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Perfect bases for equational theories are closely related to confluent and finitely termi-
nating term rewrite systems. The two classes have a large overlap, but neither contains
the other. The class of perfect bases is recursive. We also investigate a common gen-

eralization of both concepts; we call these more general bases normal, and touch the
question of their uniqueness. We also give numerous examples.

1. Introduction and preliminaries

Perhaps the most broadly discussed question of equational logic is to find ways to decide
which equations are consequences of a given finite set of equations, that is, to establish
decidability of a given finitely based equational theory. This question, which attracts
attention of both mathematicians and computer scientists working in equational logic,
is undecidable in general, so attention has been focused on special cases, as general
as possible, for which there is hope of finding an algorithm. Evans (1951) and Knuth
and Bendix (1970) introduced the technique of term rewriting, which has been further
developed in a large number of papers; see Dershowitz and Jouannaud (1990) for a nice
overview of term rewriting and for an extensive bibliography. In this paper we present
an alternative technique, that of perfect bases.

In seeking positive solutions to the decision problem for an equational theory, the
standard method is to find a computable normal form function. By a normal form

function for an equational theory E we mean a mapping ν of the set of terms into itself,
satisfying the following three conditions:

(nf 1) u ≈ v ∈ E if and only if ν(u) = ν(v);
(nf 2) t ≈ ν(t) ∈ E for all terms t;
(nf 3) ν(ν(t)) = ν(t) for all terms t.

An equational theory E is decidable if and only if it has a computable normal form
function.

Term rewriting systems and the normal form functions associated with them take
their inspiration from a complete syntactical notion of proof for equational logic (or,
to frame this more algebraically, from a general scheme for generating fully invariant
congruence relations on the absolutely free term algebra). In the fortunate circumstance
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that a convergent set of rewrite rules can be found, proofs of equations take on a very
simple character, leading to a computable normal form function.
The technique of perfect bases, which we introduce in this paper, relies on a different,

though related insight. A normal form function maps the set of all terms onto a subset, the
set of normal forms. The normal form function can be made into a homomorphism from
the absolutely free term algebra onto another algebra, whose underlying universe is the
set of normal forms, by the simple expedient of defining the fundamental operations on
the algebra of normal forms in the natural way. In the event that the homomorphism fixes
each variable, the resulting algebra will then be freely generated by the set of variables
relative to the equational theory (since the condition (nf1) asserts that the kernel of this
homomorphism will be the equational theory). We are interested in reversing the process
just described. We present a general scheme, which given a set of equations, subject to
some restrictions, will produce a map from the set of terms into the set of terms. In the
fortunate circumstance that the set of equations is perfect, the resulting map will be
a homomorphism onto the algebra free relative to the perfect set, and will also satisfy
(nf3). It will be a normal form function.

Both the technique of term rewriting and the technique of perfect bases begin with a
set P of equations and use P in the attempt to build a normal form function. In each
case, when the process is successful, the normal forms turn out to be precisely those
terms which avoid all the terms occurring as left sides of equations belonging to P . We
say a term u avoids a term t provided no substitution instance of t is a subterm of u.
Thus, regarding P as a set of rewrite rules, the normal forms turn out to be exactly
thoses terms to which no rewrite rule in P applies.

Classically, examples of normal form functions were obtained for Boolean algebra
(Boole 1847), for group theory (Dehn 1911), and for lattice theory (Whitman 1941).
General accounts of the method of normal forms can be found in Evans (1951) and
Pigozzi (1979) and, of course, in the literature on term rewriting, cf. Dershowitz and
Jouannaud (1990). Whitman’s normal form function for lattice theory is both efficient
and elegant, while (cf. Freese, Ježek, and Nation 1993) there is no finite convergent term
rewrite system for lattice theory. Neither do our results here about perfect bases provide
a substitute for Whitman’s algorithm. Other examples of decidable equational theories
without a convergent rewrite system can also be found in Kapur and Narendran (1985)
and Squier and Otto (1987). Example 2.10 below provides an equational theory with
a finite perfect base (so this equational theory is decidable), but which has not finite
convergent term rewrite system.

Let us illustrate both the technique of term rewriting and the technique of perfect
bases on a simple example.

Consider the equational theory of groupoids based on the equation x(x(xx)) ≈ (xx)x,
and denote this equation by e. For two terms u and v, write u → v if u can be rewritten to
v in one step on the basis of e, i.e., if v results from u by replacing one arbitrary subterm
t(t(tt)) (where t is a term) with (tt)t. One can easily see that the rewrite system based
on e is finitely terminating and confluent, by which we mean that for any term w there
is a term ν(w) such that any sequence w = w0 → w1 → · · · is finite, and terminates at
ν(w). (It is sufficient to verify that the rewrite system is finitely terminating and locally
confluent in the sense that whenever w → u and w → v, then there are finite sequences
u → u1 → · · · → uk and v → v1 → · · · → vl with uk = vl.) The mapping ν is then a
computable normal form function, and an equation u ≈ v is a consequence of e if and
only if ν(u) = ν(v).
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The equation (xx)x ≈ x(x(xx)) (let us denote it by e∗), is, of course, a base for the
same equational theory. While ν always computed the shortest term in its class, it is clear
that the normal form function ν∗ based on e∗ would, on the contrary, always compute
the longest term, if this rewrite system is also confluent and finitely terminating. It turns
out that it is, but a direct proof of finite termination could be awkward. Instead of trying
to give such a proof, let us proceed in the following way. Denote by A the set of the terms
that do not contain a subterm of the form (tt)t (for any term t), and define a binary
operation ◦ on A by

u◦v =

{

uv if the term uv belongs to A,
v(v(vv)) if u = vv.

One must verify that this is a correct definition of a binary operation, in which case we
say that the base e∗ is pre-perfect. The next step is to prove that the resulting groupoid
with the underlying set A satisfies the equation e; then we say that the base is perfect.
According to Theorem 2.2 below, this is sufficient to claim that the (unique) homomor-
phism of the term algebra onto the groupoid (A, ◦) which is identical on variables, is a
computable normal form function for E.
It is conceivable that the process of verifying the perfection of a given base is not

computable, because it requires checking that the equations are satisfied in an infinite
algebra. But we shall show (see Theorem 2.4 below) that this can be done in a finite
time and, actually, the technique of perfect bases is more algorithmic than that of term
rewriting, as the class of perfect bases is recursive, while that of finitely terminating
confluent bases is not. The tools used to check the perfection of a set of equations are
familiar from unification theory.

