said to be good with respect to a universal algebra A if it is a
consequence of its own constant consequences together with the equations satisfied
in A. Then A is well-behaved iff any equation of the appropriate similarity type is
good with respect to A. In Lemma 1.2 we shall find an effective method to decide
whether an equation is good with respect to a semilattice with operators. Using
this criterion, it would be possible to reduce a little the length of several proofs in
the paper [1].

In Section 2 we characterize the well-behaved chains with one operator (includ-
ing the infinite ones).

In Section 3 we describe an effective method to find the lattice represented by a
given finite nominal chain A with one operator. Moreover, every equational theory
extending the equational theory of A is effectively described, given its generating
equations.

1. Good equations in general semilattices with operators

Let A = (A,∧, F ) be a semilattice with operators. We denote by F ′ the set
of unary term functions of A, i.e., the least monoid containing F and closed under
meets. Further, we denote by F ′′ the set of unary polynomials of A, i.e., the least
monoid containing F and all the constants and closed under meets.

This paper was written at the Technische Hochschule Darmstadt.
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A pair of polynomials f, g is said to be good (with respect to A) if the equation
f(x) ≈ g(x) belongs to the equational theory generated by the equations satisfied
in the nominal expansion of A and the equations f(a) ≈ g(a) (a ∈ A). If all the
pairs of polynomials of A are good then A is said to be well-behaved.

For a pair f, g of polynomials of A we denote by R(f, g) the congruence of A
generated by the pairs (f(a), g(a)), with a running over the elements of A.

1.1. Lemma. Let A = (A,∧, F ) be a semilattice with operators. A pair of
polynomials f, g ∈ F ′′ is good with respect to A iff there exist a sequence h0, . . . , hk

(k ≥ 0) of polynomials and a sequence (c1, d1), . . . , (ck, dk) of ordered pairs belonging
to R(f, g) such that f = h0, g = hk and hi−1 ≤ ci, hi ≤ di and hi−1 ∧ di = hi ∧ ci
for all i ∈ {1, . . . , k}.
Proof. Let f, g be a good pair. Denote by E the equational theory of the nominal
expansion of A and define a binary relation R on the set of terms (in the signature
of the nominal expansion) as follows: (u, v) ∈ R iff there exist a sequence u0, . . . , uk

(k ≥ 0) of terms and a sequence (c1, d1), . . . , (ck, dk) of ordered pairs from R(f, g)
such that (u, u0) ∈ E, (v, uk) ∈ E and whenever i ∈ {1, . . . , k} then (ui−1, ui−1 ∧
ci) ∈ E, (ui, ui ∧ di) ∈ E and (ui−1 ∧ di, ui ∧ ci) ∈ E. One can easily verify that
R is a fully invariant congruence containing both E and R(f, g). Since f, g is a
good pair, we have (f(x), g(x)) ∈ R; for u = f(x) and v = g(x) there exist terms
ui and pairs (ci, di) as above; and we can assume that the terms ui contain no
variables other than x, as they could otherwise be replaced with the terms s(ui),
where s is the substitution sending any variable to x. Now the unary polynomials
hi corresponding to the terms ui do the job. This proves the direct part of the iff
statement, and the converse follows from

h0(x) ≈ h0(x)∧c1 ≈ h0(x)∧d1 ≈ h1(x)∧c1 ≈ h1(x)∧d1 ≈ h1(x) ≈ . . . ≈ hk(x). ⊔⊓

1.2. Lemma. Let A = (A,∧, F ) be a semilattice with operators containing the
largest element 1. A pair of polynomials f, g ∈ F ′′ is good iff there exists an element
c ∈ A such that c ≤ f(1) ∧ g(1), the elements c, f(1), g(1) are all contained in one
block of R(f, g) and f ∧ c = g ∧ c.
Proof. Let f, g be good, so that there exist hi, ci, di as in 1.1. Denote the congru-
ence R(f, g) by ∼. For i ∈ {1, . . . , k} we have hi−1(1) = hi−1(1)∧ci ∼ hi−1(1)∧di =
hi(1) ∧ ci ∼ hi(1) ∧ di = hi(1). Put c = h0(1) ∧ . . . ∧ hk(1), so that c ∼ f(1) ∧ g(1)
and c ≤ f(1) ∧ g(1). For i ∈ {1, . . . , k} we have hi−1 ∧ ci ∧ di = hi ∧ ci ∧ di and
c ≤ ci ∧ di, so that hi−1 ∧ c = hi ∧ c; consequently, f ∧ c = g ∧ c. The converse is
clear. ⊔⊓

