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0. Introduction

In this paper we introduce the notion of a congruence rich variety of algebras, and investigate
which locally finite subvarieties of such a variety are relatively finitely based. We apply the results
obtained to investigate the finite axiomatizability of an interesting variety generated by a particular
five-element directoid.

Roughly speaking, congruence rich varieties are those in which all large finitely generated
algebras have homomorphic images of moderate size. More precisely, a variety V is congruence

rich provided for each positive integer n, there is a positive integer m such that every finitely
generated algebra in V with more than n elements has a homomorphic image with more than n
elements but no more than m elements.

In this paper we restrict our attention to varieties of finite similarity types—that is, the algebras
in the varieties we investigate are always assumed to have only finitely many basic operations.

Among varieties of finite similarity type, congruence rich varieties are not uncommon. Any
finitely generated congruence modular variety is congruence rich, as is any locally finite variety
with a finite upper bound on the cardinalities of its finite subdirectly irreducible algebras. Any
variety of directoids, which were introduced in [9] as algebraic renderings of up-directed sets, is
congruence rich. Below we introduce varieties orderable-by-divisibility. These are also congruence
rich, and the variety of directoids is a special case.

Let A be an algebra. By an HS-reduct of A we mean any algebra in HS(A), i.e., any algebra
which is a homomorphic image of a subalgebra of A. By a proper HS-reduct of A we mean one
that is not isomorphic to A itself. In case A is a finite algebra, its proper HS-reducts are those
with cardinality smaller than the cardinality of A. Let U be a variety. A finite algebra A is said to
be critical for the variety U provided A does not belong to U but all of the proper HS-reducts of
A belong to U . A is called critical provided it is critical for some variety. Evidently, every critical
algebra is subdirectly irreducible. Critical groups have played a role in the theory of varieties of
groups. The understanding of algebras critical for locally finite subvarieties of congruence rich
varieties is a key to our results.

In Section 1 we present several conditions which characterize congruence richness. We provide,
for each locally finite subvariety of a congruence rich variety, a “forbidden HS-reduct” character-
ization in terms of critical algebras. We also present some examples of congruence rich varieties
and some results on how to obtain new congruence rich varieties from those already at hand.

In Section 2 we focus on finite axiomatizability. We give a necessary and sufficient condition
for a locally finite subvariety U of a congruence rich variety V to be finitely based relative to V.
Perhaps the most useful formulation is that only finitely many finite algebras, up to isomorphisn,
in V should be critical for U . Likewise, we characterize those locally finite subvarieties which
are inherently nonfinitely based relative to a congruence rich variety. This characterization also
depends on critical algebras.

Understanding finite axiomatizability of locally finite varieties, or even of varieties generated by
a finite algebra, has proven to be very challenging. Roger Lyndon, in [12] gave the earliest example
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of a finite algebra which generates a variety that is not finitely axiomatizable. Such algebras are
said to be nonfinitely based. On the other hand, all finite groups ([20]), all finite rings ([13] and
[11]), and all finite lattices ([14]) are known to be finitely based. McKenzie in [15], extending
the celebrated result of Kirby Baker [1], proved that every finite algebra with only finitely many
fundamental operations which generates a residually small congruence modular variety must be
finitely based. On the other hand, intriguing examples of finite algebras which are not finitely
based—and which are even inherently nonfinitely based—can be found in [19], [21], [7], [22], [17],
[2], [10], [8] and [24]. Most spectacularly, Ralph McKenzie [16] has recently proven that there
is no algorithm for determining which finite algebras are finitely based (or inherently nonfinitely
based). This theorem of McKenzie’s means that effective conditions which are either necessary or
sufficient for finite axiomatizability have added significance. The same applies to conditions which
are necessary and sufficient in some restricted domain.

In the last part of our paper, we apply our results to analyze the variety generated by a
particular finite directoid. A directoid is an algebra A = 〈A, ·〉 for which there is an upward
directed partial ordering on A such that a ·b is an upper bound of {a, b} and must be the maximum
of {a, b} whenever {a, b} is a chain.
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Figure 1

Figure 1 provides diagrams of the commutative directoids F, N, and H. F is called the fork and
was shown in [9] to be finitely based. H was shown in [6] to be inherently nonfinitely based. It
is the directoid N which we investigate. In Section 3, we prove that N is not finitely based. In
Section 4, we show, on the other hand, that N fails to be inherently nonfinitely based.

For information about algebras and varieties of algebras, [5], [3], and [18] are good references.
In this paper, we follow [18] in terminology and notation most closely. A similarity type is a function
ρ whose domain is a set ∆ of operation symbols F , each of which is associated with a nonnegative
integer called the arity of F and denoted by ρ(F ). Groupoids are denoted multiplicatively. a · b is
often written as ab, and, to avoid the build up of parentheses, ab · c means (ab)c. An equation is
written as (u, v), or sometimes as u = v. S(t) denotes the support of a term t, the set of variables
occurring in t. Semilattices are always join semilattices.

2



1. Congruence rich varieties

Our first theorem will be just a reformulation of the definition, the second will be the “forbidden
HS-reduct” characterization theorem, and then the rest of the section will contain mostly examples.

1.1. Theorem. For a variety V of a finite similarity type, the following three conditions are
equivalent:

(1) V is congruence rich.
(2) For every finite set F of finite V-algebras there is a finite set F ′ of finite V-algebras such that

any finitely generated algebra from V − I(F ) has a homomorphic image in F ′ − I(F ).
(3) For any finite V-algebra A there is a finite set F ′ of finite V-algebras such that every finitely

generated algebra from V −H(A) has a homomorphic image in F ′ −H(A).

Proof. (1) implies (2). Given an F , denote by n the maximum of the cardinalities of the algebras
in F ; take the corresponding integer m > n; it is easy to verify that the set F ′ of the V-algebras of
cardinality at most m serves well for the given set F .

(2) implies (1). Given an n, take F to be the set of isomorphic copies of all the V-algebras
having at most n elements; by (2), there exists another finite set F ′ of finite V-algebras; then one
may take m to be the maximum of the cardinalities of the algebras in F ′ and prove easily that this
number m has the desired property.