The two classes, of perfect bases and of finitely terminating confluent ones, have a
large overlap, but neither contains the other. The equation (xy)z ≈ x(yz), which is a
base for the equational theory of semigroups, is finitely terminating and confluent, but
is not perfect. On the other hand, there are examples, admittedly not as natural as
the associative law, of perfect bases that are not finitely terminating; see Examples 2.9
and 2.10 below. Due to its simplicity and algorithmicity, perfect bases should serve as
a useful technique for decidability of a finitely based equational theory, and as the first
choice technique if the finite base is in some sense random. For example, this technique
was used in Ježek (1982) to establish decidability of nearly any equational theory of
groupoids, based on a single equation t ≈ x where x is a variable and t is a term of
length at most four; the only exceptional equation in this class, for which the problem
of decidability remains open, is the equation y((yx)y) ≈ x. Also, as the above given
example shows, this technique is more suitable than that of term rewriting for various
special purposes, like if one needs to decide whether a certain finitely based equational
theory E is term finite (i.e., each term is equivalent to only a finite number of terms
modulo E): in that case one needs to find a normal form function making terms longer,
rather than shorter.

We also investigate a common generalization of both techniques. We call these more
general bases normal, as they also provide for a computable normal form function. The
idea is that the normal form function ν should be computable according to the following
recursive definition:

ν(t) =







F (ν(t1), · · · , ν(tn)) if this term belongs to A,
νf(u′) if F (ν(t1), · · · , ν(tn)) = f(u) for a substitution f

and an equation u ≈ u′ from the normal base.
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Here t = F (t1, · · · , tn) is an arbitrary term and A denotes the set of the terms that do
not contain any substitution instance of a left side of an equation from the base. We
will touch the question of uniqueness of a normal base for an equational theory in some
particular cases.

Preliminaries

For the basics of equational logic the reader is referred to either McNulty (1992) or
Taylor (1979), and for the basic facts of general algebra to McKenzie, McNulty and
Taylor (1987).

All terms that we are going to deal with will be of a given fixed similarity type, which
we assume to be finite. A typical operation symbol will be denoted by F , and its arity
by n. The set of variables, from which the terms are built up, is assumed to be countably
infinite. The support of a term t, i.e., the set of variables occurring in t, will be denoted
by S(t). The set of all terms can be made an algebra in a natural way, the algebra of

terms.
Equations are simply ordered pairs of terms, but an equation (u, v) will be more

naturally denoted by u ≈ v to emphasize its semantical intent and by u → v in the
context of rewriting. In this last context, equations are also referred to as rewrite rules.
An equational theory is a set of equations which is closed with respect to logical
consequences; equivalently, an equational theory is a fully invariant congruence of the
term algebra. A set B of equations is called a base for an equational theory E, provided
E is the set of all equations that are consequences of B. An equational theory with a
finite base is said to be finitely based.

A substitution can be most easily defined as an endomorphism of the term algebra.
Clearly, every substitution is uniquely determined by its restriction to the set of variables.
A unifying pair for a pair a, b of terms is a pair f, g of substitutions such that

f(a) = g(b); such a unifying pair is minimal if any other unifying pair for a, b is of
the form hf, hg, for some substitution h. A minimal unifying pair is almost uniquely
determined by the pair a, b. It is well known that it exists whenever some unifying pair
for a, b exists. There is an algorithm deciding whether any given pair of terms has a
unifying pair, and producing a minimal one if it has.

A substitution f is said to expand a substitution h if f = gh for some substitution g.
If a finite nonempty set S of substitutions has a common expansion (a substitution ex-
panding all the substitutions in S), then it has a minimal common expansion, i.e.,
a common expansion f such that all common expansions of S are expansions of f . This
follows easily (technical details may be complicated) from the existence of minimal uni-
fying pairs. Also, there is an algorithm deciding for any finite set of finitary substitutions
whether it has a common expansion, and producing a minimal one if it has. Instead of
specifying what we mean by a finitary substitution, let us say that in a given context we
are always interested in the behavior of substitutions on a given finite set X of variables
only, so that in the given context any two substitutions coinciding on X can be iden-
tified. (However, we cannot say, for example, that a finitary substitution is one which
fixes all but finitely many variables, because the minimal common expansion of finitary
substitutions would not then necessarily be finitary according to that definition. Also,
we cannot simply restrict the set of all variables to a finite set, because then minimal
unifying pairs and minimal common expansions would not necessarily exist when they
should exist.)
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By an elementary lift we mean a mapping

L(t) = F (u1, · · · , ui−1, t, ui+1, · · · , un)

where F is an operation symbol of some arity n, i ∈ {1, · · · , n}, and uj is a fixed term for
each j ≤ n with j 6= i. A composition of a finite (possibly empty) sequence of elementary
lifts is called a lift. A term s is said to be a subterm of a term t if t = L(s) for a lift L;
we then write s ⊆ t.

Given two terms u and v, we write u ≤ v and say that v encompasses u if v = Lf(u)
for some lift L and some substitution f . This is a quasiordering on the set of terms.
When v does not encompass u, we say that v avoids u. Two terms u and v are called
(literally) similar if u ≤ v and v ≤ u; we then write u ∼ v. Also, u ∼ v if and only if
v = α(u) for an automorphism α of the term algebra. Factored through this equivalence,
the set of terms becomes a partially ordered set, every principal ideal of which is finite.
(A principal ideal in a partially ordered set is a subset of the form {p : p ≤ q} for some
fixed q.) We write u < v if u ≤ v but u 6∼ v. Two terms u, v are called incomparable

if u 6≤ v and v 6≤ u. Two equations u ≈ v and p ≈ q are called similar if there is an
automorphism α of the term algebra with p = α(u) and q = α(v). Two sets S1 and S2 of
equations are called similar if each equation from S1 is similar to an equation from S2,
and vice versa.

