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Abstract. In this paper we investigate bijective reflexions and coreflexions of com-
mutative unars.

V tomto článku jsou vyšetřovány bijektivńı reflexe a koreflexe komutativńıch
unár̊u.

1. Introduction and preliminaries

Let n be a positive integer. By an n-unar we mean an algebra A with n unary
operations, i.e., A = (A, f1, . . . , fn) where A is a nonempty set and f1, . . . , fn are
transformations of A. The n-unar is said to be
— commmutative if fifj = fjfi for all i, j ∈ {1, . . . , n},
— cancellative if the transformations fi are all injective,
— divisible if the transformations fi are all surjective,
— bijective if the unary operations fi are all permutations.
We denote by Cn the variety of commutative n-unars, by CCn the class of can-

cellative commutative n-unars, by DCn the class of divisible commutative n-unars
and by BCn the class of bijective commutative n-unars. Let us observe that the
n-unar A = (A, f1, . . . , fn) is commutative if and only if fi is an endomorphism of
A, for any i.

In this paper we are going to investigate reflexions and coreflexions of arbitrary
commutative n-unars in the category of bijective commutative n-unars. If L is a
subcategory of a category K and A is an object of K, then by a reflexion of A in L
we mean an object B of L together with a morphism µ : A→ B such that for any
morphism ν : A→ C, where C is an object of L, there exists a unique L-morphism
λ : B → C with ν = λµ. (More simply, we can say that µ : A→ B is the reflexion.)
Coreflexions are defined dually.

With respect to the subcategory of bijective commutative n-unars, the reflexions
and coreflexions will be called bijective. We shall give the constructions and also
investigate related concepts of bijective envelopes and bijective covers of cancellative
and divisible commutative n-unars, respectively.

The construction of a bijective coreflexion of a divisible commutative 2-unar has
been given in an earlier paper [2]; it was needed as an auxiliary result to prove that

1991 Mathematics Subject Classification. 08A60,08C05.

Key words and phrases. unar, reflexion, coreflexion.
While working on this paper the first author was partially supported by the Grant Agency of

the Academy of Sciences of the Czech Republic, Grant No A1019508.

Typeset by AMS-TEX

1
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every medial division groupoid is a homomorphic image of a medial quasigroup, and
turned out to be a two-dimensional version of the ergodic-theoretic construction of
an automorphism on a measure space naturally extending an endomorphism; see
Chapter 10, §4 of [1] for the entropic theory of dynamical systems. In Section 4 of
the present paper we generalize this construction.

Let A = (A, f1, . . . , fn) be a commutative n-unar and denote by f the compo-
sition f1 . . . fn, so that f is an endomorphism of A. One can easily see that A

is cancellative if and only if f is injective, and A is divisible if and only if f is
surjective. Consequently, A is bijective if and only if f is a permutation of A. We
have

idA ⊆ ker(f) ⊆ ker(f2) ⊆ . . .

and the relation cA =
⋃∞

i=0 kerf
i is the smallest cancellative congruence of A. (By

a cancellative congruence we mean such a congruence that the corresponding factor
is cancellative.)

Subalgebras of n-unars will be called subunars. By a dense subunar of a com-
mutative n-unar A we mean a subunar B such that for any element a ∈ A there is
a nonnegative integer i with f i(a) ∈ B.

1.1. Lemma. Let ϕ and ψ be two homomorphisms of a commutative n-unar A

into a cancellative commutative n-unar C and let B be a dense subunar of A. If ϕ
and ψ coincide on B, then ϕ = ψ.

Proof. Let f = f1 . . . fn and g = g1 . . . gn, where A = (A, f1, . . . , fn) and C =
(C, g1, . . . , gn). Let a ∈ A. Then f i(a) ∈ B for some i and we have

giϕ(a) = ϕf i(a) = ψf i(a) = giψ(a).

Hence ϕ(a) = ψ(a), since g is injective. �

Let A = (A, f1, . . . , fn) be a commutative n-unar and f = f1 . . . fn. We denote
by DA the set of the elements of A for which there exists an infinite sequence
a0, a1, . . . with ai = f(ai+1) for all i. Clearly, DA is either empty or the underlying
set of a subunar of A, which is then denoted by DA; it is the largest divisible
subunar of A.

We denote by C+
n the class of the commutative n-unars A with nonempty DA.