The equivalence of (2) with (3) follows from the fact that each finite collection of finite algebras
can be replaced with its direct product to obtain an equally useful single finite algebra.

1.2. Theorem. Let V be a congruence rich variety of a finite similarity type and let U be a locally
finite subvariety of V. For every positive integer n there are, up to isomorphism, only finitely many
n-generated V-algebras critical for U . An algebra A ∈ V belongs to U if and only if no V-algebra
critical for U is an HS-reduct of A.

Proof. Given an n, there are up to isomorphism only finitely many n-generated algebras in U .
So, by the congruence richness of V, there is a finite set F ′ of finite V-algebras such that every
n-generated algebra from V −U has a homomorphic image in F ′−U . (A homomorphic image of an
n-generated algebra is, of course, n-generated itself.) Now it is clear that every V-algebra critical
for U belongs to F ′.

The direct implication in the second part of the theorem is clear. Let A ∈ V − U . Then A

has a finitely generated subalgebra A′ not belonging to U . If A′ is infinite, then by the congruence
richness of V there is a finite homomorphic image A′′ of A, so big that A′′ /∈ U . (Note that
A′′ is k-generated if A′ is, and the variety U , being locally finite, cannot contain arbitrarily large
k-generated algebras.) If A′ is finite, let A′′ = A′. In each case, there exists a finite algebra
A′′ ∈ HS(A) not belonging to U . Easily, an HS-reduct of A′′ is an algebra critical for U .

1.3. Theorem. Every finitely generated, congruence modular variety of a finite similarity type
is congruence rich.

Proof. Let V be such a variety, generated by a finite algebra A. By Theorem 16 of [4], |B| ≤ |A|n

for any algebra B ∈ V whose congruence lattice is of length n. From this it follows that, for any
positive integer n, any finitely generated (which is then finite) algebra from V with more than |A|n

elements has a proper homomorphic image with at least n elements.

1.4. Theorem. Every locally finite variety of a finite similarity type, which contains only finitely
many nonisomorphic finite subdirectly irreducible algebras, is congruence rich.

Proof. Let c be a finite upper bound for cardinalities of finite subdirectly irreducible algebras in
a locally finite variety V of a finite similarity type. Let n be a positive integer, and take m = nc.
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Let D ∈ V be a finitely generated algebra with more than m elements. Of course, D is finite. By
the subdirect representation theorem, D can be represented as a subalgebra of the direct product
A1 × . . . ×Ak, for a family of V-algebras Ai with |Ai| ≤ c; let k be a minimal number for which
such a representation of D exists. Denote by f the canonical homomorphism of A1× . . .×Ak onto
A1 × . . .×Ak−1. The subalgebra f(D) of A1 × . . .×Ak−1 is a proper homomorphic image of D.
For any b ∈ f(D) we have |f−1(b)| ≤ c, and so |f(D)| ≥ |D|/c > n.

1.5. Example. Not every finitely generated variety of algebras of a finite type is congruence rich.
In her thesis [23], Caroline Shallon provided examples of finite algebras which generate varieties
containing arbitrarily large finite simple algebras. The details of some of these examples can be
found in [17] as well. Such varieties cannot be congruence rich.

In particular, one of her examples is the three-element groupoid with multiplication table

0 a b

0 0 0 0
a 0 0 a
b 0 b b

which was found to be inherently nonfinitely based in [19]. It is proved in [23] and [17] that the
variety generated by this groupoid contains simple objects of any cardinality larger or equal 3.

1.6. Example. As it is easy to see, for any congruence rich variety V there is an upper bound
for the finite cardinalities of simple algebras in V. Not every variety with such an upper bound for
the finite cardinalities of simple algebras is congruence rich. For example, consider the variety of
groupoids satisfying

(xy · z)u = xy · z = u(xy · z).

This variety has no simple groupoids with more than two elements. On the other hand, the variety
is not congruence rich. For every positive integer n define a groupoid Gn with the underlying set
{0, x0, . . . , xn} as follows: x0xi = xi+1 for 0 ≤ i < n; x0xn = x1; xy = 0 in all other cases. Clearly,
the groupoid Gn belongs to the variety, and if n is a prime number, it has only three congruences:
the two trivial ones, and the congruence {0, x1, . . . , xn}

2 ∪ idGn
.

The authors were not able to provide an example of a finitely generated variety with an upper
bound for the cardinalities of finite simple algebras, which is not congruence rich.

An element a of an algebra A is said to divide an element b ∈ A if b = f(a) for a unary
polynomial f not involving the nullary operations of A. The divisibility relation is a quasiordering
on any algebra. An algebra is called orderable-by-divisibility if its divisibility relation is a
partial ordering. Equivalently, an algebra A is orderable-by-divisibility if and only if there exists
a partial ordering ≤ on A such that ai ≤ F (a1, . . . , an) for any operation symbol F of any arity
n ≥ 1 in the similarity type, any i ∈ {1, . . . , n} and any a1, . . . , an ∈ A. With respect to ≤, A is
then an updirected set, provided only that the similarity type contains at least one at least binary
symbol.

It is easy to find an infinite collection of quasiidentities, characterizing the algebras orderable-
by-divisibility of a specified similarity type. For a given similarity type, the class of the algebras
orderable-by-divisibility is a quasivariety. It is not, however, a variety, if the type contains operation
symbols of positive arity: the algebra of nonnegative integers, with the operations defined by
F (a1, . . . , an) = a1+. . .+an+1, is orderable-by-divisibility, while its factor through the congruence
modulo 2 is not.

A variety is called orderable-by-divisibility if all its algebras are.
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1.7. Lemma. Let A be a finitely generated algebra of a finite type, which is orderable-by-
divisibility, and let ≤ be any partial ordering of A, extending the divisibility relation. Then for any
positive integer n ≤ |A|, the algebra A has an order ideal (with respect to ≤) of cardinality n.