An equational theory E is said to be term finite if for any term t, the set {u : t ≈
u ∈ E} is finite. For example, the equational theory of commutative semigroups is term
finite. The paper Ježek and McNulty (1994), whose contents can be detected from its
title, contains results that are all relative to a given term finite equational theory. In
a similar way, it should be possible to state most definitions and results of the present
paper relative to a term finite equational theory; however, we have not pursued this task.

2. Perfect bases

Let P be a set of equations. We denote by AP the set of all terms t such that whenever
u ≈ u′ ∈ P , then u 6≤ t. So AP consists of all those terms which avoid the left sides of
equations in P .

P is said to be pre-perfect if the following conditions are satisfied:

(pp1) P is inter-reduced, which means that if u ≈ u′ ∈ P , v ≈ v′ ∈ P and (u, u′) 6= (v, v′),
then u 6≤ v;

(pp2) if u ≈ u′ ∈ P , v ≈ v′ ∈ P and f(u) = g(v) for two substitutions f, g such that
every proper subterm of f(u) belongs to AP , then f(u′) = g(v′);

(pp3) if u ≈ u′ ∈ P and f is a substitution such that every proper subterm of f(u)
belongs to AP , then f(u′) ∈ AP .

If P is a pre-perfect set of equations, then we can define a mapping νP of the set of
terms into AP as follows:

νP (x) = x for any variable x;

νP (F (t1, · · · , tn)) =















F (νP (t1), · · · , νP (tn)) if this term belongs to AP ;

f(u′) if F (νP (t1), · · · , νP (tn)) = f(u) for a
substitution f and u ≈ u′ ∈ P .
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In fact, the three conditions above are just a formulation of the correctness of this def-
inition plus a little bit more; since the terms νP (ti) belong to AP , we do not have to
consider the case F (νP (t1), · · · , νP (tn)) = Lf(u) where L is a nontrivial lift.

If P is a pre-perfect set of equations, we can form an algebra A = AP with the
underlying set AP by interpreting each basic operation symbol F by the operation FA
defined as follows:

FA(t1, · · · , tn) = νP (F (t1, · · · , tn)),

where n is the rank of F .

Lemma 2.1. Let P be a pre-perfect set of equations. Then:

(1) If u ≈ u′ ∈ P , then u is not a variable, u′ = νP (u) and S(u′) ⊆ S(u);
(2) νP is a homomorphism of the term algebra onto AP .

Proof. (1) Let u ≈ u′ ∈ P . By (pp1), every proper subterm of u belongs to AP , so
that condition (pp3) with respect to the identical substitution says that u′ ∈ AP . In
particular, AP is nonempty; but then u cannot be a variable. It is easy to see that
u′ = νP (u). Suppose that there is a variable y ∈ S(u′) − S(u). Let f be the identical
substitution, and g be the substitution with g(x) = x for any variable x 6= y, and
g(y) = x. We have f(u) = g(u) = u but f(u′) 6= g(u′), a contradiction with (pp2).

(2) We need to prove νPF (t1, · · · , tn) = FA(νP (t1), · · · , νP (tn)), i.e.,

νPF (t1, · · · , tn) = νPF (νP (t1), · · · , νP (tn)).

If F (νP (t1), · · · , νP (tn)) ∈ AP , then both sides are equal to this term. If, on the contrary,
this term is of the form f(u) for a substitution f and an equation u ≈ u′ ∈ P , then both
sides are equal to f(u′) according to the definition of νP . 2

By a perfect base we mean a pre-perfect set P of equations such that the algebra
AP satisfies all the equations from P . A subset P of an equational theory E is a perfect
base for E if and only if it is pre-perfect and the algebra AP satisfies all the equations
from E.

Theorem 2.2. Let P be a perfect base for E. Then:

(1) νP is a normal form function for E;

(2) AP is the free E-algebra over the set of variables;

(3) E is decidable if P is recursive, with recursive domain.

Proof. (nf 2) is easy by induction on the complexity of t, and (nf 3) is clear. By Lemma
2.1, νP is a homomorphism of the term algebra onto AP . So, if u ≈ v ∈ E, then
νP (u) = νP (v), because AP satisfies all the equations from E. The converse follows
from (nf 2), so we have both implications of (nf 1). By the Homomorphism Theorem, it
follows that AP is isomorphic to the factor of the term algebra through E, and hence
AP is the free E-algebra over the set of variables. (3) follows from (1). 2

Lemma 2.3. The set of the finite pre-perfect sets of equations is recursive.
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Proof. Condition (pp1) is easy to verify, and we can also easily verify that u ≈ u′ ∈ P
implies S(u′) ⊆ S(u), which is necessary according to Lemma 2.1. Under this assumption,
conditions (pp2) and (pp3) can be equivalently reformulated in the following way:

(pp2′) if u ≈ u′ ∈ P , v ≈ v′ ∈ P , and f and g is the minimal unifying pair for u and v,
then, in case that every proper subterm of f(u) belongs to AP , f(u

′) = g(v′);
(pp3′) if u ≈ u′ ∈ P , v ≈ v′ ∈ P , s ⊆ u′, and f and g is the minimal unifying pair for s

and v, then f(u) contains a proper subterm not in AP .

The equivalence of (pp2) with (pp2′) is easy, and clearly (pp3) implies (pp3′). It remains
to prove that (pp3′) implies (pp3). Let u ≈ u′ ∈ P and let f be a substitution such that
every proper subterm of f(u) belongs to AP . Suppose f(u

′) /∈ AP , i.e., g(v) ⊆ f(u′) for a
substitution g and an equation v ≈ v′ ∈ P . If x ∈ S(u′), then x ∈ S(u′) ⊆ S(u), f(x) is
a proper subterm of f(u) and so, by our assumption, g(v) cannot be a subterm of f(x).
The only other possibility for g(v) to be a subterm of f(u′) is, that g(v) = f(s) for a
subterm s of u′. Let f0, g0 be the minimal unifying pair for s and v, so that f = hf0 and
g = hg0 for some h. By (pp3′), f0(u) contains a proper subterm not in AP . But then
clearly f(u) = hf0(u) also contains a proper subterm not in AP , a contradiction. 2

Let P be a finite pre-perfect set and let a ≈ b be an equation from P . We want to
decide if the algebra AP satisfies a ≈ b. For this purpose we shall construct a finite set
of substitutions which will serve as a test set. By a permissible substitution we shall
mean one which maps variables into AP . All our testing substitutions will be permissible.
Observe that if gh is a permissible substitution, then h is also permissible, because the
complement of AP is closed under any substitution.