Clearly, the classes BCn, DCn and the class of finite commutative n-unars are con-
tained in C+

n .

If ϕ is a homomorphism of a commutative n-unar A into a commutative n-
unar B, then clearly ϕ(DA) ⊆ DB . In particular, if A ∈ C+

n , then B ∈ C+
n .

1.2. Example. Define a unary operation f on the set Z of integers by

f(i) = i− 1 for i ≤ 0,

f(n2 + i) = i for n > 0 and 0 ≤ i ≤ 2n.

For the 1-unar (Z, f) we have D(Z,f) = ∅, although the set
⋂

i≥0 f
i(Z) is nonempty.
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2. Bijective reflexions of commutative unars

Let A = (A, f1, . . . , fn) be a commutative n-unar. Put f = f1 . . . fn, Â = A×ω

where ω is the set of nonnegative integers and define transformations f̂1, . . . , f̂n of
Â by

f̂i(a, k) = (fi(a), k).

Clearly, the algebra Â = Â(f̂1, . . . , f̂n) is again a commutative n-unar and the

mapping ι : a 7→ (a, 0) is an injective homomorphism of A into Â.
Denote by r the set of the ordered pairs ((a, k), (f(a), k + 1)) where a ∈ A and

k ∈ ω, so that r is a binary relation on Â; denote by sA (or only by s) the transitive

closure of r ∪ r−1 ∪ idÂ. Then s is the equivalence on Â generated by r.

2.1. Lemma. Let (a, k) and (b,m) be two elements of Â with k ≤ m. Then

((a, k), (b,m)) ∈ s if and only if f j(a) = f j+k−m(b) for an integer j ≥ m− k.

Proof. The ‘if’ part is clear, since ((a, k), (f j(a), k+j)) ∈ s and ((b,m), (f j+k−m, k+
j)) ∈ s by the definition of s. Let ((a, k), (b,m)) ∈ s. There is a finite se-

quence x0, . . . , xq (q ≥ 0) of elements of Â such that x0 = (a, k), xq = (b,m)
and (xi, xi+1) ∈ r ∪ r−1 for 0 ≤ i < q. We can assume that q is the least
nonnegative integer with respect to the existence of a finite sequence with these
properties. Using the minimality of q, the obvious observation r ∩ r−1 = ∅ and
the fact that (xi, xi+1) ∈ r−1 and (xi+1, xi+2) ∈ r together imply xi = xi+2, it is
easy to see that there is a j ∈ {0, . . . , q} such that (xi, xi+1) ∈ r for all i < j and
(xi, xi+i) ∈ r−1 for all i ≥ j. But then xj = (f j(a), k+ j) and, from the other side,
xj = (fq−j(b),m+ q− j); we get k+ j = m+ q− j, which implies q− j = j+k−m,
and f j(a) = fq−j(b). �

The relation r is clearly compatible with the unary operations f̂i. This implies
that s is a congruence of Â; s is just the congruence generated by r. Denote by
Ã = (Ã, f̃1, . . . , f̃n) the factor Â/s, by π the natural projection of Â onto Ã and

put ψA = πι, so that ψA is a homomorphism of A into Ã.

2.2. Theorem. Ã is a bijective commutative n-unar; together with ψA, it is a

reflexion of A in the category BCn. We have ker(ψA) = cA and the range of ψA is

a dense subunar of Ã which is isomorphic to A/cA.

Proof. Let f̃ = f̃1 . . . f̃n. In order to show that Ã is bijective, it is sufficient to
verify that f̃ is a permutation of Ã. From

(a, k)/s = (f(a), k + 1)/s = f̃((a, k + 1)/s)

we see that f̃ is surjective. On the other hand, let (a, k)/s and (b,m)/s be two

elements of Ã with k ≤ m such that f̃((a, k)/s) = f̃((b,m)/s). Then we have
((f(a), k), (f(b),m)) ∈ s and consequently f j+1(a) = f j+1+k−m(b) for some j ≥

m− k by 2.1; a second application of 2.1 yields (a, k)/s = (b,m)/s. Hence f̃ is also
injective.

It follows easily from 2.1 that ker(ψA) = cA. If a ∈ A and k ∈ ω, then

f̃((a, k)/s) = (a, 0)/s ∈ ψA(A), so that the range of ψA is a dense subunar of

Ã; the subunar is isomorphic to A/cA by the homomorphism theorem.