Proof. Let X be a finite generating subset of A. Clearly, at least one of the elements of X must
be a minimal element of A, so A has an order ideal of cardinality 1. Let I be a finite order ideal
such that I 6= A. The finite set

(X ∪ {F (a1, . . . , aρ(F )) : F ∈ ∆, a1, . . . , aρ(F ) ∈ I})− I

(where ρ(F ) denotes the arity of F ) is nonempty, because it cannot be a subalgebra containing X.
Take a minimal element a in this finite set. It is not difficult to see that I ∪ {a} is an order ideal
of cardinality |I|+ 1.

1.8. Theorem. In any finite similarity type, every variety V orderable-by-divisibility is congru-
ence rich.

Proof. Let A ∈ V be a finitely generated algebra, and let ≤ be any partial ordering of A extending
the divisibility relation. If F is an order filter of A, then it is clear that F 2 ∪ idA is a congruence
of A. Since the complement of an order ideal is an order filter, it follows from Lemma 1.7 that A
has a homomorphic image of any finite cardinality ≤ |A|.

Let ρ be a finite similarity type such that its domain ∆ of operation symbols contains at least
one at least binary symbol. Then we can take a pair F, S consisting of a symbol F ∈ ∆ of arity
n ≥ 2 and a nonempty proper subset S of {1, . . . , n}. In the following, let F (a : b) stand for
F (a1, . . . , an) where ai = a for i ∈ S and ai = b for i ∈ {1, . . . , n} − S.

By an (F, S)-directed algebra of type ρ we mean an algebra A for which there exists a partial
ordering ≤ on A such that ai ≤ G(a1, . . . , aρ(G)) for any G ∈ ∆, any i ∈ {1, . . . , ρ(G)} and any
a1, . . . , aρ(G) ∈ A, and such that F (a : b) is the larger of a and b whenever a, b are two comparable
elements of A.

1.9. Theorem. The class of (F, S)-directed algebras of type ρ is a finitely based, congruence rich
variety. It can be described by the following finite set of equations:

(1) F (x, . . . , x) = x,
(2) F (F (x : y) : x) = F (x : y),
(3) F (x : F (F (x : y) : z)) = F (F (x : y) : z),
(4) F (xi : G(x1, . . . , xρ(G))) = G(x1, . . . , xρ(G)) for any G ∈ ∆ and any i ∈ {1, . . . , ρ(G)}.

Proof. Obviously, every (F, S)-directed algebra satisfies all these equations. Let A be an algebra
satisfying the four groups of equations. Define a binary relation ≤ on A by a ≤ b if and only if
F (a : b) = b. Due to (1), this relation is reflexive. Due to (2), we also have a ≤ b if and only if
F (b : a) = b, and this implies that the relation is antisymmetric. The equation (3) is a reformulation
of transitivity, and (4) says that ai ≤ G(a1, . . . , aρ(G)). By Theorem 1.8, the variety is congruence
rich.

The variety of (F, S′)-algebras, where S′ is the complement of S in {1, . . . , n}, clearly coincides
with the variety of (F, S)-algebras.

If ρ is the type of groupoids, there is only one choice for the symbol F , and the two choices for
S give the same result. In that case, (F, S)-directed algebras are called directoids, according to [9].
The above general result yields an equational base consisting of five equations for the variety of
directoids; one of these five equations is a consequence of the other ones.
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1.10. Example. Consider the commutative directoid D with the underlying set Z×{0, 1}, with
the order relation defined by

(i, 0) ≤ (j, 0) iff (i, 1) ≤ (j, 1) iff i ≤ j,

(i, 0) ≤ (j, 1) iff i+ 2 ≤ j,

(i, 1) ≤ (j, 0) iff i+ 1 ≤ j

and multiplication determined by

(i, 0) · (i, 1) = (i+ 2, 0),

(i, 0) · (i+ 1, 1) = (i+ 3, 1).

It can be easily verified that the one-element directoid is the only finite homomorphic image of D.
Of course, D is then not finitely generated. Consequently, the variety of directoids does not satisfy
a stronger congruence richness condition, namely, one in which the existence of a homomorphic
image of cardinality in a specified finite interval of positive integers would be required for all, not
only finitely generated algebras.

1.11. Example. Let us use Theorem 1.9 to show that there are uncountably many congruence
rich varieties. According to that theorem, the variety of semilattices (and, more generally, the
variety of directoids) with an arbitrary finite number of unary operators F satisfying x ≤ Fx is a
congruence rich variety. Our algebras will be semilattices with two operators F and G, satisfying
x ≤ Fx and x ≤ Gx. For any subset S of ω let AS be the chain {o} ∪ ω ∪ {∞1,∞2} (with
o < i < ∞1 < ∞2 for any i ∈ ω), with

Fo = 0, F∞1 = F∞2 = ∞2,

F i = ∞2 for i ∈ S,

Fi = ∞1 for i /∈ S,

Go = 0, Gi = i+ 1, G∞1 = G∞2 = ∞2.

Then it is easy to see that an equation

FGiFx ≥ y

is satisfied in AS if and only if i ∈ S. Consequently, there are uncountably many varieties of
semilattices with two such operators, all of them congruence rich.

It seems very likely that there are uncountably many varieties of directoids, but we have no
proof for this.

Let V be a variety of ρ-algebras, where ρ is a finite type. For any ρ-algebra A, denote by A+

the set of the elements of A that are a result of an operation, i.e., A+ is the union of the ranges
of all (including nullary) fundamental operations of A. Clearly, A+ is a subalgebra of A (or the
empty set, but only if ρ is empty). Denote by V+ the class of the ρ-algebras A such that A+ ∈ V.
It is easy to see that V+ is a variety, and a finitely based variety whenever V is.