By induction on the complexity of a term t, we are first going to define a finite set U(t)
of permissible substitutions with the following property: if f = gh where f is a permissible
substitution, and f and h expand precisely the same substitutions from U(t), then

νP f(t) = gνPh(t).

If t is a variable, let U(t) consist of a single substitution, the identical one. For f = gh
as above, clearly both νP f(t) and gνPh(t) are equal f(t).

Now let t = F (t1, · · · , tn). Put U0 = U(t1)∪· · ·∪U(tn). Consider an arbitrary nonempty
subset S of U0 which has a common expansion, and let fS be the minimal common
expansion of S. For any u ≈ u′ ∈ P such that the terms F (νP fS(t1), · · · , νP fS(tn)) and
u have a unifying pair, let gS,u and lS,u be the minimal unifying pair for these terms; so,

gS,uF (νP fS(t1), · · · , νP fS(tn)) = lS,u(u).

We define U(t) to be the set of the permissible substitutions that either belong to U0 or
are fS for some S or are gS,ufS for some S, u.
We must prove that U(t) has the property stated above. Let f = gh where f is a

permissible substitution, and f and h expand the same substitutions from U(t). Denote by
S the set of the substitutions from U0 that can be expanded to f (and to h). Then h = kfS
for some k, and all the three substitutions, f, h and fS , expand the same substitutions
from U0. For any i = 1, · · · , n, U(ti) is a subset of U0, so the three substitutions also
expand the same substitutions from U(ti) and, by induction,

νP f(ti) = gkνP fS(ti) and νPh(ti) = kνP fS(ti).
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Let us consider two cases.
The first case is when gS,u exists for some u ≈ u′ ∈ P and f expands gS,ufS . Then

also h expands the substitution and we can write h = pgS,ufS ; in fact, we can suppose
that k = pgS,u. Since f = gkfS = gpgS,ufS , we have

F (νP f(t1), · · · , νP f(tn)) = gpgS,uF (νP fS(t1), · · · , νP fS(tn)) = gplS,u(u),

so that νP f(t) = gplS,u(u
′) by the definition of νP . Quite similarly, νPh(t) = plS,u(u

′)
and we get νP f(t) = gνPh(t) as desired.

The second case is when f (and h, as well) does not expand any gS,ufS . Then gk
does not expand any gS,u. By the defining property of gS,u this means that there is no
substitution l with gkF (νP fS(t1), · · · , νP fS(tn)) = l(u) for any u ≈ u′ ∈ P . Hence the
term

gkF (νP fS(t1), · · · , νP fS(tn)) = F (gkνP fS(t1), · · · , gkνP fS(tn))
= F (νP f(t1), · · · , νP f(tn))

belongs to AP , so that, by the definition of νP ,

νP f(t) = F (νP f(t1), · · · , νP f(tn)) = gkF (νP fS(t1), · · · , νP fS(tn)).

Quite similarly νPh(t) = kF (νP fS(t1), · · · , νP fS(tn)), and we get νP f(t) = gνPh(t) as
desired.

This finishes the construction of U(t) together with the proof that it has the desired
property.

Clearly, it is possible to construct a finite set V of permissible substitutions such that
V contains both U(a) and U(b) and the minimal common expansion of any subset of V
belongs to V , under the assumption that it exists and is permissible. These will be our
testing substitutions. If a ≈ b is satisfied in AP , then νP f(a) = νP f(b) for any f ∈ V ,
since νP f is a homomorphism of the term algebra into AP . Conversely, suppose that
νP f(a) = νP f(b) for all f ∈ V , which can be tested in finite time. We shall show that
then a ≈ b is satisfied in AP , i.e., that h(a) = h(b) for any homomorphism h of the term
algebra into AP ; one can assume that h(x) = x for any variable x not in S(a) ∪ S(b).
Denote by e the substitution coinciding with h on the variables, so that h = νP e. There
is a substitution f ∈ V such that e = gf for some g, and e and f expand the same
substitutions from V . We have h(a) = νP e(a) = gνP f(a) = gνP f(b) = νP e(b) = h(b).

Together with Lemma 2.3, this proves the following:

Theorem 2.4. The set of the finite sets P of equations that are a perfect base for the

equational theory based on P , is recursive. 2

If the perfection test fails for a given finite pre-perfect base P0, there is still a possibility
to modify P0 to obtain another finite base P1 for the same equational theory E, which
would be either perfect itself or just the next member of a sequence P0, P1, · · · of finite pre-
perfect bases for E constructed each from the last one in the same way, the last member
of which is perfect. If Pi has already been constructed, a good candidate for Pi+1 is the
union of Pi with the set of the equations νPi

f(a) ≈ νPi
f(b) such that a ≈ b ∈ P0, f is

a substitution from the finite set V constructed as above, and νPi
f(a) 6= νPi

f(b). These
added equations seem to play a role similar to one played by critical pairs in the Knuth-
Bendix algorithm. It may be necessary, however, to replace some of the added equations
u ≈ v with their inverses v ≈ u, and to delete some of the equations or in some cases to
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modify the set in other ways to obtain again a pre-perfect set of equations; if some old
equations had to be deleted, one must then check that the new set is again a base for E,
which can be done by verifying that νPi+1

(a) = νPi+1
(b) for any a ≈ b ∈ P0. Clearly,

this process of constructing the sequence P0, P1, · · · may stop with failure, if we are not
able to modify one of its members to become a pre-perfect base for E. However, it works
well for many equational theories; see Ježek (1982) for the examples. If the sequence can
be constructed, it has the property that APi+1

is a proper subset of APi
for any i. It is

natural to ask whether it can be constructed to successfully terminate always when there
exists some finite perfect base Q for E such that AQ ⊆ AP0

. We do not know the answer
to this question, and feel that it deserves a deeper study. The most usual application
of the process described (in not very precise terms) above leads either to success, when
the sequence can be constructed, is finite, and its last member is a finite perfect base,
or to the proof that no perfect base exists (for example, one may find that a nontrivial
permutational identity would have to be added), or does not terminate, producing an
infinite sequence of finite pre-perfect bases for E. In the last case, it may happen that
each Pi is a subset of Pi+1, but the union of all these bases still is not a perfect base; we
then need to ‘construct’ a new infinite sequence of pre-perfect bases, starting with this
infinite union.

