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It is shown that, even though there is a very well-behaved, natural normal form for lattice
theory, there is no finite, convergent AC term rewrite system for the equational theory of all
lattices.

The study of the equational theory of a class K of algebras and their free algebras
FK(X) is greatly facilitated by a normal form for the terms over the language of K. For
terms u and v over some set of variables X, u is equivalent to v modulo K if the equation
u ≈ v holds identically in K (i.e., for all substitutions of the variables into all algebras in
K). We write this u ≈ v (mod K). By a normal form we mean an effective choice function
from the equivalence classes of this relation. We will use the notation nf(w) for such a
normal form function. Having a normal form is equivalent to the equational theory being
decidable. Moreover, if this normal form can be computed efficiently, it is very helpful for
computer implementations of the free algebras in K.

A term rewrite system, abbreviated TRS, constitutes a very specific method for trans-
forming terms. A normal form TRS transforms terms into a unique normal form and, as
such, is computationally useful. (The definitions will be given below.) Not every decidable
equational theory has a normal form TRS. For example, it is easy to see that commutative
groupoids have no such TRS. An associative and commutative TRS, denoted AC TRS, is
one in which we are allowed to apply the associative and commutative laws, as well as the
rewrite rules.

The class of lattices, L, has a very nice normal form, discovered by Whitman (1941)
and (1942). Whitman showed each lattice term is equivalent to a term of shortest length
which is unique up to associativity and commutativity. In this paper, we reserve the term
canonical form for Whitman’s normal form. The canonical form of a term is also lattice-
theoretically the best way to write it: if w = w1∨· · ·∨wn canonically, then w1, . . . , wn are
the lowest possible elements of the free lattice that irredundantly join to w, see Theorem 4.

Whitman (1942) gave a procedure to test if a term is in canonical form and using this
it is not hard to see that there is a polynomial time algorithm to put an arbitrary term
into canonical form. The details are presented in our monograph, Free Lattices (1993).
Besides containing a detailed study of free lattices, this monograph also has a chapter on
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the computational aspects of lattice theory and includes a description of our computer
implementations of various algorithms for lattices.

The purpose of this note is to prove that, despite having this very nice canonical form,
there is no finite, convergent AC TRS for lattice theory. The existence of such an AC
TRS is raised as Problem 32 in Open problems in rewriting (1991) by N. Dershowitz, J.-P.
Jouannaud, and J. W. Klop. The next two sections contain the necessary lattice theoretic
and TRS prerequisites.

The monograph on free lattice mentioned above will also contain some new results
about term rewrite systems for equational classes of lattices other than the class of all
lattices.

The authors would like to thank George McNulty for suggesting this problem to them
and Stan Burris for several enlightening lectures on term rewrite systems. They also would
like to thank the referees for several helpful suggestions.

Term Rewrite Systems

Term rewrite systems were pioneered by Trevor Evans (1951) who gave a convergent
TRS for quasigroups. The subject was popularized with Knuth and Bendix (1970) who
gave methods which could sometimes convert equational axioms into a convergent TRS.
They were able to use these methods to find a convergent TRS for groups. Since that time
the subject has become popular, especially with computer scientists. Equational TRS’s
were introduced by Lankford and Ballantyne (1977) and Peterson and Stickel (1981).
A good general reference is Dershowitz and Jouannaud (1990); see also Jouannaud and
Kirchner (1986). Ježek (1982) considers TRS–like systems for groupoids and Burris and
Lawrence (1991) consider AC TRS’s for certain finite rings.

A set R of ordered equations is called a term rewrite system and abbreviated TRS. The
equations are written with an arrow: p → q. A substitution is simply an endomorphism
of the term algebra. If (p → q) ∈ R and r is a term which has a subterm of the form σ(p)
for some substitution σ, then we can rewrite r by replacing (one occurrence of) σ(p) by
σ(q). If t is the resulting term, then we write r →R t and call this a one step rewrite. A
term rewrite system R is finite if R is; it is terminating if there is no infinite sequence of
(one step) rewrites. This means that if we start with any term and apply the rewrite rules
repeatedly in any order, we will eventually reach a term which cannot be further rewritten.
A terminating TRS is convergent if, for every term s, every sequence of rewrites starting
with s terminates with the same term, which is then called the normal form of s. If R is
a convergent TRS, we denote the normal form of a term w by nfR(w) or nf(w), when R

is understood. We say that an equational theory E has a convergent TRS provided there
is a convergent TRS such that s ≈ t is in E if and only if nf(s) = nf(t).