By an absorption equation we shall mean an equation (x, t) where x is a variable and t is a
term with S(t) = {x}, such that t 6= x. By an absorption term for a variety V we shall mean a
term t such that, with respect to a variable x, the equation (x, t) is an absorption equation satisfied
in V . Given a variety V of a finite type ρ and an absorption term t = t(x) for V , denote by ǫt(V)
the class of the algebras from V+ satisfying, for any F ∈ ∆ and any i ∈ {1, . . . , ρ(F )}, the equation

F (x1, . . . , xi−1, t(xi), xi+1, . . . , xρ(F )) = F (t(x1), . . . , t(xρ(F ))).
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Clearly, ǫt(V) is a variety, and a finitely based one whenever V is. We have V ⊂ ǫt(V) ⊆ V+; the
first inclusion is proper, because ǫt(V) does not satisfy (x, t(x)).

1.12. Lemma. Let V be a congruence rich variety of a finite type. Then ǫt(V) is also congruence
rich.

Proof. Let n be a positive integer. Since V is congruence rich, there exists an m > n such that
every finitely generated algebra from V with more than n elements has a homomorphic image with
more than n, but at most m elements. Put m′ = m+ n, and let A be a finitely generated algebra
from ǫt(V) with more than n elements. If X is a finite set of generators of A, then one can easily
see that the subalgebra A+ is generated by

(X ∩A+) ∪ {t(a) : a ∈ X} ∪ {F (a1, . . . , aρ(F )) : F ∈ ∆, a1, . . . , aρ(F ) ∈ X}.

So, A+ is finitely generated.
We need to prove that A has a homomorphic image with more than n, but at most m elements.

If |A−A+| > n, take a subset K of cardinality n; the relation r = (A−K)2 ∪ idA is a congruence
and the factor A/r is of cardinality n+ 1.

So, we can suppose that |A − A+| ≤ n. If |A+| ≤ m, then |A| ≤ n + m = m′ and we are
through. So, we can also suppose that |A+| > m. Since A+ ∈ V is finitely generated, there is a
congruence θ of A+ with n < |A+/θ| ≤ m. It is easy to see that θ ∪ idA is a congruence of A; the
corresponding factor is of cardinality |A+/θ|+ |A− A+|, and so of cardinality between n and m′.

1.13. Theorem. Let V be a variety of a finite similarity type, satisfying an absorption equation.
There exists a least variety V ′ containing V and satisfying no absorption equation. This variety V ′

covers V and is finitely based whenever V is. Also, V ′ is congruence rich whenever V is.

Proof. Take an absorption term t for V , and let ǫ′t(V) be the variety of the algebras from V+

satisfying the equation
F (x1, . . . , xρ(F )) = F (t(x1), . . . , t(xρ(F )))

for any F ∈ ∆ and any i ∈ {1, . . . , ρ(F )}. Clearly, this variety is finitely based if V is, and because
V ⊂ ǫ′t(V) ⊆ ǫt(V), we can use Lemma 1.12 to see that the variety is congruence rich if V is.1 One
can easily prove by induction on the length of a term p that if S(p) ⊆ {x1, . . . , xn} and p is not a
variable, then the variety ǫ′t(V) satisfies

p(x1, . . . , xn) = p(t(x1), . . . , t(xn)).

From this it follows that t(a) = u(a) for all a ∈ A, whenever u is an absorptive term for V.
Consequently, the definition of ǫ′t(V) is independent of the choice of the absorption term t; the
variety can be denoted by V ′. Also, it is now clear that every equation (u, v) of V , such that u and
v are both non-variables, is satisfied in V ′, so that V ′ is the least variety containing V and satisfying
no absorption equation. Clearly, V is covered by V ′.

1 Actually, a straightforward proof of the congruence richness for V ′ could be given; we have
based this proof on Lemma 1.12 just from the reason that the lemma provides us with slightly more
examples of congruence rich varieties.
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2. Finite axiomatizability of congruence rich varieties

The aim of this section is to prove that in congruence rich varieties, it is useful to know the
critical algebras for a locally finite subvariety if we need to decide whether the subvariety is finitely
based or, perhaps, inherently nonfinitely based. In the later sections this technique will be exploited
to decide these questions for one particular variety of directoids.

Recall that a subvariety U of a variety V is said to be finitely based relative to V provided
there is a finite set Σ of equations such that an algebra A from V belongs to U if and only if Σ is
true in A. If V is finitely based, then U is finitely based relative to V if and only if U is finitely
based.

2.1. Theorem. Let V be a congruence rich variety of a finite similarity type. For a locally finite
subvariety U of V, the following five conditions are equivalent:

(1) U is finitely based relative to V.
(2) There exists a positive integer k such that the equational theory of U has a basis, relative to V,

consisting entirely of identities in at most k variables.
(3) There exists a positive integer k such that a V-algebra belongs to U if and only if all of its

k-generated subalgebras belong to U .
(4) There is a finite collection A1, . . . ,Ar of finite algebras in V such that a V-algebra B belongs

to U if and only if none of the algebras A1, . . . ,Ar is a HS-reduct of B.
(5) There are, up to isomorphism, only finitely many algebras in V critical for the variety U .

Proof. The implications (1) ⇒ (2) ⇒ (3) and (4) ⇒ (5) are trivial. Let us prove that (3) implies
(4). Let k be a number with the property given in (3). Denote by F the set of (isomorphic copies
of) the k-generated algebras in U . (By a k-generated algebra we mean an algebra having a set of
at most k generators.) Then F is a finite set of finite algebras in the congruence rich variety V,
so that there is a finite set F ′ of finite algebras in V such that every finitely generated algebra in
V − I(F ) has a homomorphic image in F ′ − I(F ). Denote the algebras in F ′ −U by A1, . . . ,Ar. If
B ∈ U , then, because the algebras Ai do not belong to U , none of them is an HS-reduct of B. If
B ∈ V − U , then B has a k-generated subalgebra B′ not belonging to U , B′ belongs to V − I(F ),
and B′ has a homomorphic image in F ′ − I(F ). The homomorphic image is also k-generated, so it
does not belong to U by the definition of F , and consequently is isomorphic to one of the algebras
A1, . . . ,Ar; that algebra is then an HS-reduct of B.

