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By an equational theory we mean a set of equations from some fixed language which is closed
with respect to logical consequences. We regard equations as universal sentences whose quantifier-
free parts are equations between terms. In our notation, we suppress the universal quantifiers. Once
a language has been fixed, the collection of all equational theories for that language is a lattice
ordered by set inclusion. The meet in this lattice is simply intersection; the join of a collection of
equational theories is the equational theory axiomatized by the union of the collection. In this paper
we prove, for languages with only finitely many fundamental operation symbols, that any nontrivial
finitely axiomatizable equational theory covers some other finitely axiomatizable equational theory.
In fact, our result is a little more general.

There is an extensive literature concerning lattices of equational theories. These lattices are
always algebraic. Compact elements of these lattices are the finitely axiomatizable equational
theories. We also call them finitely based. The largest element in the lattice is compact; it is
the equational theory based on the single equation x ≈ y. The smallest element of the lattice
is the trivial theory consisting of tautological equations. For all but simplest languages, the
lattice of equational theories is intricate. R. McKenzie in [6] was able to prove in essence that
the underlying language can be recovered from the isomorphism type of this lattice. A key to
McKenzie’s main result involved understanding first order definability within this lattice. Our
knowledge of definability in this lattice was substantially advanced in the work of Ježek [3].

Given an equational theory T , by LT we denote the sublattice of the lattice of equational
theories of the given language comprised of all equational theories which include T . Thus if T
were the equational theory of semigroups, then LT would be the lattice of all equational theories
of semigroups and one of the members of LT would be the equational theory of commutative
semigroups. Almost any algebraic lattice appears as an interval in the lattice of all equational
theories, subject to the obvious cardinality restrictions, see Ježek [2] and Pigozzi and Tardos [17].
It is nevertheless true that the lattices of the form LT have not yet been clearly understood. Lampe
in [4] found a series of first order conditions, each actually a universal Horn sentence, that each of
the lattices LT must satisfy. As a result, even a simple lattice of five elements can be shown not
representable in the form LT .

For the basics of equational logic the reader is referred to either McNulty [11] or Taylor [18],
and for the basics about varieties of algebras, to [8].

We are going to investigate the existence of covering in the lattice LT , where T is a term
finite equational theory. We say that an equational theory T is term finite provided that for each
term t, the set {s : t ≈ s ∈ T} is finite. Theorem 6, which is our main result, asserts that for every
term finite equational theory T of a finite language, every equational theory properly extending
T and finitely based relative to T has a lower cover extending T , which is again finitely based
relative to T . In particular, if T is the trivial theory, this means that every nontrivial finitely based
equational theory of a finite language has a finitely based lower cover in the lattice of equational
theories. The construction is not effective; however, we can effectively construct a finite base for an
equational theory E′, properly contained in E and such that the number of the equational theories
between E and E′ is finite and can be effectively estimated by an upper bound.

Our proof takes much from McKenzie [6], where among other things he proved that any
nontrivial equational theory has a lower cover. In McNulty [9] it was proven that if T is an
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equational theory such that x ≈ t ∈ T for a variable x and a term t containing either an operation
symbol of arity ≥ 2 or at least two distinct unary operation symbols, then T has at least 2ℵ0

lower covers in the lattice of equational theories. In particular, this means that many finitely based
equational theories have lower covers that are not finitely based. Other results on coverings in the
lattice of equational theories are contained in McNulty [10], Pollák [16] and Trahtman [19].

Let ρ be a fixed language, with no predicate symbols. Elements of the domain of ρ are called
operation symbols. For an operation symbol F , ρ(F ) is the arity of F . We fix a countably
infinite set of variables and consider the algebra of terms over this set. The support of a term t,
i.e., the set of variables occurring in t, will be denoted by S(t). A substitution can be most easily
defined as an endomorphism of the term algebra. By an elementary lift we mean a mapping

L(t) = F (u1, . . . , ui−1, t, ui+1, . . . , un)

where F is an operation symbol of some arity n and i ∈ {1, . . . , n}. A composition of a finite
(possibly empty) sequence of elementary lifts is called a lift. An equation u ≈ v can be naturally
identified with an ordered pair (u, v) of terms; an equational theory is then nothing else than a
fully invariant congruence of the term algebra. An equation u ≈ v is called regular if S(u) = S(v);
an equational theory is regular if it contains regular equations only. An equation u ≈ v is called
trivial if u = v; a set of equations is trivial if it contains trivial equations only. The least equational
theory of the language ρ, which is the set of trivial equations, will be denoted by Oρ.