Not every recursive equational theory has a finite, convergent TRS. It is easy to see
that theories which contain the commutative law, x · y ≈ y · x, do not have such a TRS.
This defect can be corrected sometimes by an equational TRS. Let E0 be a set of regular
equations (an equation is regular if the set of variables occurring on the left side is the
same as those on the right) and define s ≡ t if E0 � s ≈ t. An equational TRS is a pair
〈E0, R〉 where R is a TRS. In such a system we allow sequences of rewrites of the form

s0 ≡ s1 →R s2 ≡ s3 →R · · · . (1)

A term u is terminal for an equational TRS if no rewrite rule applies to it nor to any
u′ ≡ u. A convergent equational TRS is one in which, for every term s, every sequence
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in the above form, with s0 = s, eventually terminates, that is, ends in a terminal element
and the ≡–class of this element is unique. We let nf(s) denote some representative of this
≡–class. It would make more sense to define nf(x) to be the equivalence class, but our
definition is notationally easier. In this paper we will be concerned with the case when E0

consists of the associative and commutative laws for the lattice operations ∨ and ∧. In
this case the rewrite system is called an AC TRS. The theory of AC TRS’s is developed by
Peterson and Stickel (1981). Their paper shows, among other things, that the equational
theory of distributive lattices (which is the same as the equational theory of the 2 element
lattice) has an AC TRS.

The next lemma collects some basic facts about equational TRS’s. We say that a term v

is an E0–subterm of u if v is a subterm of u′ for some u′ ≡ u. Since E0 is regular, we can
speak about the variables occurring in nf(u) because the set of variables which occur is
independent of the choice of nf(u).

Lemma 1. Suppose that 〈E0, R〉 is a finite, convergent, equational TRS. Then the follow-
ing hold.

(1) If v is an E0–subterm of u and nf(u) ≡ u, then nf(v) ≡ v.
(2) If w is a term and σ is an automorphism of the term algebra, then nf(σ(w)) ≡

σ(nf(w)).
(3) If u = σ(v) for some endomorphism of the term algebra and nf(u) ≡ u, then

nf(v) ≡ v.
(4) The variables which occur in nf(w) all occur in w.

Proof. (1) follows since none of the rewrite rules can apply to u. (2) is a direct conse-
quence of the way rewrite rules are applied. For (3), first note that if v′ is an E0–subterm
of v then σ(v′) is an E0–subterm of u. So if p → q is a rewrite rule and v′ = τ(p) for some
substitution τ , then p → q would apply to u under the substitution στ . But no rewrite
rule can apply to u because it is in normal form.

If there was a variable occurring in nf(w) which did not occur in w, then there must be
a rewrite rule of the form u(x1, . . . , xn) → v(x1, . . . , xn, y1, . . . , yk) with k ≥ 1. But then,
applying this rule under the substitution which maps y1 to u(x1, . . . , xn) and fixing the
other variables, we obtain an infinite chain of rewrites:

u(x) → v(x, u(x),y) → v(x, v(x, u(x),y),y) → · · ·

where x = x1, . . . , xn and y = y2, . . . , yk. �

Lattice Theory and Free Lattices

A lattice is a partially ordered set L such that every pair of elements x, y ∈ L has
a least upper bound, denoted x ∨ y, and a greatest lower bound, x ∧ y. We use ≤ to
denote the order relation of the lattice. A lattice can also be viewed as an algebraic
system, L = 〈L,∨,∧〉 with two binary operations. Lattices have the following equational
axiomization (actually the idempotency can be derived from the others):

x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z (associative)

x ∨ y ≈ y ∨ x x ∧ y ≈ y ∧ x (commutative)

x ≈ x ∨ x x ≈ x ∧ x (idempotent)

x ≈ x ∨ (y ∧ x) x ≈ x ∧ (y ∨ x) (absorptive)
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It is easy to verify that these axioms hold in all lattices. Coversely if L = 〈L,∨,∧〉 is an
algebra satisfying these equations, we can define x ≤ y if x ∨ y = y. This partially orders
L and under this order L is a lattice with least upper bounds agreeing with x ∨ y and
greatest lower bounds agreeing with x ∧ y. The simple details can be found in any book
on lattices.