1.3. Lemma. Let A = (A,∧, F ) be a well-behaved semilattice with operators.
Then A contains both the least and the greatest elements.
Proof. Put f = idA and let g be an arbitrary constant. Since f, g is a good
pair, there exist k and hi, ci, di as in 1.1. If Card(A) > 1 then k ≥ 1 and we have
idA = h0 ≤ c1, so that c1 is the largest element of A. Put c = c1∧. . .∧ck∧d1∧. . .∧dk.
It it follows from hi−1 ∧ ci ∧ di = hi ∧ ci ∧ di that f ∧ c = g ∧ c. Hence x∧ c = g ∧ c
for all x ∈ A, i.e., c is the least element of A. ⊔⊓

2. Well-behaved semilattices with one operator

In this section let A = (A,∧, f) be a semilattice with one operator f and
greatest element 1. Put F = {f}. The set F ′ of unary term functions consists of
the operators f i1 ∧ . . .∧ f ik with k ≥ 1 and 0 ≤ i1 < . . . < ik. The set F ′′ of unary
polynomials consists of the operators g ∧ c with g ∈ F ′ and c ∈ A.
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2.1. Lemma. Let g, h ∈ F ′ be two unary term functions and x, y ∈ A. Then
(x, y) ∈ R(g, h) iff there exists a sequence x0, . . . , xk (k ≥ 0) such that x = x0,
y = xk and such that for any i ∈ {1, . . . , k} there are elements a, d ∈ A with
{xi−1, xi} = {g(a) ∧ d, h(a) ∧ d}.
Proof. Denote by R the binary relation defined by (x, y) ∈ R iff there exist
x0, . . . , xk as above. It is clear that R ⊆ R(g, h) and that R is an equivalence
containing all the pairs (g(x), h(x). Also, it is clear that (x, y) ∈ R implies (x ∧
a, y ∧ a) ∈ R for any a ∈ A. So, it remains to prove that if (x, y) ∈ R then
(f(x), f(y)) ∈ R. For this it is sufficient to prove that if a, d ∈ A then {fg(a) ∧
d, fh(a)∧ d} = {g(b)∧ d, h(b)∧ d} for some b ∈ A. Since fg = gf and fh = hf , we
can put b = f(a). (The fact that f commutes with any element of F ′ follows from
F = {f}; notice that 2.1 is not necessarily true when F is arbitrary, or when g, h
are unary polynomial functions instead of term functions.) ⊔⊓

2.2. Lemma. Let g, h ∈ F ′ be two unary term functions and a ∈ A be a constant.
If g, h is a good pair then g ∧ a, h ∧ a is a good pair too.
Proof. As it easily follows from 1.2, we shall be done if we prove that if (x, y) ∈
R(g, h) then (x ∧ a, y ∧ a) ∈ R(g ∧ a, h ∧ a). Let (x, y) ∈ R(g, h), so that there
exist x0, . . . , xk as in 2.1. If {xi−1, xi} = {g(b) ∧ d, h(b) ∧ d} then it is clear that
{xi−1 ∧ a, xi ∧ a} = {g(b) ∧ a ∧ d, h(b) ∧ a ∧ d}. From this we get (x ∧ a, y ∧ a) ∈
R(g ∧ a, h ∧ a). ⊔⊓

2.3. Lemma. A is well-behaved iff all the pairs g, h of unary term functions such
that g ≤ h are good.
Proof. Only the converse implication needs to be proved, and by [1] it is sufficient
to show that if p, q ∈ F ′, p = g ∧ a, q = h ∧ b where g, h ∈ F ′ and if p ≤ q then the
pair p, q is good. Since g ∧ a = g ∧ a ∧ b, we can assume that a ≤ b. Then we have
g ∧ a ≤ g ∧ b ≤ h ∧ b and it remains to show that both the pairs g ∧ a, g ∧ b and
g ∧ b, h∧ b are good. The last pair is good by 2.2, as it follows from the assumption
by [1] that all pairs of unary term functions are good. Using 1.2, it is easy to see
that also the pair g ∧ a, g ∧ b is good. ⊔⊓