Given two terms u and v, we write u ≤ v if v = Lf(u) for a lift L and a substitution f . This
is a quasiordering on the set of terms. Two terms u, v are called (literally) similar if u ≤ v and
v ≤ u; we then write u ∼ v. Also, u ∼ v if and only if v = α(u) for an automorphism α of the
term algebra. Factored through this equivalence, the set of terms becomes a partially ordered set
every principal ideal of which is finite. Two equations u ≈ v and p ≈ q are called similar if there is
an automorphism α of the term algebra with p = α(u) and q = α(v). We write u < v if u ≤ v but
u 6∼ v.

In the following we shall assume that T is a given term finite equational theory. Clearly, T is
regular and if u ≈ v ∈ T and u ≤ v, then u ∼ v. For two terms u and v, write u ≤T v if there is a
term w with u ≤ w and w ≈ v ∈ T . It is easy to see that this relation is a quasiordering on the set
of terms, and because T is term finite, for any term u there are, up to similarity, only finitely many
terms v with v ≤T u. Let us write u ∼T v if u ≤T v an v ≤T u. Again, using the term finiteness
of T we can see that u ∼T v if and only if there is a term w with u ∼ w and w ≈ v ∈ T . We shall
write u <T v if u ≤T v and v 6≤T u, i.e., if u ≤T v and u 6∼T v. Clearly, u < v implies u <T v.

By an immediate T -consequence of an equation u ≈ v we mean any equation u′ ≈ v′ for
which there exist a lift L and a substitution f with u′ ≈ Lf(u) ∈ T and v′ ≈ Lf(v) ∈ T . By a
proof based on B modulo T , where B is a set of equations, we mean a finite sequence u0, . . . , uj

of terms such that for any i ∈ {1, . . . , j}, ui−1 ≈ ui is an immediate T -consequence of an equation
from B ∪ B−1. By a proof of u ≈ v based on B, modulo T , we mean one such that u0 = u
and uj = v. This notion of proof is complete in the sense that the equations u ≈ v which are
provable based on B modulo T are exactly the equations true in every model of B ∪ T . This sort
of completeness is an easy consequence of one of the common systems of proof for equational logic,
described for example in Birkhoff [1]. By a minimal proof of u ≈ v based on B modulo T we
mean one which is of the shortest possible length. Given an equational theory E ⊃ T , a subset B
of E is said to be a T -base for E if every equation from E has a proof based on B modulo T . An
equational theory is said to be finitely based relative to T if it has a finite T -base.

Let E be an equational theory properly extending T . A term m is said to be T -minimal for
E if there exists a term w with m ≈ w ∈ E − T , but there is no equation m′ ≈ w′ ∈ E − T with
m′ <T m. It is easy to see that any equational theory properly extending T has a T -minimal term.
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Also, as it is easy to see, if m is a T -minimal term for E and B is any T -base for E, then there
always exists an equation u ≈ v ∈ B such that either m ∼T u or m ∼T v. Given a term m which
is T -minimal for E, we denote by Cm,T (E) the set of the equations u ≈ v ∈ E such that either
u ≈ v ∈ T or u 6∼T m 6∼T v. One can easily verify that Cm,T (E) is the union of T with the set of
the equations u ≈ v ∈ E such that u 6≤T m and v 6≤T m, and then it follows that Cm,T (E) is an
equational theory properly contained in E, and extending T .

All the above definitions, with the parameter T omitted, refer to the case T = Oρ.
The following theorem has been essentially proved by McKenzie [6] in the special case T = Oρ,

and by Trahtman [19] in the case when T is a balanced equational theory and the language contains
no symbols of arity less than 2; related results are contained in Pollák [16]. An equational theory
T is called balanced if for every equation u ≈ v ∈ T and every variable x, the number of the
occurrences of x in u is the same as that in v. Clearly, every balanced equational theory of a
language containing no symbols of arity less than 2 is term finite.

Theorem 1. Let T be a term finite equational theory and E be an equational theory properly

extending T . Let m be a term T -minimal for E. Then the interval E/Cm,T (E) in the lattice of

equational theories of the given language is finite. In particular, every equational theory properly

extending T has a lower cover extending T .