By an AC TRS for lattices we mean an equational TRS, where E0 consists of both
commutative and associative laws above.

The dual of a statement about lattices is the statement obtained by interchanging the
roles of ∨ and ∧, and those of ≤ and ≥. Notice that the above axioms are self dual. Thus,
if a statement is true about lattices, its dual is also true.

Since the class of all lattices, L, is equationally defined, it has free algebras over any set
X. Naturally these are called free lattices; the free lattice over X is denoted FL(X). This
lattice can be constructed in the usual way: if s and t are terms in the operations ∨ and ∧
with variables from X, s ≈ t will mean that this equation follows from the lattice axioms;
that is, it holds in all lattices under all substitutions of the variables. FL(X) consists of
the equivalence classes of ≈. It is convenient (although not absolutely correct) to view s

as an element of FL(X). We define an order relation ≤ on terms by s ≤ t if this holds in
FL(X) when we view s and t as elements of FL(X). This is only a quasi-order on the set
of terms; in fact, s ≈ t if and only if s ≤ t and t ≤ s.

Since both lattice operations are associative, we include in our definition of terms ex-
pressions which omit unnecessary parentheses. Thus

x ∨ (y ∨ z) x ∨ y ∨ z (x ∨ y) ∨ z (2)

are all terms. In this paper the word ‘term’ will refer to terms over the two binary operation
symbols ∨ and ∧. Whitman gave a recursive algorithm for determining if s ≤ t.

Theorem 2. Let s and t be terms with variables in X. Then s ≤ t holds if and only if
one of the following holds.

(1) s = s1 ∨ · · · ∨ sk is a formal join and si ≤ t holds for all i.
(2) t = t1 ∧ · · · ∧ tk is a formal meet and s ≤ ti holds for all i.
(3) s and t ∈ X and s = t.
(4) s ∈ X and t = t1 ∨ · · · ∨ tk is a formal join and s ≤ tj for some j.
(5) s = s1 ∧ · · · ∧ sk is a formal meet and t ∈ X and sj ≤ t for some j.
(6) s = s1 ∧ · · · ∧ sk is a formal meet and t = t1 ∨ · · · ∨ tm is a formal join and si ≤ t

holds for some i or s ≤ tj holds for some j.

A term s is formally a meet if it has the form s = s1 ∧ s2. For example, the term
(x∨ y)∧ (x∨ y ∨ z) is formally a meet, even though when it is thought of as an element of
the free lattice, it is equal to x∨ y, which is meet irreducible in the free lattice. Of course,
a term is formally a join if the dual condition holds.

Item (6) is known as Whitman’s condition and is denoted (W). Notice it implies that
every element of a free lattice is either meet irreducible or join irreducible. (An element a
of a lattice is meet irreducible if a = b ∧ c implies a = b or a = c; join irreducibility
is defined dually.) Using Theorem 2, Whitman showed that for each term u there is a

shortest term w, unique up to AC, such that u ≈ w holds in lattice theory. This element w
is the canonical form of u. He proved the following criterion for deciding if a term is in
canonical form. This criterion provides a way to reduce a term to canonical form. Notice
that each step of this process reduces the length of the term.
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Theorem 3. A term t = t1 ∨ · · · ∨ tn, with n > 1, is in canonical form if and only if

(1) each ti is either in X or formally a meet,
(2) each ti is in canonical form,
(3) ti � tj for all i 6= j (the ti’s form an antichain),
(4) if ti =

∧

tij then tij � t for all j.

A term t = t1 ∧ · · · ∧ tn, with n > 1, is in canonical form if and only if the duals of the
above conditions hold. A term x ∈ X is always in canonical form.

For subsets A and B of a lattice, we say that A join refines B, written A ≪ B, if for
each a ∈ A there is a b ∈ B such that a ≤ b.