2.4. Lemma. Let g, h ∈ F ′ be two unary term functions. If the pair g, h is good
then the pair fg, fh is good too.
Proof. It is easy to see, using 2.1, that if (x, y) ∈ R(g, h) then (f(x), f(y)) ∈
R(fg, fh). Now we can apply 2.1 to get the result. ⊔⊓

2.5. Lemma. A is well-behaved iff all the pairs g ∧ f i, g such that g = f i1 ∧ . . .∧
f ik ∈ F ′, 0 ≤ i1 < . . . < ik and either i = 0 or i1 = 0 are good.
Proof. Let all these pairs be good. It follows from 2.4 that all the pairs g ∧ f i, g
with g ∈ F ′ and i ≥ 0 are good. Let g, h ∈ F ′ be such that g ≤ h. Then
g = h ∧ f i1 ∧ . . . ∧ f ik for some i1, . . . , ik ≥ 0. As the pairs (h ∧ f i1 ∧ . . . ∧ f ik , h ∧
f i1 ∧ . . .∧f ik−1), (h∧f i1 ∧ . . .∧f ik−1 , h∧f i1 ∧ . . .∧f ik−2), . . . , (h∧f i1 , h) are good,
the pair (g, h) is good. So, we can apply 2.3. ⊔⊓

2.6. Lemma. Let A be well-behaved. Then there exist elements c, e ∈ A with the
following properties:
(1) e is the largest fixpoint of f ; we have 1 > f(1) > f2(1) > . . . > fk(1) = e for

some k ≥ 0.
(2) For x ∈ A, x ≥ c iff fk(x) = e for some k.
(3) f(x) ∧ c = x ∧ c for all x ∈ A.
(4) f(x) ≥ x ∧ e for all x ∈ A.
Proof. Denote by M the set of the elements x ∈ A for which there exist i, j ≥ 0
with f i(x) ≥ f j(1). Evidently, M is a filter of A and we have x ∈ M iff f(x) ∈ M .
The relation R defined by (x, y) ∈ R iff either x, y ∈ M or x, y /∈ M is easily seen to
be a congruence of A containing all the pairs (x, f(x). Since the pair f, idA is good,
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it follows from 1.2 that there is an element c ∈ M such that (3) is true. By (3) we
get c ≤ f(c). Since c ∈ M , there are nonnegative integers i, j with f i(c) ≥ f j(1).
We have fk(c) ≤ fk(1) for all k and hence fk(c) ≤ f l(1) for all k, l. Consequently,
f i(c) = f j(1); the element e = f i(c) = f j(1) is clearly the largest fixpoint of f and
(1) is true. If x ≥ c then f i(x) ≥ f i(c) = e and hence f i+j(x) = e. Conversely,
if fk(x) = e for some k then fk(x) ∧ c = c; but (3) yields f l ∧ c = idA ∧ c; hence
x ∧ c = c, i.e., x ≥ c. We have proved (2) and it remains to prove (4). Put
R = R(id, f ∧ id). If x, y are elements such that {x, y} = {a ∧ d, f(a) ∧ a ∧ d} for
some a, d then x ≥ e implies y ≥ e. Indeed, if e ≤ a∧ d then e ≤ a, e = f(e) ≤ f(a)
and so e ≤ f(a) ∧ a ∧ d. Now this means, applying 2.1, that if (x, y) ∈ R then
x ≥ e iff y ≥ e. In particular, (e, x) ∈ R implies x ≥ e. On the other hand, it is
clear that (e, 1) ∈ R. Consequently, the principal filter generated by e is a block of
R. Since the pair idA, f ∧ idA is good, by 1.2 there exists an element c′ ≥ e with
x∧ c′ = f(x)∧x∧ c′ for all x; but then x∧ e = f(x)∧x∧ e for all x and (4) is true.
⊔⊓

2.7. Lemma. Let there exist elements c, e with the four properties formulated
in 2.6. Let g = f i1 ∧ . . . ∧ f ik where i1 < . . . < ik and let i > ik. Then the pair
g ∧ f i, g is good.
Proof. By (4) we have f(x) ∧ x ∧ e = x ∧ e for all x. From this it is easy to
prove f j(x) ∧ fm(x) ∧ e = fm(x) ∧ e for any j,m such that m < j. But then,
g(x)∧f i(x)∧e = g(x)∧e. Since i > ik, it is easy to see that (e, g(1)) ∈ R(g∧f i, g).
Now, it follows from 1.2 that the pair g ∧ f i, g is good. ⊔⊓

For the pairs not covered by Lemma 2.7 it seems that there is no uniform
condition necessary and sufficient for their goodness. The next lemma is concerned
with these pairs.