Theorem 2.4 has a simple corollary: For every finitely based and decidable equational
theory E, the set of the finite sets of equations that are perfect bases for E is recursive.
The same is not true for general bases in place of the perfect ones. For example, the
equational theory of idempotent groupoids is decidable (because the equation xx ≈ x is
a perfect base), but, as it follows from the results of Perkins (1967), Murskĭı (1971) and
McNulty (1976) and (1976a), the set of the finite sets of equations that are a base for
this equational theory is not recursive. On the other hand, it follows also from those four
papers that there is no algorithm deciding for any finite set B of equations, whether the
equational theory based on B has a finite perfect base.

Let us finish this section with several examples, illustrating the technique of perfect
bases both in very simple and in more complicated cases. In all our examples we shall
suppose that the given similarity type consists of a single binary symbol, denoted mul-
tiplicatively; algebras of this type are called groupoids. [xy · z is then an abbreviation
for (xy)z, etc.]

Example 2.5. The equation xy · yx ≈ x is a perfect base for the equational theory it
generates.

Example 2.6. In order to describe the equational theory based on xy · zx ≈ x, one
can try to prove that this single-equation base is already perfect. The test, as described
above, fails and provides two more equations that should be added to a perfect base,
namely, x(y · zx) ≈ xz and (xy · z)y ≈ xy. Now the three equations together can be
tested to a success; the three-element set of equations is a perfect base for the equational
theory.

Example 2.7. The equational theory based on x(y · zx) ≈ x has an infinite perfect base
consisting of the equations

(yn(yn−1(· · · (y2 · y1x))))(zm(zm−1(· · · (z2 · z1x)))) ≈ yn(yn−1(· · · (y2 · y1x)))
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where n,m ≥ 0 and n−m− 1 is divisible by 3. The proof is quite easy.

Example 2.8. The equational theory based on y(x ·xy) ≈ x has an infinite perfect base
consisting of the equations xx ·x ≈ x and rese ≈ te, where e runs over all finite sequences
of elements of {0, 1} and the terms re, se and te are defined inductively as follows:

r∅ = y, s∅ = x · xy, t∅ = x,
re0 = se, se0 = rete, te0 = re,
re1 = se · sere, se1 = te, te1 = re.

The proof is not very simple.

Example 2.9. The set P consisting of the three equations

x · yz ≈ yz, xx · x ≈ xx, ((xy · x)y)x ≈ (((xy · x)x)y)x

will serve as an example of a finite perfect base which is not finitely terminating. The
base is not finitely terminating, since the term ((xx ·x)x)x can be rewritten to an infinite
sequence of terms. It is also easy to check that P is a perfect base. Let us give a ‘human’
proof in this case, rather than say that the algorithm can be mechanically applied. Easily,
the set AP consists of the terms ((x0x1 ·x2) · · ·)xn where n ≥ 0, x0, · · · , xn are variables,
we do not have x0 = x1 = x2 if n ≥ 2 and we do not have x0 = x2 = x4 and x1 = x3

simultaneously if n ≥ 4. Denote the last of the three equations by p ≈ q.
One can check easily that P is pre-perfect. For that purpose, it is useful to observe

that if a · bc = dd · d, then this term contains a proper subterm a not belonging to AP ;
and that if f is a substitution such that every proper subterm of f(p) belongs to AP ,
then f(x) and f(y) are two distinct variables, so that the term f(q) then belongs to AP .
The multiplication of the groupoid AP , which we will denote by ◦, is then defined by

u◦v =















v if v is not a variable,
u if u = vv (then v must be a variable),
α(q) if uv = α(p) for an automorphism α,
uv otherwise

for any u, v ∈ AP .
It remains to prove that AP satisfies all the three equations. The first thing is to prove

a◦(b◦c) = b◦c for any a, b, c ∈ AP . Clearly, b◦c can never be a variable, so this is true.
Next we must show that (a◦a)◦a = a◦a for any a ∈ AP . If a is not a variable, then

a◦a = a, so both sides are equal to a. If a is a variable, both sides are equal to aa.
The last is to prove (((a◦b)◦a)◦b)◦a = ((((a◦b)◦a)◦a)◦b)◦a for a, b ∈ AP . If a is not a

variable, then clearly both sides are equal to a. If b is not a variable, then u◦b = b for
any u, so that both sides are equal to b◦a. If both a and b are variables and a = b, then
both sides are equal to a. If a, b are two distinct variables, then both sides are equal to
(((ab · a)a)b)a.

We see that a finite perfect base is not necessarily finitely terminating. On the other
hand, it is clear that every perfect set is confluent and it is finitely terminating very
often. For example, a perfect base with respect to which either every rewrite shortens
or every rewrite prolongs terms, is always finitely terminating. In example 2.9, we would
obtain a confluent and finitely terminating perfect base for the equational theory based
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on P if we simply replaced the equation p ≈ q with q ≈ p. There are situations, however,
when we need to consider weirder candidates for a perfect base than the obvious ones.
The example in the introduction gives a flavor of such situations.

Example 2.10. The set P consisting of the two equations

xx · yy ≈ xx, (xx · x) · yy ≈ ((xx · x)x)x

will serve as an example of a finite perfect base, the equational theory of which has
no (either finite or infinite) finitely terminating and confluent base. Denote by E the
equational theory based on P and by ◦ the multiplication of the groupoid AP . Based on
the following observation, one can easily check that P is perfect: if a ∈ AP , then

a◦a =

{

a if a is a square (i.e., a = tt for a term t),
aa if a is not a square.

