
A NOTE ON MEDIAL DIVISION GROUPOIDS

J. Ježek and T. Kepka

Abstract. In 1949, M. Sholander [4] showed that every medial cancellation group-
oid can be embedded into a medial quasigroup. In this note we prove the dual
assertion, that every medial division groupoid is a homomorphic image of a medial

quasigroup.

1. Introduction. By a groupoid we mean a nonempty set with one binary opera-
tion, for which we use the multiplicative notation as a default. A groupoid is called
medial (in some papers entropic, in [4] alternation) if it satisfies the identity

(xy)(uv) = (xu)(yv).

While [2] can serve as a reference on the theory of medial groupoids, the book [3]
gives numerous examples and connections with other parts of mathematics.

Given a groupoid G and an element a ∈ G, the left translation La of G is the
mapping of G into itself defined by La(x) = ax for any x ∈ G. Similarly, the right
translation Ra is defined by Ra(x) = xa. We say that G is a cancellation groupoid
if all its translations are injective mappings. If all the translations are surjective,
G is a division groupoid. A quasigroup is a cancellation and division groupoid.

As it is easy to see, a homomorphic image of a division groupoid is a division
groupoid. In particular, a homomorphic image of a medial quasigroup is a medial
division groupoid. The aim of this paper is to prove that each medial division
groupoid can be obtained as a homomorphic image of a medial quasigroup.

Our proof will be based on an auxiliary construction given in Section 2 which is,
in fact, a two-dimensional version of the ergodic-theoretic construction of an auto-
morphism on a measure space naturally extending an endomorphism; see Section 4
of Chapter 10 on the entropic theory of dynamical systems in [1].

Let us remark that, according to Proposition 6.4.1 of [2], finitely generated medial
division groupoids are already quasigroups.

For a groupoid G we define a binary relation tG on G by (a, b) ∈ tG iff La = Lb

and Ra = Rb. Clearly, tG is a congruence of G.
A groupoid G is said to be regular if for any a, b, c ∈ G, ac = bc implies La = Lb

and ca = cb implies Ra = Rb. Clearly, every cancellation groupoid is regular.
Both the class of cancellation groupoids and the class of regular groupoids are
quasivarieties.

From [2] we shall need the following two results.
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Lemma 1. Let G be a medial division groupoid. Then the factor G/tG is regular.

Proof. See Lemma 6.2.3 of [2]. �

Lemma 2. Let G be a regular medial division groupoid. Then there exist an abelian

group G(+), two commuting surjective endomorphisms f, g of G(+) and an element

q ∈ G such that

xy = f(x) + g(y) + q

for all x, y ∈ G.

Proof. See Corollary 6.1.2 in [2]. �

2. Bi-unary algebras: an auxiliary construction.

Lemma 3. Let S be a nonempty set and f, g be two commuting surjective trans-

formations of S. Then there are a set A, two commuting permutations F,G of A
and a mapping ϕ of A onto S such that ϕF = fϕ and ϕG = gϕ.

Proof. Let N denote the set of positive integers. Denote by A the set of the
mappings a : N ×N → S such that

f(a(i+ 1, j)) = g(a(i, j + 1)) = a(i, j)

for all i, j ∈ N . (It is possible to imagine the elements of A as being infinite matrices
over the set S.) For a ∈ A define elements F (a) and G(a) of A by

F (a)(i, j) = f(a(i, j)),

G(a)(i, j) = g(a(i, j)).

With respect to fg = gf , it is easy to check that both F (a) and G(a) belong to A
for any a ∈ A. The mappings F,G commute, as

FG(a)(i, j) = fg(a(i, j)) = gf(a(i, j)) = GF (a)(i, j).

We are going to show that F is a permutation of A. If a, b ∈ A are elements
such that F (a) = F (b), then for all i, j ∈ N we have

a(i, j) = f(a(i+ 1, j)) = F (a)(i+ 1, j) = F (b)(i+ 1, j) = f(b(i+ 1, j)) = b(i, j)

and consequently a = b. Given an element c ∈ A, we can define d by d(i, j) =
c(i+ 1, j) for all i, j and check that d ∈ A and F (d) = c.

In the same way one can prove that also G is a permutation of A. Define a
mapping ϕ : A→ S by ϕ(a) = a(1, 1). For all a ∈ A we have

ϕF (a) = F (a)(1, 1) = f(a(1, 1)) = fϕ(a)

and thus ϕF = fϕ. Similarly, ϕG = gϕ. It remains to show that ϕ is a mapping
onto S.