(5) implies (4) by Theorem 1.2, so we need only to prove that (4) implies (1). Let A1, . . . ,Ar

be a finite collection of finite V-algebras with the property given in (4). For each i = 1, . . . , r there
is an identity (ui, vi) of U not satisfied in Ai. This gives a finite collection of identities, which serves
together with the identities of V as a basis for U : if an algebra B ∈ V satisfies all these identities,
then the same is true for any algebra from HS(B), so that the algebras A1, . . . ,Ar do not belong
to HS(B) and, consequently, B ∈ U .

A locally finite subvariety U of a variety V is said to be inherently nonfinitely based

relative to V if there is no locally finite variety U ′ which is finitely based relative to V with
U ⊆ U ′ ⊆ V . If, moreover, U = V (A) for an algebra A, we also say that the algebra A is
inherently nonfinitely based relative to V.

Note that if U is inherently nonfinitely based relative to V , then U is inherently nonfinitely
based in the absolute sense. In the event that V is finitely based, the converse also holds—namely,
every locally finite subvariety of V which is inherently nonfinitely based is also inherently nonfinitely
based relative to V .

For a variety U and a positive integer n, denote by U (n) the variety determined by the at
most n-variable identities of U . An algebra A belongs o U (n) if and only if all the n-generated
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subalgebras of A belong to U . Clearly, U is the intersection of the varietal chain U (1) ⊇ U (2) ⊇ . . ..
By a result of G. Birkhoff, if U is a locally finite variety of a finite similarity type, then U (n) is
finitely based for any n. From this it follows that for any variety V of a finite similarity type and
any locally finite subvariety U of V , the following three conditions are equivalent:

(1) U is inherently nonfinitely based relative to V.

(2) U (n) ∩ V is not locally finite for any positive integer n.
(3) For any positive integer n there exists an infinite but finitely generated algebra A ∈ V such

that every n-generated subalgebra of A belongs to U .

The following is a characterization theorem for inherently nonfinitely based subvarieties of a
congruence rich variety. It will be more convenient to formulate the equivalent conditions in their
negative forms.

2.2. Theorem. Let V be a congruence rich variety of a finite similarity type. The following three
conditions are equivalent for a locally finite subvariety U of V:

(1) U is not inherently nonfinitely based relative to V.
(2) There is a finite set F of finite V-algebras such that F ∩U is empty and HS(A)∩F is nonempty

for every infinite but finitely generated algebra A ∈ V.
(3) There is a finite set F of V-algebras critical for U such that every infinite but finitely generated

algebra from V has an HS-reduct in F .

Proof. Let U be not inherently nonfinitely based relative to V , so that U (n) ∩ V is locally finite
for some n. Denote by F0 the finite collection of isomorphic copies of the n-generated algebras
from U . By the congruence richness of V, there is a finite set F ′ of finite V-algebras such that every
n-generated algebra from V − U has a homomorphic image in F ′ − I(F0), and hence in F ′ − U . If

A ∈ V is infinite but finitely generated, then A /∈ U (n), so that some n-generated subalgebra A′ of
A does not belong to U . Consequently, a homomorphic image A′′ of A′ belongs to F ′ − U . The
choice of F = F ′ − U completes the proof of (1) ⇒ (2).

Since (2) ⇒ (3) is evident, it remains to show that (3) implies (1). Take n so large that F ∩U (n)

is empty; the existence of such an n follows from the finiteness of F and the fact that U is the
intersection of U (1) ⊇ U (2) ⊇ . . .. If there is an infinite but finitely generated algebra A ∈ U (n) ∩V,
then A has an HS-reduct in F , but this reduct belongs to U (n), a contradiction. Hence there is no
such algebra A, which means that U (n) ∩V is locally finite and then U is not inherently nonfinitely
based relative to V .

3. The variety generated by N

Let N be the commutative directoid with the underlying set {0, a, b, c, 1}, defined by 0 < a <
c < 1, 0 < b < c and ab = 1. A diagram of N is displayed in Figure 2.

The equational theory of N has been described in [9] in the following way. An equation u ≤ v
belongs to the theory if and only if S(u) ⊆ S(v) and for any subterm pq ⊆ u and any pair of
nonempty subsets P ⊆ S(p)− S(q), Q ⊆ S(q)− S(p) there is a term p′q′ ⊆∗ v (which means that
either p′q′ ⊆ v or q′p′ ⊆ v) with S(p′) ⊆ S(pq)−Q, S(q′) ⊆ S(pq)−P and S(p′)∩P 6= ∅ 6= S(q′)∩Q.

The subgroupoid generated by a subset S in a given groupoid will be denoted by [S].

3.1. Lemma. Let D be a commutative directoid. Then D ∈ V (N) if and only if for any elements
a, b, c ∈ D with a < c, b < c, ab 6≤ c and any subsets K ⊆ ↓a, L ⊆ ↓b with a ∈ [K], b ∈ [L] there
are nonempty subsets U ⊆ K−L, V ⊆ L−K such that ef 6≤ c for any elements e ∈ [(K ∪L)−V ],
f ∈ [(K ∪ L)− U ] such that e is above an element of U and f is above an element of V .
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a b

c

1 = ab

Figure 2: N

Proof. Let D ∈ V (N) and let a, b, c,K, L be as above. Take a one-to-one mapping i 7→ xi of D
into X and let α be an interpretation in D with α(xi) = i for all i ∈ D. There is a finite set S
of terms such that whenever k ∈ I ⊆ D and k ≤ j ∈ [I], then j = α(t) for a term t ∈ S with
xk ∈ S(t) ⊆ {xi : i ∈ I}. There is a term p with S(p) = {xi : i ∈ K} and α(p) = a. Similarly, there
is a term q with S(q) = {xi : i ∈ L} and α(q) = b. Put

v = xc · p · q · (t1u1) · . . . · (trur)