Proof. Denote by K the set of the terms t with t ≤T m, and by Q the set K ×K (which is a set
of equations). Since K is, due to the term finiteness of T , finite up to (absolute) similarity, also
Q is finite up to similarity and thus it is sufficient to show that every equational theory U with
Cm,T (E) ⊆ U ⊂ E is uniquely determined by a subset of Q. We shall show, more strongly, that
U = Cm,T (E) ∪ (U ∩Q).

Suppose, on the contrary, that there is an equation u ≈ v ∈ U − T such that u ≤T m and
v 6≤T m. (One can easily see that this is just the opposite case.) There are a substitution f and
a lift L such that Lf(u) ≈ m ∈ T . Put w = Lf(v), so that w ≈ Lf(u) ∈ T and, consequently,
w ≈ m ∈ U . Also, w 6≤T m.

Since U ⊂ E, there is an equation p ≈ q ∈ E − U . If both p 6≤T m and q 6≤T m, then
p ≈ q ∈ Cm,T (E) ⊆ U , a contradiction. So, without loss of generality, we assume that p ≤T m. By
the minimality of m, we have α(p) ≈ m ∈ T for an automorphism α of the term algebra. Clearly,

w ≈ m ∈ U ⊆ E, m ≈ α(p) ∈ T ⊆ U ⊆ E, α(p) ≈ α(q) ∈ E.

From this it follows that w ≈ α(q) ∈ E. Here we have w 6≤T m. If also α(q) 6≤T m, then w ≈
α(q) ∈ Cm,T (E) ⊆ U , so that also α(p) ≈ α(q) ∈ U and then (p ≈ q) =

(

α−1α(p) ≈ α−1α(q)
)

∈ U ,
a contradiction. Hence α(q) ≤T m, i.e., q ≤T m. By the minimality of m we get q ∼T m and so
there is an automorphism β of the term algebra with β(q) ≈ m ∈ T . We have w ≈ β(q) ∈ U , and
consequently αβ−1(w) ≈ α(q) ∈ U . But also w ≈ α(q) ∈ E, so w ≈ αβ−1(w) ∈ E; both sides
of this equation are 6≤T m, which means that the equation belongs to Cm,T (E) ⊆ U . This was
just the missing link to obtain α(q) ≈ β(q) ∈ U . But also α(p) ≈ β(q) ∈ U , since both sides are
T -related to m, and so we get α(p) ≈ α(q) ∈ U . This yields p ≈ q ∈ U , a contradiction.

A variety V is said to have the cover property if every proper subvariety of V has a cover
in the lattice of subvarieties of V . As an easy corollary to Theorem 1, we get: Every term finite

variety has the cover property.

Lemma 2. Suppose that the language ρ contains at least one symbol of nonzero arity. Let T be a

term finite equational theory and E be an equational theory properly extending T . Then there exists

a T -base B for E such that B is finite if E is finitely based relative to T and whenever u ≈ v ∈ B
is an equation at least one side of which is a term T -minimal for E, then u ≈ v is regular.
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Proof. Take one operation symbol F of arity n > 0, and for any ρ-term t define t∗ = F (t, . . . , t)
(where t appears n times). Let us call an equation u ≈ v bad if S(u) 6= S(v) and at least one of
the terms u and v is T -minimal for E. Given a T -base for E, we can construct a new T -base by
replacing each of its bad equations with a triple of good equations in the following way.

Consider first the case when the sets S(u)−S(v) and S(v)−S(u) are both nonempty. Denote
by f the substitution with f(x) = x∗ for any x ∈ (S(u)− S(v)) ∪ (S(v)− S(u)) and f(x) = x for
any other variable x. Remove the equation u ≈ v from B and replace it with the following three
equations:

u ≈ f(u), f(u) ≈ f(v), f(v) ≈ v.

Each of them is a consequence of u ≈ v: the first equation because f(u) ≈ v is an immediate
consequence, the last because u ≈ f(v) is an immediate consequence and the middle is an immediate
consequence itself. Clearly, the triple of equations is equivalent to u ≈ v; the first and the last
equations are regular, while the middle one has both sides non-T -minimal for E.

The next case is when S(u) is a proper subset of S(v). Denote by f and g the substitutions
with f(x) = x∗ and g(x) = u∗ for x ∈ S(v) − S(u) and f(x) = g(x) = x for any other variable x.
Remove the equation u ≈ v from B and replace it with the following three equations:

u ≈ g(v), g(v) ≈ f(v), f(v) ≈ v.