Theorem 4. Let w = w1 ∨ · · · ∨wn be a term in canonical form, where each wi is either
a variable or a formal meet. If u = u1 ∨ · · · ∨ um and w ≈ u (mod L), then

{w1, . . . , wn} ≪ {u1, . . . , um}.

This theorem, which is due to Whitman, shows that the canonical form (of a join re-
ducible element) is the best representation of the element as a join, in that its joinands are
as far down in the lattice as possible. Moreover this representation is unique. The unique-
ness of this representation has important consequences for free lattices. For example, it
implies the following semidistributive law:

a ∨ b = a ∨ c implies a ∨ b = a ∨ (b ∧ c).

If u = u1 ∨ · · · ∨ un is in canonical form, we say that each ui is a canonical joinand
of u. The next lemma, which appears in Tschantz (1990), can be proved easily using
Theorem 2.

Lemma 5. Let u1 be a canonical joinand of u. Then

(1) if u1 ≤ s ∧ t ≤ u then either s ≤ u or t ≤ u or u1 = s ∧ t;
(2) if u1 ≤ s ∨ t ≤ u then either u1 ≤ s or u1 ≤ t;
(3) if u1 ≤ x ≤ u, where x ∈ X, then u1 = x.

If a and b are elements of a lattice we say that b covers a, denoted a ≺ b, if a < b

and there is no c such that a < c < b. In the free lattice generated by X = {x1, . . . , xn},
FL(X), let xi =

∧

j 6=i xj . Using the argument given below, it is not hard to see that

0 =
∧

X ≺ xi ≺ xi ∨ xj , for i 6= j, but we only require the following easy fact.

Lemma 6. If u > xi in FL(x1, . . . , xn), then u ≥ xj for some j 6= i.

Proof. If we look at the homomorphism from FL(x1, . . . , xn) onto the two element lat-
tice, 2 = {0, 1}, which maps a fixed xk to 0 and all other xj ’s to 1, we see that every
element of FL(x1, . . . , xn) is either below xk or above xk. Suppose u > xi. If u ≤ xk for
all k 6= i, then u ≤ xi, a contradiction. Hence, u � xj for some j 6= i, and thus u ≥ xj . �

The Result

In this section we prove that there is no finite, convergent AC TRS for the equational
theory of lattices. From now on we use u ≡ v to mean that the lattice terms u and v are



6 RALPH FREESE, J. JEŽEK, AND J. B. NATION

equivalent modulo AC. We use u ≈ v to mean that u is equivalent to v in lattice theory,
i.e., u and v evaluate to the same element under every substitution of the variables into
every lattice. This, of course, is equivalent to the fact that u and v represent the same
element in FL(X), for any set X which contains the variables occurring in u and v. Of
course, u = v means that u and v are the same term.

Suppose we have a finite, convergent AC TRS for lattice theory. For w a term, let nf(w)
denote the normal form of w associated with this TRS. This normal form is really only
defined up to equivalence modulo AC. We will assume that nf(w) chooses some element
of this AC class which does not have any unnecessary parentheses. For example, the three
terms in (2) are AC–equivalent and, if they are in normal form (we will see that they
are), then the value of nf(w) for any of them, must be x ∨ y ∨ z. This means that if
nf(w) = u1 ∨ · · · ∨ uk then each ui is assumed to be either a formal meet or a variable.
The expression ‘w is in normal form’ means nf(w) ≡ w. Recall that the term canonical
form refers to Whitman’s canonical form. Also, as above, we say that v is an AC–subterm
of u if v is a subterm of u′ for some u′ ≡ u.

Lemma 7. Let t = t1 ∨ · · · ∨ tn be in canonical form with n > 1. Then nf(t) is a formal
join, say nf(t) = u = u1 ∨ · · · ∨ um, and there is a map σ from {1, . . . , n} onto {1, . . . ,m}
such that ti ≤ uσ(i) for all i. In particular, 1 < m ≤ n. Moreover, u1, . . . , um is an
antichain.

Proof. Since n > 1, t 6≈ x for all variables and hence u cannot be a variable. If u is a
formal meet u = u1 ∧ · · · ∧ um, then ui ≈ u for some i since u ≈ t is meet irreducible. But
then by Lemma 1, ui ≡ nf(ui) = nf(u) ≡ u, which is clearly false.