where (t1, u1), . . . , (tr, ur) are all the pairs (t, u) ∈ S2 with α(tu) ≤ c. Clearly α(v) = c, so
that the equation pq ≤ v is not satisfied in D and thus does not belong to the equational theory
of N. Clearly, S(pq) ⊆ S(v). Hence, by the description of the equational theory of N, there
are two nonempty subsets P ⊆ S(p) − S(q), Q ⊆ S(q) − S(p) such that p′q′ 6⊆ v whenever
S(p′) ⊆ S(pq) − Q, S(q′) ⊆ S(pq) − P and S(p′) ∩ P 6= ∅ 6= S(q′) ∩ Q. Put U = α(P ) and
V = α(Q), so that U is a nonempty subset of K − L and V is a nonempty subset of L −K. Let
e ∈ [(K ∪ L) − V ], f ∈ [(K ∪ L) − U ], e ≥ e0 ∈ U and f ≥ f0 ∈ V . There are terms p′, q′ ∈ S
with xe0 ∈ S(p′) ⊆ {xi : i ∈ (K ∪ L) − V } = S(pq) − Q, xf0 ∈ S(q′) ⊆ S(pq) − P , α(p′) = e and
α(q′) = f . Since xe0 ∈ S(p′), we have S(p) ∩ P 6= ∅. Similarly, S(q′) ∩ Q 6= ∅. If ef ≤ c then, by
the construction of v, p′q′ ⊆ v, a contradiction. Hence ef 6≤ c.

Conversely, assume that for any a, b, c,K, L there are U, V as above. We need to prove that
any equation u ≤ v from the equational theory of N is satisfied in D. Suppose that u ≤ v is not
satisfied, so that α(u) 6≤ α(v) for some interpretation α in D. Let u′ be a minimal subterm of u
with α(u′) 6≤ α(v). Of course, the equation u′ ≤ v also belongs to the equational theory of N. Since
S(u) ⊆ S(v), u′ /∈ X. Hence u′ = pq for some terms p, q. Put a = α(p), b = α(q) and c = α(v).
We have ab 6≤ c. By the minimality of u′, a ≤ c and b ≤ c. Of course, then a < c and b < c. Put
K = {α(x) : x ∈ S(p)} and L = {α(x) : x ∈ S(q)}, so that K ⊆ ↓a, L ⊆ ↓b, a ∈ [K] and b ∈ [L].
By the assumption, there are nonempty subsets U ⊆ K − L and V ⊆ L−K such that ef 6≤ c for
any elements e ∈ [(K ∪ L)− V ], f ∈ [(K ∪ L)− U ] such that e is above an element of U and f is
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above an element of V . Put P = {x ∈ S(p) : α(x) ∈ U} and Q = {x ∈ S(q) : α(x) ∈ V }. Then
P is a nonempty subset of S(p) − S(q) and Q is a nonempty subset of S(q) − S(p). In order to
finish the proof, we need to show that u ≤ v does not belong to the equational theory of N, and for
this it is sufficient to prove that if p′, q′ are terms with S(p′) ⊆ S(pq)−Q, S(q′) ⊆ S(pq)− P and
S(p′)∩P 6= ∅ 6= S(q′)∩Q, then α(p′q′) 6≤ c. Put e = α(p′) and f = α(q′). Then e ∈ [(K ∪L)−V ],
f ∈ [(K ∪ L)− U ], e is above an element of U and f is above an element of V . Hence ef 6≤ c, i.e.,
α(p′q′) 6≤ c.

1

a

c

y1

y2

y3

y4

x x1 x2 x3 x4

b

Figure 3: D4

For every integer n ≥ 2 we define a commutative directoid Dn with the underlying set

Dn = {x, x1, . . . , xn, y1, . . . , yn, a, b, c, 1},

the order relation given as the transitive and reflexive closure of the relations

x < y1 < y2 < . . . < yn < c < 1, x < a < c, xi < yi, xi < b < c

and multiplication defined by

xx1 = x1x = y1,

yixi+1 = xi+1yi = yi+1,

ayn = yna = c,

uv = u ∨ v whenever u, v are comparable,

uv = 1 otherwise.

11



3.2. Theorem. For any n ≥ 2, Dn is a directoid critical for the variety V (N). Consequently,
N is not finitely based.

Proof. One can easily verify that whenever v covers u in Dn, then any congruence relating u
with v relates also c with 1. Consequently, Dn is subdirectly irreducible, with the least nontrivial
congruence θ = {c, 1}2 ∪ idDn

.
Consider the pentuple a, b, c,K = {a, x}, L = {b, x1, . . . , xn}, and take any pair of nonempty

subsets U ⊆ K−L and V ⊆ L−K. If Dn ∈ V (N), then, according to Lemma 3.1, we have ef = 1
for any elements e ∈ [(K ∪ L) − V ] and f ∈ [(K ∪ L) − U ] such that e is above an element of U
and f is above an element of V . However, if x /∈ U , then ef 6= 1 for e = a and f = xx1 . . . xn = yn;
if x ∈ U and xi ∈ L for some i, take the least index i with this property and take e = xx1 . . . xi−1

and f = xi; and, finally, if U = {a, x} and L = {b}, take e = a(xx1 . . . xn) = yn and f = b. It
follows that Dn does not belong to V (N).

It remains to show that each proper HS-reduct D of Dn belongs to V (N). We need only to
consider the case when D is either Dn/θ or the subdirectoid obtained from Dn by deleting one of
the elements x, x1, . . . , xn, a, b; any other proper reduct is a reduct of one of these.

By Lemma 3.1, we must find subsets U, V to any pentuple a′, b′, c′,K, L such that a′ < c′,
b′ < c′, a′b′ 6≤ c′, K ⊆ ↓a′, L ⊆ ↓b′, a′ ∈ [K] and b′ ∈ [L]. Clearly, only the pentuples have to be
considered for which a′b′ = 1.