2.8. Lemma. Let g = f i1∧. . .∧f ik where i1 < . . . < ik and let 0 ≤ i < ik. Denote
by M the least subset of A such that g(1) ∈ M , if g(x) ∈ M then g(x) ∧ f i(x) ∈ M
and if x ≤ y ≤ g(1) where x ∈ M then y ∈ M . Then M is a filter in {x;x ≤ g(1)}
and we have x ∈ M iff there exists a sequence x0, x1, . . . , xk (k ≥ 0) such that
x0 = g(1), x ≥ xk and whenever i ∈ {1, . . . , n} thene there is an element a with
g(a) ≥ xi−1 and xi = g(a) ∧ f i(a). The pair g ∧ f i, g is good iff there exists an
element d ∈ M such that g(x) ∧ f i(x) ∧ d = g(x) ∧ d for all x ∈ A; this element d
is then the least element of M .
Proof. The set of the elements x for which there exists a sequence as above is
easily seen to be a filter in the principal ideal generated by g(1) with the property
of M , so that it coincides with M . It follows easily from 2.1 that M is just the
block of R(g ∧ f i, g) containing g(1). By 1.2, this means that the equation is good
iff there exists an element d ∈ M with g(x)∧f i(x)∧d = g(x)∧d; it is easy to prove
that then d must be the least element of M . ⊔⊓

2.9. Lemma. Let A be a chain with one operator. Then A is well-behaved iff
there exist elements c, e ∈ A with the following properties:
(1) e is the largest fixpoint of f ; we have 1 > f(1) > f2(1) > . . . > fk(1) = e for

some k ≥ 0.
(2) c < f(c) < ... < f l(c) = e for some l ≥ 0.
(3) f(x) = x for any x < c.
(4) Either c = e or e = f(1).
Proof. Let A be well-behaved, so that there exist elements c, e as in 2.6. The
relation R defined by (x, y) ∈ R iff either x, y ≤ e or x = y is easily seen to be a
congruence of A containing all the pairs (f(x) ∧ x, f(x)). Since the pair f ∧ id, f is
good, by 1.2 there exists an element d in the block of R containing f(1) such that
f(x)∧ x∧ d = f(x)∧ d for all x. We have either f(1) = e or d = f(1). In the latter
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case f(x) ≤ x for all x; but then e = c. It is clear that all the elements less than c
are fixpoints of f .

Now, let there exist elements c, e with the four properties. Consider first the
case c = e. Then idA ≥ f ≥ f2 ≥ . . . and we have F ′ = {idA, f, f

2, . . .. By 2.5
and 2.7 it is enough to prove that idA, f

m is a good pair for any m > 0. Clearly,
(c, 1) ∈ R(id, f) and fm(x) ∧ c = x ∧ c for all x, so that we can apply 1.2.

Next consider the case e = f(1). If e = 1 then idA ≤ f ≤ f2 ≤ . . . and the
proof is as simple as in the case c = e. So, let c < e < 1. Then F ′ consists of the
mappings idA, f ∧ idA and f i (i > 0). By 2.5 and 2.7 it is enough to prove that
the pair idA ∧ f, fm is good for any m ≥ 1. Clearly, (c, e) ∈ R(idA ∧ f, fm) and
e = fm(1). Since f(x) ∧ c = x ∧ c, we have x ∧ f(x) ∧ c = fm(x) ∧ c for all x. Now
we can apply 1.2. ⊔⊓

3. Equational theories of a finite chain with one operator

In this section let A = (A,∧, f) be a finite chain with one operator f ; denote
by 0 the least and by 1 the largest element of A.