In each case, a◦a is a square.
Suppose that there is a finitely terminating and confluent base Q for E. It is easy to

see that if t is a term with t ≈ xx ∈ E, then t contains xx as a subterm and so, because of
the finite termination, xx cannot be Q-rewritten to t. It follows that xx is in Q-canonical
form and the term xx · yy can be Q-rewritten in finitely many steps to xx. Denote by w
the Q-canonical form of (xx · x) · yy. We have w 6= (xx · x) · yy, since ((xx · x)x)x cannot
be Q-rewritten to (xx ·x) ·yy, due to finite termination. So we have (xx ·x) ·yy, as well as
xx·yy, can be Q-rewritten. This implies that w avoids both (xx·x)·yy and xx·yy, because
w cannot be Q-rewritten, being itself in Q-canonincal form. But then w ∈ AP and hence
w = ((xx · x)x)x, since P is perfect. This means that (xx · x) · yy can be Q-rewritten in
finitely many steps to ((xx · x)x)x. Consequently, the term ((xx · xx) · xx) · xx can be
Q-rewritten in finitely many steps to (((xx · xx) · xx) · xx) · xx, clearly a contradiction.

So there are equational theories with finite perfect bases but without any convergent
term rewriting system. The equational theory of semigroups serves as an example of an
equational theory with a convergent term rewriting system but with no perfect base.

3. Nonoverlapping bases

A set P of equations is said be nonoverlapping if the following are true:

(o1) if u ≈ u′ ∈ P , then S(u′) ⊆ S(u);
(o2) if u ≈ u′ ∈ P , v ≈ v′ ∈ P , s ⊆ v′, and u and s have a unifying pair, then s is a

variable and s 6= v′;
(o3) if u ≈ u′ ∈ P , v ≈ v′ ∈ P , s ⊆ v, and u and s have a unifying pair, then either s is

a variable or both s = u = v and u′ = v′.

Theorem 3.1. Let P be a nonoverlapping set of equations. Then P is a perfect base for

an equational theory.

Proof. If u ≈ u′ ∈ P , then u and u′ do not have a unifying pair, according to (o2); in
particular, u is not a variable. Conditions (pp1) and (pp2) are evidently satisfied, and
instead of (pp3) it is easier to verify the condition (pp3′) formulated in the proof of
Lemma 2.3. So, P is pre-perfect.
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In order to prove that the algebra AP satisfies all the equations from P , we must show
that h(a) = h(b) for any equation a ≈ b ∈ P and any homomorphism h of the term
algebra into AP . Denote by f the endomorphism of the term algebra which coincides
with h on the set of variables.

Let us prove by induction on the complexity of t that if t is either a subterm of b or a
proper subterm of a, then h(t) = f(t). If t is a variable, this follows from the definition
of f . Let t = F (t1, · · · , tn). We have

f(t) = F (f(t1), · · · , f(tn)),
h(t) = FA(h(t1), · · · , h(tn)) = FA(f(t1), · · · , f(tn))

= νP (F (f(t1), · · · , f(tn))) = νP (f(t))

and thus it remains to show that f(t) belongs to AP . Suppose, on the contrary, that
g(u) is a subterm of f(t) for some substitution g and an equation u ≈ u′ ∈ P . For any
variable x, g(u) cannot be a subterm of f(x), because f(x) ∈ AP . So, g(u) = f(s) for
a subterm s of t which is not a variable. This means that u, s have a unifying pair, a
contradiction with (o2) and (o3).

In particular, h(b) = f(b). On the other hand, if a = F (a1, · · · , an),

h(a) = FA(h(a1), · · · , h(an)) = FA(f(a1), · · · , f(an))

which is easily seen to be equal f(b) by comparing the definitions. 2

A quasiordering ⊑ on the set of terms is said to be fully compatible if F (a1, · · · , an) ⊑
F (b1, · · · , bn) whenever ai ⊑ bi for all i, and a ⊑ b implies f(a) ⊑ f(b) for any substitution
f . A quasiordering ⊑ such that the set {u : u ⊑ a} is finite for any a, is called downward

finite. A natural example of a fully compatible, downward finite quasiordering on the
set of terms is the following: u ⊑ v if and only if every variable, and also every operation
symbol, has at least as many occurrences in v as in u.

Theorem 3.2. Let an equational theory E have a nonoverlapping base P , such that there

is a fully compatible, downward finite quasiordering ⊑ on the set of terms with u ⊑ u′

whenever u ≈ u′ ∈ P . Then E is term finite.

Proof. By Theorems 2.2 and 3.1, P is a perfect base and νP is a normal form function
for E. We have t ⊑ νP (t) for any term t; this can be proved easily by induction on the
complexity of t. Since every term u with u ≈ t ∈ E satisfies νP (u) = νP (t), for a given
term t the set of all such terms u is contained in the principal ideal of νP (t), which is a
finite set. 2

Example 3.3. The equation

((xx · yy)x)x ≈ xx

is a nonoverlapping base for an equational theory E1. Similarly, the equation

(xx · x)(y · yy) ≈ (x(xx · x))(y · yy)

is a nonoverlapping base for an equational theory E2. While E1 is not term finite, E2 is
term finite, which follows from Theorem 3.2, using the quasiordering described immedi-
ately preceding that theorem.
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4. Normal bases

Let P be a set of equations. As before, we denote by AP the set of terms t such that
whenever u ≈ u′ ∈ P , then u 6≤ t. We shall suppose that P satisfies the following two
conditions:

(n1) if u ≈ u′ ∈ P , then u′ ∈ AP ;
(n2) if u ≈ u′ ∈ P , v ≈ v′ ∈ P and (u, u′) 6= (v, v′), then u 6≤ v.

By induction on a non-negative integer k, we are going to define the set of terms of
P -rank k, and for each term t of P -rank k a term νP (t) ∈ AP , in this way:

Terms of P -rank 0 are precisely the variables, and for any term of P -rank 0 we put
νP (t) = t.