It remains to prove that ψA : A → Ã is a reflexion of A in BCn. Let ρ be a
homomorphism of A into a bijective commutative n-unar B = (B, g1, . . . , gn). Put
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g = g1 . . . gn, so that g is a permutation of B. Define a mapping λ : Â → B by
λ(a, k) = g−kρ(a). One may check easily that λ is a homomorphism of the n-unars
and λι = ρ. Since

λ(a, k) = g−kρ(a) = g−k−1gρ(a) = g−k−1ρf(a) = λ(f(a), k + 1),

we have s ⊆ ker(λ). Consequently, λ induces a homomorphism τ : Ã → B such
that τπ = λ. Then also τψA = τπι = λι = ρ. Moreover, τ is unique by 1.1, because
the range of ψA is dense in Ã. �

2.3. Proposition. If A is cancellative, then ψA is injective. If A is divisible,

then ψA is surjective. If A is finite, then Ã is also finite and ψA is surjective.

Proof. If A is cancellative, then ker(ψA) = cA = idA by Theorem 2.2. If A is

divisible, then the range of ψA is a divisible subunar of the bijective n-unar Ã,
and consequently bijective itself; but it is also a dense subunar and thus coincides
with Ã. If A is finite, then the image of ψA is a finite subunar of the bijective
n-unar Ã, so that again it is bijective and coincides with Ã. �

The existence of reflexions implies that there is a functor Φ of the category Cn
into BCn: if ϕ : A → B is a homomorphism of two commutative n-unars, then
Φ(ϕ) : Ã → B̃ is the only homomorphism with Φ(ϕ)ψA = ψBϕ. It follows easily
from 2.1 that Φ(ϕ) can be defined by Φ(ϕ)((a, k)/sA) = (ϕ(a), k)/sB, and that
Φ(ϕ) is injective (or surjective, respectively) whenever ϕ is.

3. Bijective envelopes of cancellative commutative unars

By a bijective envelope of a commutative n-unar A we mean a bijective commu-
tative n-unar B such that A is a dense subunar of B.

3.1. Theorem. A commutative n-unar A has a bijective envelope if and only if

it is cancellative; in that case the bijective envelope is unique up to isomorphism

over A and is isomorphic with Ã. If A is a subunar of a bijective commutative

n-unar B, then B is a bijective envelope of A if and only if B is the only bijective

subunar of B containing A.

Proof. It is an easy combination of the construction and results given in Sec-
tion 2. �

4. Bijective coreflexions of commutative unars

Let A = (A, f1, . . . , fn) be a commutative n-unar and put f = f1 . . . fn. Denote
by Ā the set of the mappings α : ω → A such that f(α(i+ 1)) = α(i) for all i ∈ ω.
Define unary operations f̄1, . . . , f̄n on Ā by

f̄j(α)(i) = fj(α(i));

the correctness follows from

f(f̄j(α)(i+ 1)) = f(fj(α(i+ 1))) = fj(f(α(i+ 1))) = fj(α(i)) = f̄j(α)(i).

One can easily check that that the unary operations f̄j commute. Hence, if Ā
is nonempty, then Ā = (Ā, f̄1, . . . , f̄n) is again a commutative n-unar. Define a
mapping φA : Ā→ A by φA(α) = α(0).

If A /∈ C+
n , then there is no bijective commutative n-unar with a homomorphism

into A; in particular, A has no coreflexion in the category of bijective commutative
n-unars.
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4.1. Theorem. Let A ∈ C+
n . Then φA : Ā → A is a coreflexion of A in the

category of bijective commutative n-unars. The range of φA coincides with DA.

Proof. Since A ∈ C+
n (i.e., DA 6= ∅), the set Ā is nonempty. We are going to prove

that the unary operations f̄j are permutations of Ā.

If f̄j(α) = f̄j(β) for some α, β ∈ Ā, then fj(α(i)) = fj(β(i)) for all i ∈ ω.
Consequently,

f(α(i)) = f1 . . . fj−1fj+1 . . . fnfj(α(i)) = f1 . . . fj−1fj+1 . . . fnfj(β(i)) = f(β(i))

for all i ∈ ω, and hence also

α(i) = f(α(i+ 1)) = f(β(i+ 1)) = β(i),

i.e., α = β. We see that f̄j is injective.