So suppose u = u1 ∨ · · · ∨ um. Then, by the refinement property of the Whitman
canonical form (Theorem 4), for each i, there is a σ(i) such that ti ≤ uσ(i). Clearly

u′ =
∨

j∈ rangeσ

uj

is an AC–subterm of u and so is in normal form. It is also clear that u′ ≈ u and hence
they have the same normal form. Thus u′ ≡ nf(u′) = nf(u) ≡ u, which is not possible
if u′ is a proper subterm of u. This implies that σ must be onto.

A similar argument shows that the ui’s form an antichain. �

Lemma 8. Suppose that w is a term in normal form, w is a formal meet, and x is a
variable such that x ∨ w is in canonical form. Then x ∨ w is in normal form.

Proof. By Lemma 7,
nf(x ∨ w) = s ∨ t (3)

for some s and t with x ≤ s < x∨w and w ≤ t < x∨w. Moreover, each of s and t is either
a generator or a formal meet. Also, (3) implies that nf(t) = t. We claim that w ≡ t. If
w ≈ t then w ≡ t since both are in normal form. In the other case, w < t. By a repeated
application of parts (1) and (2) of Lemma 5, t has a subterm v ∨ r with r ≈ w (and v

possibly a join). Since r is a subterm of t, it is in normal form. Hence r ≡ w.
For any term u, let u′ denote the image of u under the endomorphism which maps every

variable to x. Of course, u′ ≈ x for all u. Now the chain of rewrites that transforms x∨w

to s∨ t can be applied in the same way to x∨w′, yielding s′∨ t′. But t′ has v′∨r′ ≡ v′∨w′

as a subterm. Since nf(v′) = x, some additional rewrites transform v′ ∨ w′ into x ∨ w′.
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Thus the concatenation of these rewritings transforms x∨w′ into a term having x∨w′ as
a subterm, and this clearly leads to an infinite chain of rewrites, a contradiction. Hence
t ≡ w.

Thus nf(x ∨ w) ≡ s ∨ w. Unless x ≡ s, there is a chain of rewrites (of positive length)
which transforms x ∨ w to s ∨ w. When these rewrites are applied to x ∨ w′, they yield
s′ ∨ w′. Since nf(s′) = x, a further chain of rewrites transforms s′ ∨ w′ to x ∨ w′. This
again leads to an infinite chain of rewrites, and thus we must have x ≡ s. �

The next lemma shows that, if a term t = t1 ∨ · · · ∨ tn has the property that the ti’s
are the same except for a change of variables, then Lemma 7 can be strengthened.

Lemma 9. Suppose that t = t1 ∨ · · · ∨ tn canonically with n > 1 and that there is a
subgroup G ∼= Sn of the automorphism group of the term algebra which acts faithfully on
{t1, . . . , tn}. Let nf(t) = r = r1 ∨ · · · ∨ rm. Then m = n and, after reordering, ri ≥ ti, for
i = 1, . . . , n, and ri � tj for i 6= j.

Proof. By part (2) of Lemma 1, σ(r) ≡ r for each σ ∈ G. Thus

σ(r1) ∨ · · · ∨ σ(rm) = σ(r) ≡ r = r1 ∨ · · · ∨ rm

from which it follows that, for each i, σ(ri) ≡ rj , for some j. Suppose ri is above exactly
k of the tj ’s. Since Sn acts transitively on the k element subsets of {t1, . . . , tn}, each
k–element subset has some ri above it. By Lemma 7, k < n. Suppose k > 1. Then n ≥ 3,
and there are at least

(

n

k

)

different ri’s. Since
(

n

k

)

> n for 1 < k < n− 1, this contradicts
Lemma 7 unless k = n− 1. But in this case the join of the ri’s is clearly redundant, since
n > 2. �

Lemma 10. Let x, y, z1, . . . , zn, and e1, . . . , es be distinct variables, and let zi =
∧

j 6=i zj.
If n, s ≥ 1, and k ≥ 0, then the following terms are all in normal form.