Let s be an arbitrary element of S. Put a1,1 = s and for any i ≥ 2 choose an
element ai,i ∈ S such that fg(ai,i) = ai−1,i−1; this is possible, as fg is surjective.
Setting

a(i, j) =

{

gi−j(ai,i) for i ≥ j,

f j−i(aj,j) for i < j,
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we obtain a mapping a of N ×N into S. We only need to prove that a ∈ A, since
ϕ(a) = s will then follow from our choice a1,1 = s. If i ≥ j, then

f(a(i+ 1, j)) = fgi+1−j(ai+1,i+1) = gi−j(ai,i) = a(i, j).

If j = i+ 1, then

f(a(i+ 1, j)) = f(ai+1,i+1) = f(aj,j) = a(j − 1, j) = a(i, j).

If j > i+ 1, then
f(a(i+ 1, j)) = f j−i(aj,j) = a(i, j).

We have proved f(a(i+ 1, j)) = a(i, j) in all cases, and g(a(i, j + 1)) = a(i, j) can
be checked similarly. �

Remark. Although we shall not use the fact in the following, let us remark that
the construction of A,F,G, ϕ given in the proof of Lemma 3 is universal in the
sense that if A1, F1, G1, ϕ1 is any other quadruple with the same properties, then
there exists a uniquely determined mapping ψ : A1 → A such that ψF1 = Fψ and
ψG1 = Gψ.

3. Medial division groupoids: the main result.

Lemma 4. Let G be a medial division groupoid. Then G is a homomorphic image

of the regular medial division groupoid G/tG ×G/tG.

Proof. Let ϕ : G → G/tG be the canonical projection. It follows from the defi-
nition of tG that ψ : G/tG × G/tG → G is a correctly defined mapping if we put
ψ(ϕ(x), ϕ(y)) = xy for all x, y ∈ G. By the medial law,

ψ((ϕ(x), ϕ(y)) ·(ϕ(u), ϕ(v))) = (xu)(yv) = (xy)(uv) = ψ(ϕ(x), ϕ(y)) ·ψ(ϕ(u), ϕ(v))

for any x, y, u, v ∈ G and we see that ψ is a homomorphism. Since G is a division
groupoid, ψ is surjective. The factor G/tG is a regular medial division groupoid by
Lemma 1 and it is clear that the product of regular medial division groupoids is a
regular medial division groupoid. �

Theorem 5. Every medial division groupoid is a homomorphic image of a medial

quasigroup.

Proof. With respect to Lemma 4, it is sufficient to prove that any regular medial
division groupoid G is a homomorphic image of a medial quasigroup. By Lemma 2
there are an abelian group G(+), two commuting surjective endomorphisms f, g
of G(+) and an element q ∈ G such that xy = f(x) + g(y) + q for all x, y ∈ G.
By Lemma 3 there exist a set A, two commuting permutations F,G of A and a
mapping ϕ of A onto G such that ϕF = fϕ and ϕG = gϕ. Denote by H(+) the free
abelian group over the set A. The permutations F,G can be uniquely extended to
automorphisms α, β of H(+) and we have αβ = βα. Moreover, the mapping ϕ can
be extended to a homomorphism h of H(+) onto G(+). Since the homomorphisms
hα and fh of H(+) into G(+) coincide on the set of generators A, they coincide
everywhere and we have hα = fh. Similarly, hβ = gh. Take an element e ∈ H such
that h(e) = q and define a multiplication on H by xy = α(x) + β(y) + e. Then H
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becomes a medial quasigroup and one can easily verify that h is a homomorphism
of the quasigroup H onto the groupoid G. �

Remark. For a given medial division groupoid G let Q be a medial quasigroup and r
be a congruence of Q such that G ≃ Q/r. Among the congruences s of Q such that
s ⊆ r and Q/s is a quasigroup, there is a unique largest one; denote it by s0. Then
G is a homomorphic image of the medial quasigroup Q0 = Q/s0 with the property
that no nontrivial congruence of Q0 contained in the kernel of the homomorphism
factors Q0 to a quasigroup. In this sense, every medial division groupoid has a
“quasigroup cover”. We do not know, however, if this medial quasigroup cover is
unique.

References

1. I.P. Cornfeld, S.V. Fomin and Ya.G. Sinai, Ergodic theory, Grundlehren der math. Wis-

senschaften 245, Springer-Verlag, New York, 1982.
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