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Abstract. After enumerating isomorphism types of at most five-element left distributive
groupoids, we prove that a distributive groupoid with less than 81 elements is necessarily
medial.

0. Introduction

By a groupoid we mean a nonempty set together with a binary, multiplicatively de-
noted operation. A groupoid is called left distributive if it satisfies the identity x(yz) =
(xy)(xz). Right distributive groupoids are defined dually, and distributive groupoids are
the groupoids that are both left and right distributive. A groupoid is called medial if
it satisfies the identity (xy)(uv) = (xu)(yv). Medial groupoids have been studied under
various other names like entropic, abelian, Abelian, and surcommutative.

After giving (in Section 1) a table of the numbers of isomorphism types of at most
five-element groupoids in the variety of left distributive groupoids (and in some important
subvarieties), we proceed to our main result in Section 2, claiming that the smallest possible
cardinality of a non-medial distributive groupoid is 81.

The two varieties, of distributive and of medial groupoids, are closely connected. As
one can easily see, every idempotent medial groupoid is distributive. On the other hand,
according to [6], every distributive groupoid is trimedial, i.e., the subgroupoid generated
by any three elements of a distributive groupoid is medial.

The two-element group is an example of a non-distributive medial groupoid. On the
other hand, constructions of non-medial distributive groupoids are not so immediate. The
first examples can be found in [2] and [4]. Bol [2] constructs a non-associative commutative
Moufang loop of order 81, and Hall [4] constructs an affine Steiner triple system of the
same order; both these structures are equivalent with symmetric distributive quasigroups.
It is proved in [4] in a special case and in [10] in general that every non-medial distributive
quasigroup contains at least 81 elements. So, the aim of Section 2 is to generalize this
result from quasigroups to groupoids.

1. Left distributive groupoids of order at most five

Let us denote by LD, ILD, MLD, SLD, ISLD, D, IM, CD and CIM the varieties of
left distributive groupoids, idempotent left distributive groupoids, medial left distribu-
tive groupoids, left distributive semigroups, idempotent left distributive semigroups, dis-
tributive groupoids, idempotent medial groupoids, commutative distributive groupoids and
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commutative idempotent medial groupoids, respectively. Table 1 contains the following
information. The number in the row labeled i and in the column labeled V represents the
number of isomorphism types of i-element groupoids in the variety V .

LD ILD MLD SLD ISLD D IM CD CIM

2 6 3 5 4 3 4 3 2 1
3 48 17 32 16 9 19 13 7 3
4 720 141 405 93 38 120 71 24 7
5 33425 1704 25185 682 179 921 449 103 22

Table 1

Table 2 specifies the numbers of isomorphism types of left distributive groupoids
according to the number of idempotent elements. The number in the row labeled i and
in the column labeled j represents the number of pairwise non-isomorphic left distributive
groupoids of order i with precisely j idempotents.

0 1 2 3 4 5

2 1 2 3 0 0 0
3 2 17 12 17 0 0
4 25 233 179 142 141 0
5 704 21699 3936 3115 2267 1704

Table 2

The numbers were computed manually for two- and three-element groupoids. A prim-
itive computer program is able to generate all four-element groupoids in a historically short
period of time, check for the left distributive ones and store each, whenever it fails to be
isomorphic with the previously stored ones. On the other hand, the number 525 of the
multiplication tables of five-element groupoids is too big; in order to obtain the required
numbers, we had to classify five-element groupoids according to the isomorphism types
of their unary derived operations f(x) = xx, and find in each case separately a suitable
restrictive condition on the multiplication tables to be generated by a computer program.

Let us also mention that there are 8 isomorphism types of quasitrivial left distributive
three-element groupoids; for four- and five-element groupoids the numbers are 24 and 71,
respectively. A groupoid G is called quasitrivial if xy ∈ {x, y} for all x, y ∈ G. Left
distributive quasitrivial groupoids were completely described in [1].

2. Non-medial distributive groupoids of the least possible order

2.1. Theorem. Let G be a non-medial distributive groupoid such that every proper

subgroupoid of G is medial. Then G is a quasigroup.
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Proof. In the process of proving we shall need some results from [6], and so we assume
that the reader is acquainted with that paper. The proof will be divided into eight parts.

Claim 1. G is finitely generated. Indeed, G is not medial and thus (ab)(cd) 6= (ac)(bd)
for some a, b, c, d ∈ G. But then G is generated by these four elements.

Claim 2. G is idempotent. This is due to Theorem III.1.8 of [6].
Claim 3. G is ideal-free. Suppose that this is not true, so that G contains a proper

prime ideal I by Proposition V.1.11 of [6]. Then both I and K = G − I are medial
subgroupoids of G and consequently the factor G/I is also medial, since it is isomorphic
to the groupoid K with an annihilating element added. Denote by r the congruence
(I × I) ∪ idG, so that G/I = G/r. For each a ∈ I, the left and right translations La and
Ra are homomorphisms of G into I. Moreover, we have

⋂

a∈I

Ker(La) ∩
⋂

a∈I

Ker(Ra) ∩ r = idG.

This shows that G is isomorphic to a subdirect product of some factors of G, all of which
are medial. But then G is also medial, a contradiction.