If a′ = x and b′ = xi where i > 1, take U = K and V = L.
If a′ = xi and b′ = xj where i 6= j, take U = K and V = L.
If a′ = yi and b′ = xj where j > i+ 1, take U = K and V = L.
If a′ = x and b′ = b, take U = K and V = {b}.
If a′ = yi and b′ = b, take U = K ∩ {x, y1, . . . , yi} and V = {b}.
If a′ = a and b′ = xi, take U = {a} and V = {xi}.
If a′ = a and b′ = yi where i 6= n, take U = {a} and V = L− {x}.
Finally, consider the case when a′ = a and b′ = b. In that case, D can only be a subdirectoid

obtained from Dn by deleting one of the elements x, x1, . . . , xn. We have a ∈ K ⊆ {a, x} and b ∈
L ⊆ {b, x1, . . . , xn}. Take U = K and V = {b}, and suppose that there are elements e ∈ [(K∪L)−V ]
and f ∈ [(K ∪L)−U ] such that e is above an element of U , f is above an element of V and ef 6= 1.
Clearly, f ∈ {b, 1} and it is sufficient to consider the case f = b. We have e ∈ [K ∪ {x1, . . . , xn}]
and e ≥ x. But then eb 6= 1 is possible only if e = c. This yields c ∈ [a, x, x1, . . . , xn], which can be
true only if all of the elements x, x1, . . . , xn belong to D; we get a contradiction.

Remark. If we extended the definition of Dn to include the case n = 1, then D1 would not be a
directoid critical for V (N).

We are also going to show that the variety V (N) is not inherently nonfinitely based. Before
being able to do it, let us first investigate one particular variety of commutative directoids.
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4. The variety W

We denote by W the variety of commutative directoids satisfying the following two equations:

(1) xy · z ≤ xy · xz
(2) xy · z ≤ ((xy · u) · xz) · yz

Also, W can be described as the class of commutative directoids satisfying the quasiequations

(1′) x ≤ y → yz ≤ y · xz
(2′) (xy ≤ u & xz ≤ u & yz ≤ u) → xy · z ≤ u

Indeed, it is easy to see that (1) is equivalent to (1′) and (2) is equivalent to (2′).

4.1. Lemma. Let D ∈ W and x, y, z ∈ D be three elements such that x ≤ z and y ≤ z. Then
z · xy = z ∨ xy.

Proof. Certainly, the element z · xy is above both z and xy. Let c ∈ D be such that c ≥ z and
c ≥ xy. Since the product of any two of the three elements x, y, z is ≤ c, by (2′) we get z · xy ≤ c.
This means that z · xy is the join of z and xy.

4.2. Lemma. Let D be a commutative directoid satisfying (1) and

(x ≤ z & y ≤ z) → z · xy = z ∨ xy·

Then ap = a ∨ p for any elements a, p ∈ D such that p ∈ [↓a]. Also,

xy · xz = xy · (y · xz) = xy ∨ y · xz

for any x, y, z ∈ D.

Proof. By induction on the length of a term t, we shall prove that whenever a ∈ D and α is an
interpretation of the variables of t in ↓a, then a · α(t) = a ∨ α(t). If t is a variable, then clearly
a · α(t) = a = a ∨ α(t). If t is a product of two variables, we can use Lemma 4.1. The last case is
when t can be expressed as t = t1t2, where t1 is not a variable. Take a variable y not contained in
t2, so that the term yt2 is shorter than t. Let p1 = α(t1) and p2 = α(t2). By induction, ap1 = a∨p1
and ap2 = a∨ p2. Now take a′ = ap1 and define an interpretation β by β(y) = p1 and β(x) = α(x)
for all variables x contained in t2. By induction we have a′ · β(yt2) = a′ ∨ β(yt2), i.e.,

ap1 · p1p2 = ap1 ∨ p1p2 = a ∨ p1 ∨ p1p2 = a ∨ p1p2

(yes, it works). By (1) we have p1p2 · a ≤ p1a · p1p2 = a ∨ p1p2, i.e., a · α(t) = a ∨ α(t).
In particular, for any elements x, y, z ∈ D we have xy · (y · xz) = xy ∨ y · xz. Both xy and

y · xz are below xy · xz, the first element evidently and the second by (1). So, their join, the
element xy · (y · xz), is also below xy · xz. The converse inequality can be obtained from (1) by the
substitution x → y, y → xy, z → xz.

4.3. Lemma. Let D ∈ W. Then ap = a ∨ p for any elements a, p ∈ D such that p ∈ [↓a].

Proof. It is a consequence of Lemmas 4.1 and 4.2.

Three commutative directoids E1, E2 and E3, each of them (as it is mechanical to verify using
Lemma 3.1) critical for the variety V (N), will play a special role in the next discussion. They are
defined as follows.

E1: E1 = {a, b, c, d, 1}; d < a < c < 1, b < c; bd = c.

13



d

a

1 = ab

c = bd

b

d

a

c

1 = ab

b = de

e a b c

bcacab

g

1 = . . .

E1 E2 E3

Figure 4

E2: E1 = {a, b, c, d, e, 1}; d < a < c < 1, e < b < c, e < a, d < b; de = b.
E3: E3 = {a, b, c, d, e, f, g, 1}; a < d < g < 1, a < e < g, b < d, b < f < g, c < e, c < f ; ab = d,

ac = e, bc = f .

In each definition, the order relation should be the reflexive and transitive closure of the given
relations, and the product of any two incomparable elements x, y, if neither xy nor yx has been
specified, equals 1.

4.4. Theorem. A commutative directoid D belongs to W if and only if neither E1 nor E2 nor
E3 is a HS-reduct of D.

Proof. With x = d, y = a and z = b we see that (1′) is not satisfied in E1. With x = d, y = e,
z = a and u = c we see that (2′) is not satisfied in E2. With x = a, y = b, z = c and u = g we
see that (2′) is not satisfied in E3. Consequently, the three directoids do not belong to W and if
D ∈ W, then neither E1 nor E2 nor E3 can be an HS-reduct of D.

Let D be a commutative directoid such that neither E1 nor E2 nor E3 is an HS-reduct of D.
In order to verify (1′) for D, let x, y, z be three elements with x ≤ y. Denote by F the set of

the elements 6≤ y · xz, and by θ(F ) the congruence F 2 ∪ idD. If yz 6≤ y · xz, then the set

G = {x, y, z, xz, y · xz, 1D/θ(F )}

is a subgroupoid of D/θ(F ), the relation R = {xz, y ·xz}2∪ idG is a congruence of G and the factor
G/R is isomorphic to E1, a contradiction.