A term t = F (t1, · · · , tn) is of P -rank k+1 if and only if it is not of P -rank ≤ k, every
ti is of P -rank ≤ k and if F (νP (t1), · · · , νP (tn)) = f(u) = g(v) for two substitutions
f, g and two equations u ≈ u′ ∈ P and v ≈ v′ ∈ P , then both f(u′) and g(v′) are of
P -rank ≤ k and νP f(u

′) = νP g(v
′). If t is of P -rank k + 1, we then define

νP (t) =

{

F (νP (t1), · · · , νP (tn)) if this term belongs to AP ,
νP f(u

′) if F (νP (t1), · · · , νP (tn)) = f(u) for some f , u ≈ u′.

If every term has a P -rank, i.e., if νP (t) is defined for every term t, then we can define
an algebra AP with the underlying set AP by

FA(t1, · · · , tn) = νP (F (t1, · · · , tn)).

Instead of saying that P is a set of equations satisfying (n1) and (n2) and such that
every term has a P -rank, we shall more briefly say that the algebra AP exists.

Lemma 4.1. Let AP exist. Then:

(1) If P is a recursive set of equations with recursive domain, then νP (t) can be computed

for any term t. There is an algorithm taking as an input any finite set of equations

P and any term t, and producing the term νP (t) in the case that the algebra AP

exists.

(2) νP is a homomorphism of the term algebra onto AP .

Proof. (1) is easy, and the proof of (2) is similar to that of Lemma 2.1. 2

By a normal base for an equational theory E we mean a base P for E such that the
algebra AP exists and satisfies all the equations from E.

It will be easy to see that this notion generalizes both perfect bases and finitely ter-
minating confluent bases. Consequently, one cannot expect the class of normal bases to
be recursive, or to be able to decide in general whether every term has a P -rank. The
notion will serve as a common generalization, suitable for some simple results on the
uniqueness.

Theorem 4.2. Let P be a normal base for E. Then:

(1) νP is a normal form function for E;
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(2) AP is the free E-algebra over the set of variables;

(3) E is decidable if P is recursive, with recursive domain.

Proof. It is similar to the proof of Theorem 2.2. 2

Theorem 4.3. Let R be a confluent and finitely terminating set of equations. Then the

equational theory E based on R has a normal base P with |P | ≤ |R|. If R is finite, then

P can be computed from R.

Proof. Denote by M the set of the minimal terms (minimal with respect to ≤) that
do not belong to AR, and by M0 a representative subset of M , i.e., a subset such that
every term from M is similar to precisely one term from M0. Clearly, M0 can be also
constructed from R by taking a representative subset of the set of minimal terms in the
domain of R. Consequently, |M0| ≤ |R|.
For every term t, any sequence of rewrites of t based on R is finite and terminates at

the same term. Denote this term by ν(t). We have u ≈ v ∈ E if and only if ν(u) = ν(v).
Denote by P the set of the equations u ≈ ν(u) with u ∈ M0. Clearly, AP = AR,

P ⊆ E and the conditions (n1) and (n2) are satisfied. If R is finite then P can be
computed from R, because the mapping ν is computable. It is easy to prove by induction
on k for any term t of P -rank k, that νP (t) = ν(t).

Suppose there is a term t0 which has no P -rank. Then there is a subterm s =
F (s1, · · · , sn) of t0 which also has no P -rank, but every si has a P -rank, so that νP (si) =
ν(si). We have t0 = L(s) for a lift L. If F (νP (s1), · · · , νP (sn)) = f(u) = g(v) for two
substitutions f and g and two equations u ≈ u′ ∈ P and v ≈ v′ ∈ P where both
f(u′) and f(v′) have P -ranks, then νP f(u

′) = νf(u′) = νf(u) = νg(v) = νg(v′) =
νP g(v

′). So, according to the definition, it is only possible for s to have no P -rank if
F (νP (s1), · · · , νP (sn)) = f(u) for a substitution f and an equation u ≈ u′ ∈ P such that
f(u′) has no P -rank. The term t1 = L(f(u′)) also has no P -rank, and can be obtained
from t0 by a nonempty sequence of rewrites based on R. This clearly violates the finite
termination property of R. Consequently, every term t has a P -rank and νP (t) = ν(t).

From this it follows that P is a base for E. Since νP is a normal form function, AP

satisfies all the equations from E. 2

The normal base P produced above from the convergent rewrite system R is familiar as
a canonical rewrite system (i.e. reduced and convergent). See Dershowitz and Jouannaud
(1990), section 7.5, for a brief discussion of these kinds of rewrite systems and for pointers
to the literature. The content of the theorem above is that such canonical systems also
turn out to be normal bases.

Lemma 4.4. Let P and Q be two normal bases for E, and let u ≈ u′ ∈ Q be such that

u ∈ AP . Then u′ /∈ AP , and there is an equation v ≈ v′ ∈ P with v′ ≤ u; we either have

v /∈ AQ, or the equations u ≈ u′ and v′ ≈ v are similar.

Proof. Suppose u′ ∈ AP . Since also u ∈ AP , and u ≈ u′ ∈ E, we get u = νP (u) =
νP (u

′) = u′, a contradiction with u ≈ u′ ∈ Q.
Since P is a base for E and we have u ≈ u′ ∈ E and u 6= u′, there is an equation

v ≈ v′ ∈ P with either v ≤ u or v′ ≤ u. We cannot have v ≤ u, because v /∈ AP and
u ∈ AP . Hence v′ ≤ u is the only possibility.
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Let v ∈ AQ. Then v′ /∈ AQ, since v ≈ v′ ∈ E and v 6= v′. Since u is a minimal term not
in AQ, we get v′ ∼ u. So, v′ = α(u) for an automorphism α of the term algebra. Since
u ≈ u′ ∈ E, we have α(u) ≈ α(u′) ∈ E, i.e., v′ ≈ α(u′) ∈ E. But also v ≈ v′ ∈ E, so
v ≈ α(u′) ∈ E. Both sides of this last equation belong to AQ, and thus v = α(u′). 2

Theorem 4.5. Let E have a normal base consisting of a single equation u ≈ u′. Then

any other normal base for E contains an equation similar to either u ≈ u′ or u′ ≈ u.