z1 ∧ · · · ∧ zn (4)
n
∨

i=1

(x ∧ zi) (5)

n
∨

i=1

(x ∧ zi) (6)

x ∧

[ k
∨

i=1

(x ∧ zi) ∨
s
∨

j=1

ej

]

(7)

Proof. Straightforward applications of Theorem 3 show that each of these elements is in
canonical form. By Lemma 9, nf(z1 ∧ · · · ∧ zn) = r1 ∧ · · · ∧ rn. There is an obvious term
algebra endomorphism mapping z1∧ · · ·∧ zn onto r1∧ · · ·∧ rn so, by part (3) of Lemma 1,
z1 ∧ · · · ∧ zn is in normal form.

Let w be the element of (5), let nf(w) = r = r1 ∨ · · · ∨ rm, and let ai = x ∧ zi.
By part (4) of Lemma 1, the only variables that can occur in r are x, z1, . . . , zn, and
hence, r can be viewed as an element of FL(x, z1, . . . , zn). By Lemma 9, n = m and
we may assume that ri ≥ ai and ri � aj for all distinct i and j. But if ri > ai, then,
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by Lemma 6, ri ≥ aj for some j 6= i, a contradiction. Thus ai ≈ ri. Since ri is a
subterm of r, nf(ri) ≡ ri, and nf(ai) ≡ ai by the previous example. Thus ai ≡ ri and so
nf(w) = r1 ∨ · · · ∨ rn ≡ a1 ∨ · · · ∨ an, proving w is in normal form.

Since there is an obvious term algebra endomorphism mapping the element of (6) to
the element of (5), the former element is in normal form by part (3) of Lemma 1.

Choose n ≥ k + s. Then there is an endomorphism mapping the element

k
∨

i=1

(x ∧ zi) ∨
s
∨

j=1

ej

to the element of (6), and hence the former is in normal form by Lemma 1 again. It now
follows from the dual of Lemma 8 that the element of (7) is in normal form. �

Theorem 11. There is no finite, convergent AC term rewrite system for the equational
theory of lattices.

Proof. Let w be the term given in (6), where n is large enough so that the length of w is
greater than the length of the left hand side of all of the rewrite rules. Clearly w ≤ x and
thus x∧w ≈ w, so some rewrite rule must apply to x∧w. Since nf(w) ≡ w, every proper
AC–subterm of x ∧ w is in normal form. Since the left hand side of a rewrite rule can
never match a term in normal form, the left hand side of some rewrite rule must match
x ∧ w.

What terms with length less than the length of x ∧w match x ∧w? That is, for which
terms t is there a term algebra endomorphism mapping t onto x∧w? (To avoid confusion,
we will use letters at the beginning of the alphabet to denote variables.) Besides a and
a ∧ b, the term

a ∧ [(c1 ∧ d1) ∨ · · · ∨ (ck ∧ dk) ∨ e1 ∨ · · · ∨ es]

matches x ∧ w under an obvious substitution. (This term with k = n and no ej ’s also
matches x∧w, but has the same length.) Some or all of the ci’s can be equal to each other
or to a, but the other variables must be distinct. All of these terms have endomorphisms
onto the term

a ∧ [(a ∧ d1) ∨ · · · ∨ (a ∧ dk) ∨ e1 ∨ · · · ∨ es]

which is in normal form by Lemma 10. Hence any term shorter than x ∧ w, which has
an endomorphism onto x ∧ w, is in normal form and so cannot be the left hand side of a
rewrite rule. Thus no rewrite rule applies to x ∧ w. �

An Extension

By a terminating AC TRS, we mean one in which every sequence of rewritings ends
in a terminal element in a finite number of steps. Recall that a term u is terminal if no
rewrite rule applies to it nor to any u′ ≡ u. Suppose we weaken this notion by defining u