If α ∈ Ā, then we can define a mapping β : ω → A by

β(i) = f1 . . . fj−1fj+1 . . . fn(α(i+ 1)).

One can easily verify that f(β(i + 1)) = β(i), i.e., β ∈ Ā. We have f̄j(β)(i) =
fj(β(i)) = f(α(i+ 1)) = α(i), so that f̄j(β) = α. We see that f̄j is surjective, and
A is a bijective commutative n-unar.

Obviously, φAf̄j = fjφA for every j, and hence φA is a homomorphism of Ā
into A. Clearly, DA is just the range of φA.

Let B = (B, g1, . . . , gn) be a bijective commutative n-unar and ρ : B → A be a
homomorphism. Put g = g1 . . . gn. For every x ∈ B define a mapping λ(x) : ω → A
by λ(x)(i) = ρ(g−i(x)). Then

f(λ(x)(i+ 1)) = f(ρ(g−i−1(x))) = ρ(gg−i−1(x)) = ρ(g−i(x)) = λ(x)(i)

and this means that λ(x) ∈ Ā. Consequently, λ is a mapping of B into Ā. It is a
homomorphism of B into Ā, since

λ(gj(x))(i) = ρ(g−i(gj(x))) = fjρ(g
−i(x)) = fj(λ(x)(i)) = f̄j(λ(x))(i),

i.e., λ(gj(x)) = f̄j(λ(x)). For x ∈ B we have φAλ(x) = λ(x)(0) = ρ(x), and hence
φAλ = ρ.

It remains to prove the uniqueness of a homomorphism λ with this property. Let
λ′ : B → Ā be a homomorphism with φAλ

′ = ρ. Put f̄ = f̄1 . . . f̄n. One can easily
check that f̄(α)(i) = f(α(i)) and f̄ i(α)(i) = α(0) for all α ∈ Ā and i ∈ ω. If x ∈ B,
then

λ′(x)(i) = (f̄−i(λ′(x)))(0) = λ′(g−i(x))(0) = φA(λ′(g−i(x)))

= ρ(g−i(x)) = λ(x)(i)

for every i ∈ ω, so that λ′(x) = λ(x). �
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4.2. Proposition. If A is divisible, then φA is surjective. If A ∈ C+
n is cancella-

tive, then φA is injective. If A is finite, then Ā is finite.

Proof. If A is divisible, then the range DA of φA coincides with A. If A is injective,
then f is injective and it is easy to see that for any element a ∈ A there is at most
one element α ∈ Ā with a = φA(α). If A is finite, then DA is bijective and the
rest is clear. �

From the existence of coreflexions it follows that there is a functor Ψ of the
category C+

n into BCn: if ϕ : A → B is a homomorphism and A ∈ C+
n (which

implies that also B ∈ C+
n ), then Ψ(ϕ) : Ā → B̄ is the only homomorphism with

φBΨ(ϕ) = ϕφA. It follows easily from 4.1 that Ψ(ϕ) can be defined by Φ(ϕ)(α)(i) =
ϕ(α(i)), and that Ψ(ϕ) is injective whenever ϕ is injective. On the other hand, the
following example shows that Ψ(ϕ) is not necessarily surjective if ϕ is surjective.

4.3. Example. Consider the 1-unars Z = (Z, f) and N = (N, g), where Z is
the set of all integers, N is the set of nonnegative integers, f(i) = i − 1 for all i,
g(i) = i−1 for i > 0, and g(0) = 0. The mapping ϕ : Z → N , defined by ϕ(i) = i for
i ≥ 0 and ϕ(i) = 0 for i ≤ 0, is a homomorphism of Z onto N. Since Z is bijective,
Z̄ is isomorphic to Z. On the other hand, N is only divisible. As it is easy to see,
N̄ contains a subunar C isomorphic with Z and an element e not belonging to C,
with ḡ(e) = e; we have N̄ = C ∪{e}. Clearly, Ψ(ϕ) is an isomorphism of Z̄ onto C;
it is an injective, but not surjective homomorphism of Z̄ into N̄.

5. Bijective covers of divisible commutative unars

By a bijective cover of a divisible commutative n-unar A we mean a surjective
homomorphism ρ : B → A such that B is a bijective commutative n-unar and
there is no cancellative congruence of B, contained in ker(ρ), other than idB .