Claim 4. The factor G/p, where p is the congruence of G defined by (x, y) ∈ p
if and only if xe = ye for all e ∈ G, is not medial. Suppose, on the contrary, that
(ab · cd)e = (ac · bd)e for all a, b, c, d, e ∈ G and denote by M the set of the ordered
quadruples (x, y, u, v) ∈ G4 such that xy · uv = xu · yv. Let (x, y, u, v) ∈ M and z ∈ G.
We have

(zx · y)(uv) = (zy · xy)(uv) = (zy · uv)(xy · uv) = (zy · uv)(xu · yv) =

(zu · yv)(xu · yv) = (zu · xu)(yv) = (zx · u)(yv),

(x · zy)(uv) = (xz · uv)(xy · uv) = (xu · zv)(xu · yv) = (xu)(zy · v),

(xy)(u · zv) = (xy · uz)(xy · uv) = (xu · yz)(xu · yv) = (xy)(y · zv),

so that (zx, y, u, v) ∈ M , (x, zy, u, v) ∈ M and (x, y, u, zv) ∈ M . Now let a, b, c, d ∈ G.
We have (a, b, d, d) ∈ M , since G is right distributive and idempotent. It follows from the
above proved properties of M that (ab · a, cb, ab · d, cd) ∈ M . By Theorem IV.2.3 of [6] we
have (ab · c)(ab) = (ab · a)(cb) and so

ab · cd = (ab · c)(ab · d) = ((ab · c)(ab))((ab · c)d) =

((ab · a)(cb))((ab · d)(cd)) = ((ab · a)(ab · d))(cb · cd) =

(ab · ad)(c · bd) = (a · bd)(c · bd) = ac · bd.

Thus G turns out to be medial, a contradiction.
Claim 5. No non-trivial factor of G is a semigroup of right zeros. Suppose that r is

a congruence of G such that G/r is a semigroup of right zeros, i.e., G/r satisfies xy = y.
Denote by Ai (i ∈ I) the blocks of r, so that the sets Ai are left ideals of G. If r 6= G×G,
then for any i ∈ I, Ai is a medial groupoid, so that we can consider the endomorphism
groupoid Ei of Ai and Ei is again medial. We can define a homomorphism f of G into the
product of the groupoids Ei (i ∈ I) by f(a) = La|Ai. But Ker(f) = p, as it is easy to see,
and so G/p is medial; we get a contradiction with Claim 4. This proves r = G×G.
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Claim 6. G is both left- and right-ideal-free. Define a relation r on G by (a, b) ∈ r if
and only if the elements a and b generate the same left ideal of G. Obviously, (a, b) ∈ r if
and only if b = a1(. . . (ana)) and a = b1(. . . (bmb)) for some elements a1, . . . , an, b1, . . . , bm
of G and it is clear that r is a congruence of G. Moreover, a · bc = ab · ac = (a · ac)(b · ac)
for all a, b, c ∈ G, (a · bc, b · ac) ∈ r and we see that the factor H = G/r is left permutable,
i.e., satisfies the identity x · yz = y · xz. Suppose that H is non-trivial. Since H is
finitely generated by Claim 1, it possesses a non-trivial simple factor K. This groupoid
is left permutable and also ideal-free by Claim 3. Consequently, K is not a quasigroup
(because a non-trivial distributive quasigroup cannot be left permutable); also, it is not a
semigroup of left zeros, and it is not a commutative semigroup. Now, all simple distributive
groupoids have been found in [5]; if we take a look through the list, we can see that only
one possibility remains for K: the groupoid K is a semigroup of right zeros. However, this
is a contradiction with Claim 5. Thus r = G×G and G is left-ideal-free. Analogously, G
is rigt-ideal-free.

Claim 7. G is divisible. Indeed, it follows from Claim 6 and from Theorem V.6.6
of [6] that G is regular and therefore the factor G/p is isomorphic to the subgroupoid Ga
of G for every a ∈ G. With respect to Claim 4, Ga = G and G is right divisible. One can
show similarly that G is left divisible.

Claim 8. G is a quasigroup. By Claim 7 and Theorem 2.6 of [7], there exist a
commutative Moufang loop G(+) with the same underlying set as G and two surjective
central endomorphisms f, g of G(+) such that fg = gf and ab = f(a)+g(b) for all a, b ∈ G.
Denote by R the subring generated by f and g in the ring of central endomorphisms ofG(+)
(see [8]). Then R is a finitely generated commutative ring, and hence, as it is well known, R
is noetherian. Moreover, the loop G(+) can be viewed as a special R-quasimodule (see [8]).
It is an easy consequence of Claim 1 that the quasimodule G(+) is finitely generated, and
therefore it is noetherian by Proposition 4.6 of [8]. However, the mappings f and g are
also surjective endomorphisms of the notherian quasimodule G(+) and consequently both
f and g are injective. We have proved that f and g are automorphisms of G(+), which
implies that G is a quasigroup.

2.2. Corollary. Let G be a finite non-medial distributive groupoid. Then G contains a

non-medial subquasigroup.

According to Lemma VI.6.2 of [10], every non-medial distributive quasigroup contains
at least 81 elements. This, combined with 2.2, yields

2.3. Corollary. Every non-medial distributive groupoid contains at least 81 elements.

Moreover, if we combine these results with Theorem 12.4 of [9], we obtain

2.4. Corollary. The number of isomorphism types of non-medial distributive groupoids

of order 81 is 6.

The number of isomorphism types of medial distributive groupoids of order 81 is much
larger. For example, every semilattice is a medial distributive groupoid and one can show
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easily that there exist more than 1080 pairwise non-isomorphic semilattices of order 81.
On the other hand, proceeding similarly as in the proof of Theorem 14.7 of [9], it is not
difficult to show that there exist, up to isomorphism, precisely 18 non-medial distributive
groupoids of order 82. It would be interesting to find some limits or bounds for the ratio of
the number of non-medial distributive groupoids to that of medial ones of the same order.
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10. J. P. Soublin, Étude algébrique de la notion de moyenne, J. Math. Pures et Appl. 50

(1971), 53–264.

MFF UK, Sokolovská 83, 18600 Praha 8
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