Next we shall prove that D satisfies (x ≤ z & y ≤ z) → z · xy = z ∨ xy. Suppose, on the
contrary, that there is an element u with z ≤ u and xy ≤ u, such that z · xy 6≤ u. Let F be the set
of the elements 6≤ u. Then the set

G = {x, y, z, xy, u, 1D/θ(F )}

is a subgroupoid of D/θ(F ) isomorphic to E2, a contradiction.
It follows from Lemma 4.2 that ap = a ∨ p for any elements a, p ∈ D such that p ∈ [↓a]. Also,

xy · xz = xy · (y · xz) = xy ∨ y · xz for any x, y, z ∈ D.
It remains to prove that D satisfies (2′). Let xy ≤ u, xz ≤ u, yz ≤ u and suppose that

xy · z 6≤ u. Denote by F the set of the elements 6≤ u, so that xy · z ∈ F . By (1), xy · xz ∈ F and
xy · yz ∈ F . Since xy · xz = xy · (y · xz) = xy ∨ y · xz, we have y · xz ∈ F . Similarly, x · yz ∈ F .
Since xz · yz = xz · (x · yz) ≥ x · yz, we have xz · yz ∈ F . But then the set

G = {x, y, z, xy, xz, yz, u, 1D/θ(F )}
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is a subgroupoid of D/θ(F ) isomorphic to E3, a contradiction.

4.5. Lemma. Let D ∈ W, u ∈ D and K be a finite subset of D such that xy ≤ u for any
x, y ∈ K. Then every element of [K] is below u.

Proof. Let K = {x1, . . . , xk}. For any term t in the variables x1, . . . , xk we shall prove, by
induction on the length of t, that t ≤ u. If t is of length ≤ 2, this follows from the assumption. Let
t = t1t2 · t3. By induction, t1t2 ≤ u, t1t3 ≤ u and t2t3 ≤ u. By (2′), we get t1t2 · t3 ≤ u.

4.6. Lemma. Every finitely generated directoid from W has a largest element.

Proof. Let K be a finite generating subset of a directoid D ∈ W. Certainly, there is an element
e ∈ D such that xy ≤ e for all x, y ∈ K (e.g., the product of all the finitely many elements xy ∈ X2,
taken in any order). By Lemma 4.5, every element of D is ≤ e.

4.7. Lemma. Suppose that there is a finitely generated, infinite directoid D in W. Then D

contains infinitely many elements a such that ↓a is finite.

Proof. This follows from Lemma 1.7.

4.8. Theorem. The variety W is locally finite.

Proof. Suppose that W is not locally finite and take n to be the least positive integer for which
there exists an infinite, n-generated directoid D in W.

We may assume that D satisfies the minimal condition, i.e., every nonempty subset of D has
a minimal element. Because if it does not, then we can replace it with its factor D/θ(F ), where
F is the order filter of the elements a ∈ D such that ↓a is infinite; the factor is, of course, also
n-generated and belongs to W; by Lemma 4.7, the factor is infinite; and by definition, any principal
order ideal in the factor except for the one generated by the largest element is finite, so that the
factor satisfies the minimal condition.

Denote by X the set of n generators of D, and by S the set of the elements a ∈ D such that
a ≥ x for all x ∈ X. By Lemma 4.3, ap = a ∨ p for any a ∈ S and any p ∈ D. In particular, S is a
subsemilattice of D.

By the minimality of n, [X −{x}] is finite for any x ∈ X. The complement D−S is contained
in the union of these finitely many finite sets. Consequently, D − S is finite.

Denote by Y the set of the elements of S that are join irreducible in the semilattice S. Since S
satisfies the minimal condition, S is generated by Y . But S is infinite and the variety of semilattices
is locally finite, so Y is infinite.

Let a ∈ Y − X. Then a = bc for some b, c < a and, since a is join irreducible in S, at least
one of the elements b, c belongs to D − S. Because (D − S)(D − S) is finite, it follows that almost
all elements a ∈ Y can be expressed as a = bc where b ∈ S, b < a and c ∈ D − S. (By “almost
all” we mean that the complement in Y is finite.) Let a = bc be such a representation of a. Since
bp = b ∨ p for any element p, we have a = b ∨ p for any p with c ≤ p < a; but then p ∈ D − S for
any p with c ≤ p < a, since a is join irreducible in S; among such elements p there is a maximal
one, and we see that almost all elements a ∈ Y can be expressed as a = bc where b ∈ S, b < a,
c ∈ D − S and c is covered by a in D.

Consider now a situation when a = bc, a ∈ Y , b ∈ S, b < a, c ∈ D − S and c is covered by a.
With a and c fixed, we can assume that b is a minimal element with this property. Then we claim
that b is a minimal element of S. Suppose, on the contrary, that there is an element b′ ∈ S with
b′ < b. We have b′c = b′ ∨ c ≤ a; since c is covered by a and clearly b′c 6= c, we get b′c = a, a
contradiction with the minimal property of b.
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We see that almost all elements a ∈ Y can be expressed as a = bc where b is a minimal element
of S and c ∈ D−S. Since D−S is finite, it follows that the set of minimal elements of S is infinite.

But every minimal element of S which does not belong to X can be expressed as b = b1b2 with
b1 < b and b2 < b, and necessarily b1 ∈ D− S and b2 ∈ D− S. Since X ∪ (D− S)(D− S) is finite,
there can be only finitely many minimal elements in S.

This contradiction proves that W is locally finite.

4.9. Theorem. The directoid N belongs to the variety W. Consequently, N is not inherently
nonfinitely based.

Proof. It can be mechanically verified that N satisfies both equations (1) and (2). Since W is
locally finite by Theorem 4.8 and clearly finitely based, N is not inherently nonfinitely based by
definition.
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