Such a bijective cover is said to be strong if, moreover, there is no proper bijective
subunar of B, the ρ-image of which would give the whole of A.

5.1. Theorem. Let A be a divisible commutative n-unar. A homomorphism

ρ : B → A is a bijective cover of A if and only if there is an injective homomorphism

σ : B → Ā with ρ = φAσ.
In other words, all representative examples of bijective covers of A can be ob-

tained by taking a bijective subunar C of Ā, such that φA(C) = A, and restricting

the homomorphism φA : Ā → A to C.

Proof. First, let ρ : B → A be a bijective cover. By Theorem 4.1, ρ = φAσ
for a homomorphism σ : B → Ā. Then ker(σ) is a cancellative congruence of B
contained in ker(ρ), so that ker(σ) = idB and σ is injective.

Next, let ρ = φAσ for an injective homomorphism σ : B → Ā and let c be a
cancellative congruence of B contained in ker(ρ). Denote by B′ the image of B
under σ and by c′ the image of c under σ, so that c′ is a cancellative congruence
of B′. Then d = c′ ∪ idĀ is a cancellative congruence of Ā and d ⊆ ker(φA).

Let (α, β) ∈ d. Since d is cancellative, (f̄−i(α), f̄−1(β)) ∈ d for any nonnegative
integer i (we employ the notation of Section 4). But d ⊆ ker(φA) and we get

α(i) = f̄−i(α)(0) = f̄−i(β)(0) = β(i).

This means that α = β. We have proved that d = idĀ; but then, c = idB . �
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5.2. Example. In the notation of Example 4.3, the 1-unar N = (N, g) has two
bijective covers, namely, φN : N̄ → N and φ : C → N, where φ is a restriction of
φN. The first of these two covers is not strong, while the second is. By comparison
with Section 3, we see that there are more possibilitites for bijective covers than
for bijective envelopes.

5.3. Proposition. Let A be a divisible commutative n-unar. There exists a bi-

jective cover ρ : B → A of A with Card(B) = Card(A). Moreover, we have

Card(B) = Card(A) for any strong bijective cover ρ : B → A of A.

Proof. With respect to Theorem 5.1, it is sufficient to prove that if B is a bijective
subunar of Ā with φA(B) = A, then there is a bijective subunar C of B with
Card(C) = A and φA(C) = A. Clearly, there exists a subset S of B with Card(S) =
A and φA(S) = A; then we can take C to be the bijective subunar generated
by S. �

5.4. Example. Denote by S the set of finite sequences of elements of {1, 2}; the
empty sequence ∅ is not excluded. Consider the divisible 1-unar S = (S, f), where
f is defined by f(∅) = ∅ and f(a1, . . . , ak) = (a1, . . . , ak−1) for k > 0. If u1, u2, . . .
is an infinite sequence of elements of {1, 2}, then we can define an element αu of
S̄ by taking αu(i) = (u1, . . . , ui). In this way we obtain an injective mapping, and
hence Card(S̄) = 2ℵ0 . We are going to show that S has no strong bijective cover.

Let ρ : T → S be a bijective cover of S, and T = (T, g). Our claim will be
justified by proving that there is a proper bijective subunar of T which is mapped
onto S by ρ. With respect to Theorem 5.1, we can assume that T is a subunar
of S̄ (so that g is a restriction of f̄) and that ρ is a restriction of φS. Since ρ is
surjective, there exists an element α of T with ρ(α) = (1), i.e., α(0) = (1). Denote
by P the set of the elements f̄ i(α), where i runs over all integers. Then P is a
bijective subunar of T; but also its complement Q = T − P is a proper bijective
subunar of T. We are going to show that ρ(Q) = S.

Let a = (a1, . . . , ak) ∈ S. As it is easy to see, at most one of the elements
b1 = (a1, . . . , ak, 1) and b2 = (a1, . . . , ak, 2) belongs to the set {α(0), α(1), . . . }
and thus we can take a number j ∈ {1, 2} with bj /∈ {α(0), α(1), . . . }. Since ρ
is surjective, there is an element β of T with ρ(β) = bj , i.e., β(0) = bj . By
the choice of j we have β /∈ P , and so β ∈ Q. Then also f̄(β) ∈ Q. We have
ρ(f̄(β)) = f̄(β)(0) = f(bj) = a. An arbitrary element a of S belongs to ρ(Q).