to be terminal if, for all u′ ≡ u, if u′ rewrites to v, then v ≡ u. (We would also have
to modify the requirement on sequences as in (1) by insisting that, when si →R si+1, we
have si 6≡ si+1.) Does Theorem 11 still hold for such a system? In most parts of the proof
we produced an infinite chain of rewrites with terms of increasing length. For example,
the proof of the first part of Lemma 8 constructed certain subterms. A closer look at the
proof shows that these are proper subterms and this implies that rewriting will produce
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longer and longer terms. Since AC equivalence classes are finite, such sequences cannot
exist even with our modified definition of a terminal element. The proof that x ≡ s showed
that if this failed, we could rewrite x ∨ w′ to s′ ∨ w′ and then rewrite the latter back to
x∨w′. Since x is only AC equivalent to itself, this also leads to an infinite chain of rewrites
even under our modified definition of a terminal element. However, part (3) of Lemma 1
is no longer valid. The only places where it is not obvious that the use of this cannot be
avoided are in the proof that the terms given in (6) and (7) of Lemma 10 are in normal
form. To see that they are, note by Lemma 9,

nf((x ∧ z1) ∨ · · · ∨ (x ∧ zn)) = r1(x, z1, . . . , zn) ∨ · · · ∨ rn(x, z1, . . . , zn),

for some r1, . . . , rn. This rewrite rule applies to the element of (5) to yield

(x ∧ z1) ∨ · · · ∨ (x ∧ zn) → r1(x, z1, . . . , zn) ∨ · · · ∨ rn(x, z1, . . . , zn).

Since the left side is in normal form, this implies that (by our new rule for rewriting) these
terms are AC equivalent, and so, after renumbering, x ∧ zi ≡ ri(x, z1, . . . , zn). But it is
easy to see that this implies that ri(x, z1, . . . , zn) = x ∧ zi or zi ∧ x, which implies the
element (6) is in normal form.

To see that the element of (7) is in normal form, it suffices, by the dual of Lemma 8,

to show that w =
∨k

i=1(x∧ zi)∨
∨s

j=1 ej is in normal form. By Lemma 7, we may assume
the normal form of this element is r1∨· · ·∨rm, where each ri is either a meet or a variable
and m ≤ k + s. Choose n > k + s. Then there is an endomorphism σ mapping w to
∨n

i=1(x ∧ zi) and this induces the rewrite:

n
∨

i=1

(x ∧ zi) → σ(r1) ∨ · · · ∨ σ(rm).

Since the left side is in normal form, these two elements must be AC equivalent. If ri is
a meet then σ(ri) is also. Thus, since n > m, some of the ri’s must be variables. But,
by Lemma 7, each ri must satisfy either x ∧ zj ≤ ri < w or ej ≤ ri < w, for some j.
This implies that if ri is a variable, it must be some ej . If ri is not a variable, then, since
σ(ri) = x ∧ zj , for some j, ri = x ∧ zj . It is not hard to see that implies that w is in
normal form.

Thus, even under this weaker set of rules for rewriting, there is no finite, convergent
AC TRS for lattices.

Final Remarks

As we mentioned earlier, Peterson and Stickel have shown that the equational theory of
distributive lattices does have a convergent AC TRS. However deciding if an equation is
true in all distributive lattices is harder than deciding if it is true in all lattices. To make
this more precise, we define the term equivalence problem, denoted TEP, for a class K of
lattices. An instance of this problem is given two terms u and v (in the language of lattices)
and asks if the equation u ≈ v holds in every lattice in K. As we indicated earlier, when K

is the class of all lattices, the TEP is polynomial time.1 On the other hand, P. Bloniarz, H.

1It is interesting that the first polynomial time algorithm for this goes back to Thoralf Skolem (1920).
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B. Hunt, and D. Rosenkrantz have shown that the TEP for the class of distributive lattices
is co–NP complete. In fact, they show that the TEP for K = {L} is co–NP complete for
any finite, nontrivial lattice L. (This includes the result on distributive lattices, since the
equational theory of distributive lattices is the same as that of the two element lattice.)
The class of modular lattices lies properly between the class of distributive lattices and
the class of all lattices. Modular lattices are usually defined by an implication, but can be
defined by (the lattice axioms and) the equation

x ∧ (y ∨ (x ∧ z)) = (x ∧ y) ∨ (x ∧ z).

The equational theory of the class of modular lattices was shown to be undecidable by
Freese (1980).

Using more involved lattice theory, we have been able to show that certain varieties
of lattices generated by a finite lattice have AC TRS’s. These results will appear in our
monograph Free Lattices (1993).