By an equation we shall mean an ordered pair of term functions (rather than
terms) of the nominal expansion of A, i.e., a pair of polynomials of A. There are just
two kinds of polynomials: the constants and the polynomials g = f i ∧ f j ∧ a where
i ≤ j and a ≤ f j(1) (so that a = g(1)). (The reason for it is that f i∧f j∧fk = f i∧fk

whenever i ≤ j ≤ k.) The polynomials of the second kind will be called composed.
An equation (g, h) is called trivial if g = h (i.e., if g(x) = h(x) for all x ∈ A).

Let R be a congruence of A. An equation (g, h) is said to be R-valid if (g(x) =
h(x)) ∈ R for all x ∈ A.

An element a ∈ A is called R-reduced if there is no b < a with (b, a) ∈ R. For
any element a denote by a∗ the only R-reduced element such that (a, a∗) ∈ R. (This
notation will be used only when R is fixed.) An equation (g, h) is called R-reduced
if g(1) = h(1) and g(1) is an R-reduced element.

By an R-special equation we shall mean a nontrivial R-valid R-reduced equa-
tion (g, h), with a = g(1) = h(1), which is either of the form (g, h) = (f i ∧ f j ∧
a, f i+1 ∧ f j ∧ a) with i < j or of the form (g, h) = (f i ∧ f j ∧ a, f i ∧ f j+1 ∧ a) with
i ≤ j.

By an R-special set we shall mean a set S of R-special equations satisfying the
following conditions:
(1) if (f i∧f j ∧a, f i+1∧f j ∧a) ∈ S and a ≤ f j+1(1) then the equation (f i∧f j+1∧

a, f i+1 ∧ f j+1 ∧ a) is either trivial or belongs to S;
(2) if (f i+1 ∧ f j ∧ a, f i+1 ∧ f j+1 ∧ a) ∈ S then (f i ∧ f j ∧ a, f i ∧ f j+1 ∧ a) is either

trivial or belongs to S;
(3) if (f i ∧ f j ∧ a, f i+1 ∧ f j ∧ a) ∈ S and (f i ∧ f j ∧ a, f i ∧ f j+1 ∧ a) ∈ S then

(f i+1 ∧ f j ∧ a, f i+1 ∧ f j+1 ∧ a) is either trivial or belongs to S;
(4) if (f i ∧ f j+1 ∧ a, f i+1 ∧ f j+1 ∧ a) ∈ S and (f i+1 ∧ f j ∧ a, f i+1 ∧ f j+1 ∧ a) ∈ S

then (f i ∧ f j ∧ a, f i+1 ∧ f j ∧ a) is either trivial or belongs to S;
(5) if (f i ∧ f j ∧ a, f i+1 ∧ f j ∧ a) ∈ S and a ≤ f j+1(1) then (f i+1 ∧ f j+1 ∧ a, f i+2 ∧

f j+1 ∧ a) is either trivial or belongs to S;
(6) if (f i ∧ f j ∧ a, f i ∧ f j+1 ∧ a) ∈ S and a ≤ f j+2(1) then (f i+1 ∧ f j+1 ∧ a, f i+1 ∧

f j+2 ∧ a) is either trivial or belongs to S;
(7) if (f i ∧ f j ∧ a, f i+1 ∧ f j ∧ a) ∈ S and b ≤ a is an R-reduced element then

(f i ∧ f j ∧ b, f i+1 ∧ f j ∧ b) is either trivial or belongs to S;
(8) if (f i ∧ f j ∧ a, f i ∧ f j+1 ∧ a) ∈ S and b ≤ a is R-reduced then (f i ∧ f j ∧ b, f i ∧

f j+1 ∧ b) is either trivial or belongs to S.
In the following let R be a congruence of A and S be an R-special set.
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Denote by E0 the union of S with the set of trivial equations.

Denote by E1 the set of the R-valid R-reduced equations (f i∧f j∧a, fk∧f j∧a)
such that i ≤ j, k ≤ j and (f c ∧ f j ∧ a, f c+1 ∧ f j ∧ a) ∈ E0 for any c with
min(i, k) ≤ c < max(i, k).

Denote by E2 the set of the R-valid R-reduced equations (f i∧f j∧a, f i∧fk∧a)
such that i ≤ j, i ≤ k and (f i ∧ f c ∧ a, f i ∧ f c+1 ∧ a) ∈ E0 for any c with
min(j, k) ≤ c < max(j, k).