6. Balanced divisible commutative 2-unars

Let A = (A, f, g) be a divisible commutative 2-unar. Put Al = (A, f) and
Ar = (A, g), so that both Al and Ar are divisible commutative 1-unars and we

have the bijective coreflexions φAl
: Bl → Al and φAr

: Br → Ar, where Bl = (Al)

and Br = (Ar). Of course, g is an endomorphism of Al and thus there is a
corresponding endomorphism ḡ of Bl; as it is easy to see, it can be defined by
ḡ(α)(i) = g(α(i)). We say that A is left balanced if ḡ is a surjective endomorphism
of Bl. Analogously, f is an endomorphism of Ar and A is called right balanced if
the corresponding endomorphism f̄ of Br is surjective.

6.1. Proposition. Let A = (A, f, g) be a divisible commutative 2-unar. Then

A is both left and right balanced, provided that at least one of the following four

conditions is satisfied:

(1) f = g;
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(2) f is bijective;

(3) g is bijective;

(4) for any triple a, b, c of elements of A with f(a) = b = g(c) there is an

element d of A such that g(d) = b and f(d) = c.

Proof. The situation is clear under any of the first three conditioons. Let the
assumptions of (4) be satisfied, and let α ∈ Bl. We need to find an element β
with ḡ(β) = α. The elements β(i), i = 0, 1, . . . can be costructed by induction on
i as follows: β(0) is an arbitrary element of A with g(β(0)) = α(0); if β(i− 1) has
already been constructed in such a way that g(β(i − 1)) = α(i − 1), then there is
an element d with g(d) = α(i) and f(d) = β(i− 1), and we can take β(i) = d. �

Let us remark that if A = (A, f, g) is left balanced, then a ‘by parts’ construction
of a 2-unar isomorphic to Ā is possible and may in some cases turn out to be more
advantageous: first we find the 1-unar Bl and consider it as a 1-unar C with
respect to the unary operation ḡ; then we find the 1-unar C̄, to which we add
the endomorphism, corresponding to the fundamental operation of Bl, as the first
fundamental unary operation (and keep the other operation).

6.2. Example. Let E be the set of the ordered pairs (i, j) of integers such that
either i ≥ 2 or else 0 ≤ i ≤ 1 and j ≥ 0. Define two binary operations f and g on
E by

f(i, j) =

{

(i, j) if i ∈ {0, 1} and j = 0,

(i, j − 1) otherwise

and

g(i, j) =











(i, j) if i = 0,

(1, 0) if i = 2 and j ≤ 0,

(i− 1, j) otherwise.

It is easy to verify that E = (E, f, g) is a divisible commutative 2-unar. Put

Bl = (El) and Br = (Er).
Let us prove that E is not left balanced. Since f(1, 0) = (1, 0), we have α ∈ Bl,

where α(i) = (1, 0) for all i. Suppose that α = ḡ(β) for some β. Then g(β(i)) =
(1, 0) for all i, and so β(i) = (2, ki) for some ki ≤ 0. Let kj be maximal among the
numbers k0, k1, . . . ; its existence is clear. We have

(2, kj) = β(j) = f(β(j + 1)) = f(2, kj+1) = (2, kj+1 − 1),

so that kj = kj+1 − 1, a contradiction with the maximality of kj .
Let us prove that E is right balanced. Let α ∈ Br; for any i ≥ 0, denote

α(i) = (pi, qi). If pi = 0 for every i, then there is a q with qi = q for all i and we
have α = f̄(β), where β(i) = (0, q + 1) for all i. Therefore, we can assume that
pj ≥ 1 for some j. Then pj+k = pj + k for all k ≥ 0. Define β by

β(i) =

{

(pi, qi − 1) for i > j,

g(β(i+ 1)) (by induction) for i = j, j − 1, . . . , 0.

It is easy to verify that β ∈ Br and α = f̄(β).
We see that the divisible commutative 2-unar (E, f, g) is right balanced, but not

left balanced. Consequently, (E, g, f) is left balanced, but not right balanced. The
cartesian product of these two 2-unars is neither left nor right balanced.



BIJECTIVE REFLEXIONS AND COREFLEXIONS OF COMMUTATIVE UNARS 9

References

1. I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic theory, Grundlehren Math. Wiss. 245

(1982), Springer-Verlag, New York..
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