Proof. Clearly, every normal base P for E is determined uniquely up to the similarity
of equations by the set AP . Indeed, an equation u ≈ u′ is similar to an equation from
P if and only if u is a minimal term not in AP , and u′ is the only term in AP with
u ≈ u′ ∈ E. So, if P and Q are two bases for E that are not equal up to similarity of
their equations, then the sets AP and AQ are different; moreover, it is easy to see that
they are incomparable with respect to set inclusion. The statement follows from these
remarks and Lemma 4.4. 2

Example 4.6. Let E be the equational theory based on the equation

x · xx ≈ xx · xx

The base P consisting of this equation is perfect; one can easily verify that it is nonover-
lapping. Since the equation is in one variable and the right side is longer than the left
side, for any term t it is clear that νP (t) is the longest among the terms u with u ≈ t ∈ E.
For some purposes we would need, however, to have a normal base which shortens terms
rather than makes them longer. It turns out that there is precisely one (up to similarity)
normal base for E with this property. By Theorem 4.5, such a base must contain the
equation xx · xx ≈ x · xx. The base consisting of this equation is pre-perfect, but not
perfect; the algorithm described in Section 2 will yield an equation that must be added,
but the resulting two equations still do not provide for a perfect base. If we continue this
process, we find that we need to include infinitely many equations uiui ≈ vi (i = 0, 1, · · ·)
where

u0 = xx,
ui+1 = vi,

v0 = x · xx,
vi+1 = uivi.

It is not difficult to verify that the set Q consisting of these infinitely many equations is a
perfect base for E, and the only normal base which shortens terms. So, the requirement
to make the terms shorter may be at the cost of the cardinality of the normal base.

Theorem 4.7. Let E be an equational theory having a normal base P with the property

that u ≈ u′ ∈ P implies u′ ≤ u. Then P is, up to similarity of equations, the only normal

base for E.

Proof. Let Q be another normal base for E. Suppose that there is an equation u ≈
u′ ∈ P with u ∈ AQ. By Lemma 4.4, u′ /∈ AQ. But u

′ ≤ u, so u /∈ AQ, a contradiction.
Consequently, u ∈ AQ for any u ≈ u′ ∈ P . This means AQ ⊆ AP , and hence AQ = AP .

It follows that every equation from P is similar to an equation from Q and vice versa. 2

Theorem 4.8. Let B be a set of equations of the form

F (u1, · · · , un) ≈ u1 (⋆)
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and E be the equational theory based on B. Then E has, up to similarity of equations,

precisely one normal base; this normal base is perfect and consists again of equations of

the form (⋆).

Proof. For any term u which is neither a variable nor a nullary operation symbol, so
that u = F (u1, · · · , un), put u

∗ = u1. Then u ≈ u∗ are just the equations of the form (⋆).
Let P be a representative set of the equations u ≈ u∗, where u is a minimal term with
the property that u∗ exists and u ≈ u∗ ∈ E; representative in the sense that every such
equation is similar to precisely one equation from P .

It is easy to prove by induction on the complexity of a term u that if (u∗ exists and)
u ≈ u∗ ∈ E, then u ≈ u∗ is a consequence of P . In particular, P is a base for E. The three
conditions in the definition of a pre-perfect set are evidently satisfied, so in order to see
that P is a perfect base, we must verify that the algebra A = AP is a model of P . Let h
be a homomorphism of the term algebra into AP , and denote by f the substitution with
f(x) = h(x) for all variables x, so that h = νP f . Clearly, for any term t = F (t1, · · · , tn)
we have either h(t) = F (h(t1), · · · , h(tn)) or h(t) = h(t1).

Let us prove by induction on the complexity of a term t that h(t) ≈ f(t) ∈ E.
This is clear if t is a variable, so let t = F (t1, · · · , tn). By induction, h(ti) ≈ f(ti) ∈
E for all i. If F (h(t1), · · · , h(tn)) ∈ AP , then h(t) = F (h(t1), · · · , h(tn)) and f(t) =
F (f(t1), · · · , f(tn)), so that the equation evidently belongs to E. The remaining case is
when F (h(t1), · · · , h(tn)) = s(u) for a substitution s and an equation u ≈ u∗ ∈ P . Then
h(t) = s(u∗) = h(t1). Now u ≈ u∗ ∈ E implies s(u) ≈ s(u∗) ∈ E, which means that
F (h(t1), · · · , h(tn)) ≈ h(t1) ∈ E. But F (h(t1), · · · , h(tn)) ≈ F (f(t1), · · · , f(tn)) ∈ E, so
F (f(t1), · · · , f(tn)) ≈ h(t1) ∈ E. Since F (f(t1), · · · , f(tn)) = f(t) and h(t1) = h(t), this
gives f(t) ≈ h(t) ∈ E.

Let u ≈ u∗ ∈ P . We need to prove that h(u) = h(u∗). It follows from f(u) ≈ f(u∗) ∈
E and the above observation that h(u) ≈ h(u∗) ∈ E. If h(u) 6= h(u∗), then h(u) =
F (h(u1), · · · , h(un)), so that h(u∗) = h(u)∗ and then h(u) ≈ h(u)∗ ∈ E yields h(u) /∈ AP ,
a contradiction.

We have proved that P is a perfect base for E. Its uniqueness follows from Theorem 4.7.
2

Example 4.9. One can easily see that the equational theory based on the equation
xy ·x ≈ x has no normal base. This means that there is no hope to generalize Theorem 4.8
in such a way that we would allow the right sides of the equations in B to be deeper
subterms of the corresponding left sides.

Since the proof of Theorem 4.8 does not tell us whether the perfect base P is recursive
(we know that it need not be finite), we leave the following question open:

Problem. Is the equational theory based on any finite set of equations of the form (⋆)
decidable?

The technique of normal bases may also lead to an answer to the following question:

Problem. Is there an algorithm deciding for any equation a ≈ b in a single variable,
such that the two terms a and b are incomparable, whether the equational theory based
on a ≈ b is term finite? Is the answer always yes?
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Although there are several essentially different ways in which to understand the no-
tion of a random equation, the following problem should be interesting in any of these
formulations:

Problem. Is a random equation u ≈ v with S(u) = S(v) a perfect base for the equational
theory based on that equation?
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