Denote by E3 the set of the R-valid R-reduced equations (f i∧f j∧a, fk∧f l∧a)
(i ≤ j, k ≤ l) such that either i ≤ k and the equations (f i ∧ f j ∧ a, f i ∧ f l ∧ a)
and (f i ∧ f l ∧ a, fk ∧ f l ∧ a) belong to E1 ∪ E2 or else k ≤ i and the equations
(fk ∧ f l ∧ a, fk ∧ f j ∧ a) and (fk ∧ f j ∧ a, f i ∧ f j ∧ a) belong to E1 ∪ E2.

It is clear that both E1 and E2 are equivalences on the set of the composed
polynomials g such that g(1) is an R-reduced element. Also, the relation E3 is
symmetric and reflexive on this set. We need to prove that E3 is transitive. For
this sake, the element a can be considered fixed; we shall write [i, j, k, l] instead of
(f i ∧ f j ∧ a, fk ∧ f l ∧ a) ∈ E3. (When this equation belongs to E3, it is obvious
that it belongs to E1 if j = l and to E2 if i = k.) So, for i ≤ k we have [i, j, k, l] iff
[i, j, i, l] and [i, l, k, l].

It is useful first to realize that if [i, j, i, k] then [i′, j, i′, k] for any i′ ≤ i; and if
[i, j, k, j] then [i, j′, k, j′] for any j′ ≥ j such that a ≤ f j′(1). These two facts follow
from (1) and (2).

From (3) and (4) we get: if [i, j, i′, j] and [i, j, i, j′] where i < i′ and j < j′ then
[i, j′, i′, j′]; and if [i, j, i′, j] and [i, j, i, j′] where i′ < i and j′ < j then [i, j′, i′, j′].

The pairs i, j can be imagined as points in the plane, and the assertion [i, j, k, l]
paraphrased as “the points (i, j) and (k, l) are connected”. Then the definition of
[i, j, k, l] can be stated as follows: two points are connected iff they are connected
in both the horizontal the vertical direction with the third vertex of the left-side
rectangular triangle which they determine. And the last two remarks imply that
any two connected points lying on a vertical line can be shifted to the left; any two
connected points lying on a horizontal line can be shifted up; if in a rectangle the
left and the bottom vertices are connected then so are the opposite vertices too;
and if the right and upper vertices are connected then so are the left and bottom
ones. (Notice that a rectangle can be completed also if the bottom and the right
vertices are connected; thus the only bad case is when the left and upper vertices
are connected.) Finally, notice that the relation of connectedness is transitive on
any vertical as well as on any horizontal line. Taking these remarks into account
and distinguishing several cases, it is not difficult to see that the relation of con-
nectedness is transitive on the plane. One can reduce the number of the cases a
little by taking the following observation also into the account. In order to prove
that [i, j, k, l] and [k, l, p, q] imply [i, j, p, q], it is sufficient to prove the same under
the assumption that either k = p or l = q.

So, we can consider the transitivity of E3 to be established. Now denote by E
the set of the R-valid equations (g, h) such that either one of the polynomials g, h
is constant or else (g ∧ a, h ∧ a) ∈ E3 where a = (g(1))∗ = (h(1))∗. Since E3 is an
equivalence, E is an equivalence on the set of all polynomials; we have R = E ∩A2.
We are now going to prove that E is an equational theory (i.e., a fully invariant
congruence on the algebra of polynomials).

Using (7) and (8), it is easy to prove for i = 1, 2, 3 that if (g, h) ∈ Ei and
b ≤ g(1) = h(1) is an R-reduced element then (g ∧ b, h ∧ b) ∈ Ei. Consequently,
(g, h) ∈ E implies (g ∧ a, h ∧ a) ∈ E for any a ∈ A.

By (1),(2) and (7) we get the following: if (g, h) ∈ S and c is a nonnegative
integer then (g ∧ f c ∧ b, h ∧ f c ∧ b) ∈ E0, where b = (g(1) ∧ f c(1))∗. From this we
get for i = 1, 2, 3 that (g, h) ∈ Ei implies (g ∧ f c ∧ b, h ∧ f c ∧ b) ∈ Ei and we can
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conclude that if (g, h) ∈ E then (g ∧ f c, h ∧ f c) ∈ E for any c.
Similarly, using (5) and (6) one can show that (g, h) ∈ E implies (fg, fh) ∈ E.
We have proved that E is a congruence. It is not difficult to verify that this con-

gruence is fully invariant. Clearly, E is just the fully invariant congruence generated
by the union R ∪ S.