Again, the resulting new base contains three good equations in place of one which was bad.
One can proceed symmetrically if S(v) is a proper subset of S(u).

Lemma 3. Suppose that the language ρ contains at least one symbol of nonzero arity. Let T be a

term finite equational theory and let E be a an equational theory properly extending T and finitely

based relative to T . Then there exists a finite T -base B for E with the following two properties:

(1) if u ≈ v ∈ B is an equation at least one side of which is a term T -minimal for E, then u ≈ v
is regular;

(2) if u0, . . . , uj is a proof based on B modulo T and ui is a term T -minimal for E with i ∈
{1, . . . , j − 1}, then either u0, . . . , ui−1, ui+1, . . . , uj is also a proof based on B modulo T or

ui−1 ≈ ui+1 ∈ T .

Proof. Let B0 be a finite T -base for E; by Lemma 2, we can suppose that B0 already has the
property formulated in (1). Denote by K the set of the terms u for which there exists a v with
u ≈ v ∈ B0 ∪ B−1

0 . Let k = max{|S(u)| : u ∈ K}, and take pairwise distinct variables x1, . . . , xk.
Denote by K ′ the set of the terms u such that S(u) ⊆ {x1, . . . , xk} and u ∼T v for a term v ∈ K.
Denote by B∗ the equivalence on K ′ generated by the equations u ≈ v ∈ K ′ ×K ′ that are similar
to regular equations from B0 ∪ T , and put B = (B0 ∪B∗)− T .

Clearly, B is a finite T -base for E. Since the equations in B − B0 are all regular, B also
satisfies (1). It is easy to see that if u ≈ v is an equation which is similar to a regular equation
from B and S(u) ⊆ {x1, . . . , xk}, then u ≈ v ∈ B.

Let u0, . . . , uj be a proof based on B modulo T and let ui, with 0 < i < j, be a term T -minimal
for E. There exist two equations p ≈ q and r ≈ s in B ∪B−1, two lifts L,M and two substitutions
f, g such that

ui−1 ≈ Lf(p) ∈ T, ui ≈ Lf(q) ∈ T, ui ≈ Mg(r),∈ T ui+1Mg(s) ∈ T.

Since q ≤T ui, p ≈ q ∈ E − T and the term ui is T -minimal, we have q ∼T ui. Similarly,
r ∼T ui. But then both L and M are necessarily identical mappings and the substitutions f
and g coincide with some automorphisms of the term algebra when restricted to S(q) and S(r)
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respectively. Moreover, the equations p ≈ q and r ≈ s are both regular by (1), since the terms q
and r are T -minimal for E. We get

ui−1 ≈ f(p) ∈ T, ui ≈ f(q) ∈ T, ui ≈ g(r) ∈ T, ui+1 ≈ g(s) ∈ T

for some automorphisms f and g of the term algebra. Since the equations p ≈ q and f−1g(r) ≈
f−1g(s) are both regular and each is similar to an equation from B, and since q ≈ f−1g(r) ∈ T
(which follows from f(q) ≈ ui ∈ T and ui ≈ g(r) ∈ T ), it follows from the construction of
B that also the regular equation p ≈ f−1g(s) belongs to B ∪ T . Now ui−1 ≈ f(p) ∈ T and
ui+1 ≈ ff−1g(s) = ui+1 ≈ g(s) ∈ T , so that ui−1 ≈ ui+1 is an immediate T -consequence of
p ≈ f−1g(s). If p ≈ f−1g(s) does not belong to T , then the sequence u0, . . . , ui−1, ui+1, . . . , uj is a
proof based on B modulo T ; otherwise, ui−1 ≈ ui+1 ∈ T .

Let the language ρ be given and let the set of variables be arranged into an infinite sequence.
Let u ≈ v be a regular equation and let z1, z2, · · · be the subsequence of the sequence of all variables,
consisting of the variables not belonging to S(u). By a primitive substitution for the equation
u ≈ v we mean a substitution f such that there is precisely one variable x with f(x) 6= x, this
variable x belongs to S(u) and either f(x) = F (z1, . . . , zn) for an operation symbol F of some arity
n or f(x) = y for a variable y ∈ S(u)− {x}. By a primitive lift for u ≈ v we mean a lift L such
that there exist an operation symbol F of some nonzero arity n and an index i ∈ {1, . . . , n} with
L(t) = F (z1, . . . , zi−1, t, zi+1, . . . , zn) for all terms t.