Conversely, if E is a fully invariant congruence of the algebra of polynomials
such that E∩A2 = R then E is uniquely determined by its intersection with the set
of R-special equations, and this intersection is an R-special set. For example, let us
prove that (4) is satisfied. Let (f i ∧ f j ∧ a, f i+1 ∧ f j ∧ a) ∈ E and (f i ∧ f j ∧ a, f i ∧
f j+1 ∧ a) ∈ E. The first equation gives us (f i ∧ f j+1 ∧ a, f i+1 ∧ f j+1 ∧ a) ∈ E; by
transitivity we get (f i+1 ∧ f j ∧ a, f i+1 ∧ f j+1 ∧ a) ∈ E. The conditions (5) and (6)
can be proved by substituting f(x) for x; this is better than to apply the congruence
property with respect to f , since the latter approach could change the element a.

Given a congruence R, the corresponding interval in the lattice of fully invariant
congruences of the algebra of polynomials is thus isomorphic to the lattice of R-
special sets.

Let R,R′ be two congruences of A. Further, let S be an R-special set and S′

be an R′-special set. We shall write (R,S) ≤ (R′, S′) iff R ⊆ R′ and the following
is true: whenever (g, h) ∈ S and a is the least element of A with (a, g(1)) ∈ R′ then
(g∧a, h∧a) is either trivial or belongs to S′. It is easy to see that (R,S) ≤ (R′, S′) iff
the fully invariant congruence generated by R∪S is contained in the fully invariant
congruence generated by R′ ∪ S′.

Strictly speaking, equational theories are sets of ordered pairs of terms (in
arbitrary variables) rather than of polynomials. However, it is easy to see that
the lattice of equational theories extending the equational theory of the nominal
expansion of A is isomorphic to the lattice of fully invariant congruences of the
algebra of polynomials. Summarizing what has been proved and said, we get:

3.1. Theorem. Let A = (A,∧, f) be a finite chain with one operator and A′ be the
nominal expansion of A. The lattice of equational theories extending the equational
theory of A′ is isomorphic to the lattice of the ordered pairs (R,S) where R is a
congruence of A and S is an R-special set, with respect to the ordering described
above. ⊔⊓

To obtain a picture of the lattice, one can proceed in the following way. First,
draw a picture of the congruence lattice of A. (This is a distributive lattice; by
[2], it belongs to the smallest class of lattices containing the two-element lattice
and closed under finite products and ordinal sums with finite chains placed at the
top; and any lattice from this class can be represented in this way.) Then replace
any element of this lattice (it corresponds to a congruence R) with a picture of
the lattice of R-special sets; and connect elements in the resulting various blocks
according to the above described relation ≤.

In the special case when A contains a single fixpoint, there are no R-special
equations of the form (f i ∧ f j ∧ a, f i ∧ f j+1 ∧ a). Consequently, some of the con-
ditions (1)-(8) are empty in this case. Most significantly, the conditions (3) and
(4) are empty. But then, for a given R, the union of any two R-special sets is
again R-special, which means that the interval in the lattice of equational theories
corresponding to R is a distributive lattice. We get:

3.2. Corollary. Let A = (A,∧, f) be a finite chain with one operator containing
a single fixpoint. The lattice of equational theories extending the equational theory
of the nominal expansion of A is distributive-by-distributive. ⊔⊓

On the other hand, the following example shows that if A contains two fixpoints
then the lattice of equational theories need not be distributive-by-distributive.
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3.3. EXAMPLE. Let A be the five-element chain {0, 1, 2, 3, 4} with the endo-
morphism f : (0, 1, 2, 3, 4) 7→ (1, 1, 1, 2, 4). The lattice of equational theories has 54
elements and is pictured in Fig. 1. In this picture two elements have the same label
iff the corresponding equational theories intersect A2 in the same congruence.

3.4. EXAMPLE. Let A be the four-element chain with the endomorphism
f : (0, 1, 2, 3) 7→ (1, 1, 2, 2). The lattice of equational theories has 10 elements and
is pictured in Fig. 2.
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