If the language ρ is finite, then clearly for any regular equation there are only finitely many
primitive substitutions and only finitely many primitive lifts.

Lemma 4. Let T be a term finite equational theory and let u ≈ v be a regular equation. If f
is either a primitive substitution or a primitive lift for u ≈ v, then u < f(u) and v < f(v) and,

consequently, u <T f(u) and v <T f(v). If u′ ≈ v′ is an immediate T -consequence of u ≈ v with

either u <T u′ or v <T v′, then u′ ≈ v′ is an immediate T -consequence of an equation f(u) ≈ f(v)
where f is either a primitive substitution or a primitive lift for u ≈ v.

Proof. The first statement is obvious. Let u′ ≈ v′ be an immediate T -consequence of u ≈ v,
so that there exist a substitution h and a lift H with u′ ≈ Hh(u) ∈ T and v′ ≈ Hh(v) ∈ T . If
either u <T u′ or v <T v′, then either H is not the identical lift or the restriction of h to S(u) is
not a one-to-one mapping into the set of variables. It is clear that in the first case u′ ≈ v′ is an
immediate T -consequence of L(u) ≈ L(v) for a lift L which is primitive for u ≈ v. In the second
case, if H is the identity, there exists a variable x ∈ S(u) such that either h(x) is not a variable or
h(x) = h(y) for a variable y ∈ S(u)−{x}; then h can be expressed as h = gf where f is a primitive
substitution for u ≈ v and g is some other substitution, and u′ ≈ v′ is an immediate T -consequence
of f(u) ≈ f(v).

Theorem 5. Let T be a term finite equational theory of a finite language ρ, let E be an equational

theory properly extending T and finitely based with respect to T , and let m be a term T -minimal

for E. Then Cm,T (E) is also finitely based with respect to T .

Proof. The situation is clear if ρ is a very simple language, so we can suppose that ρ contains
at least one operation symbol of nonzero arity. There exists a finite T -base B for E with the
two properties stated in Lemma 3. Denote by B′ the union of two sets: the set of the equations
u ≈ v ∈ B such that u 6∼T m 6∼T v; and the set of the equations of the form f(u) ≈ f(v) where
u ≈ v ∈ B is an equation with either u ∼T m or v ∼T m and f is either a primitive substitution
or a primitive lift for u ≈ v.

Evidently, B′ is a finite set of equations belonging to Cm,T (E). If u ≈ v is an equation from
Cm,T (E) such that u ≈ v /∈ T , then by Lemma 3 there exists a u0, . . . , uj of u ≈ v based on B
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modulo T such that ui 6∼T m for all i; for example, any minimal proof of the equation based on B
modulo T has this property. Let i ∈ {1, . . . , j}, so that ui−1 ≈ ui is an immediate T -consequence
of an equation vi−1 ≈ vi ∈ B ∪B−1. If this last equation does not belong to B′ ∪B′−1, then either
vi−1 ∼T m or vi ∼T m and the equation is regular, so that either vi−1 <T ui−1 or vi <T ui and then,
according to Lemma 4, ui−1 ≈ ui is an immediate T -consequence of an equation f(vi−1) ≈ f(vi)
for some f which is either a primitive substitution or a primitive lift for vi−1 ≈ vi. In any case,
ui−1 ≈ ui is an immediate T -consequence of an equation from B′ ∪B′−1, and the proof u0, . . . , uj

is a proof of u ≈ v based on B′ modulo T . We see that B′ is a finite T -base for Cm,T (E).

Theorem 6. Let T be a term finite equational theory of a finite language ρ. Every equational

theory properly extending T and finitely based relative to T has a lower cover in the lattice of

equational theories of the language ρ which extends T and is again finitely based relative to T .
In particular and in other words, every finitely based variety other than the variety of all

ρ-algebras has a finitely based cover in the lattice of varieties of ρ-algebras.

Proof. It follows directly from Theorem 1 and Theorem 5.

Theorem 7. There is an algorithm producing for any nontrivial finite set B0 of equations of a

finite language ρ another finite set B′ of equations of the language ρ and a positive integer n such

that the equational theory E′ based on B′ is properly contained in the equational theory E based

on B0, and the interval E/E′ contains at most n equational theories.

Proof. We are dealing with the case T = Oρ, and the parameter T can thus be disregarded. The
first step is to find a term m minimal for E, which can be done effectively, since one can search for it
among the finitely many terms that are a left or a right side of an equation from B0. The next step
is to find a finite base B for E, having the two properties formulated in Lemma 3; the construction
given in the proof of Lemma 3 can easily be seen to be effective. The last step, to construct a finite
base B′ for the equational theory E′ = Cm(E), has been carried out, also effectively, in the proof
of Theorem 5.

Remark. Theorem 7 remains true with respect to any decidable term finite equational theory of
a finite language. Such theories can be seen to be those term finite equational theories which have
a recursive set of equational axioms.

Remark. Taking, moreover, the proof of Theorem 1 into account, one would be tempted to say
that there is also an algorithm producing for any nontrivial finite base B0 another finite base B′′

such that E′′, the equational theory based on B′′, is covered by E. Let us distinguish two cases.
The first case is when there exists a term m minimal for B0 such that u ≈ v ∈ B0 ∪B−1

0 and
u ∼ m imply u ∼ v and S(u) = S(v). One can construct the finite base B′ for E′ = Cm(E) as in
Theorem 7, and then add as many equations u ≈ v with u ∼ m ∼ v and u ≈ v ∈ E as necessary to
obtain the new base B′′ with the desired property, which can be done effectively in this case.

In the remaining case, when there is no term m as above, one can take an arbirary minimal
term m for B0 and still construct the finite base B′ for E′ = Cm(E) effectively, following the proof
of Theorem 7. In this case we are, moreover, able to see easily that the finite interval E/E′ contains
a unique equational theory covered by E; its base can be obtained from B′ by adding the equations
m ≈ v such that m ∼ v, S(m) = S(v) and m ≈ v is a consequence of B0. However, if we were to
recover this finite base effectively, we would need to decide, for every B0, which of the equations
u ≈ v with u ∼ m ∼ v are its consequences. In a very particular case, one would need to have an
algorithm conflicting with the following assertion.

Assertion. Consider the language ρ consisting of three unary operation symbols and one binary

symbol for multiplication, and denote by S the set of the finite sets of ρ-equations, for which the
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term xy serves as a minimal term. There is no algorithm deciding for any B ∈ S, whether the

commutative law, the equation xy ≈ yx, is a consequence of B.

Proof. As it has been proved in Mal’tsev [5], there exists an undecidable, finitely based and
regular equational theory T of the language containing two unary symbols p and q. Denote by ρ
the language containing p, q, one more unary symbol f and a binary symbol for multiplication. For
any pair s, t of finite sequences of elements of {p, q} denote by Ms,t the equational theory based on
(the equations of a finite base for) T and, moreover, the following two equations:

fs(xy) ≈ fs(yx),

ft(xy) ≈ xy.

Clearly, it is sufficient to prove that xy ≈ yx is a consequence of Ms,t if and only if s(x) ≈ t(x) ∈ T .
The converse implication is evident, so let s(x) ≈ t(x) /∈ T . Since also t(x) ≈ t(y) /∈ T , there is
a model P for T , containing two elements a and b such that s(a) 6= t(a) and t(a) 6= t(b). It is
then clear that in Pω, which is also a model for T , there are infinitely many elements c such that
s(c) 6= t(c), with the elements t(c) pairwise different. So, there is a countably infinite model Q of
T having an infinite subset S such that Q− S is also infinite, t is one-to-one if restricted to S and
the sets s(S) and t(S) are disjoint. Define a multiplication on Q in such a way that Q becomes an
absolutely free groupoid, freely generated by Q− S; and define a unary operation f on Q in such
a way that f is constant on s(S) and f(t(a)) = a for any a ∈ S. Clearly, Q then becomes a model
of Ms,t; it does not, of course, satisfy xy ≈ yx.

This proof follows the general pattern of undecidability resuts for equational theories estab-
lished in McNulty [12] and [13], Murskĭı [14] and Perkins [15].

So, we were not able to decide the following question; there is still a chance for its positive
solution, although it seems more likely that the answer will be negative.

Problem. Can one effectively construct, for any nontrivial finite set B of equations of a finite
language, another finite set B′′ of equations such that the equational theory based on B′′ is covered
by the equational theory based on B?
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