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Abstract. In this paper we investigate under what conditions is a mapping f of a

semigroup S into the class of cardinals representable by a groupoid G and a homo-

morphism g of G onto S such that ker(g) is the associativity congruence of G and

Card(g−1(x)) = f(x) for every x ∈ S.

Abstrakt. V tomto článku vyšetřujeme, za jakých podmı́nek lze zobrazeńı f polo-

grupy S do tř́ıdy všech kardinálńıch č́ısel reprezentovat grupoidem G a zobrazeńım

g : G → S tak, že f(G) = S, ker(g) je kongruence asociativity grupoidu G a

Card(g−1(x)) = f(x) pro všechna x ∈ S.

XII.1 Introduction

For a groupoid G, we denote by sG the least congruence of G such that the

corresponding factor of G is a semigroup. Clearly, sG is just the congruence of G

generated by the pairs (xy.z, x.yz) with x, y, z ∈ G arbitrary.

Let S be a semigroup. By a cardinal function on S we mean a mapping of S

into the class of nonzero cardinal numbers. We say that a cardinal function f on S

is representable (by a groupoid) if there exist a groupoid G and a homomorphism

g of G onto S such that ker(g) = sG and Card(g−1(x)) = f(x) for every x ∈ S. We

also say that the pair (G, g) represents the pair (S, f).

In this paper we are going to investigate under what conditions is a cardinal

function on a semigroup representable by a groupoid. Let us start with some

definitions, observations and remarks.

A groupoid G is said to be counterassociative if sG = G×G. Among counteras-

sociative groupoids we find all non-associative simple groupoids. These form a very
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large class; in particular, every groupoid can be embedded into a counterassociative

groupoid.

Let S be a semigroup. We put S2 = SS = {xy : x, y ∈ S} and Sn = SSn−1 for

n ≥ 3. Also, put S1 = S. Put

Id(S) = {a ∈ S : a = a2},

Lu(S) = {a ∈ S : a ∈ Sa},

Ru(S) = {a ∈ S : a ∈ aS},

Li(S) = {a ∈ S : a ∈ Id(S) a},

Ri(S) = {a ∈ S : a ∈ a Id(S)},

K(S) =
⋂∞

i=1 S
i.

A semigroup S is called nilpotent of class at most n if S contains an annihilating

element 0 (usually also called zero element) and Sn = {0}.

1.1 Lemma. Let S be a semigroup. Then:

(1) Lu(S) is either empty or a right ideal of S; Ru(S) is either empty or a left

ideal of S;

(2) Li(S) is either empty or a right ideal of S; Ri(S) is either empty or a left

ideal of S;

(3) K(S) is either empty or an ideal of S;

(4) Id(S) ⊆ Li(S) ⊆ Lu(S) ⊆ K(S) and Id(S) ⊆ Ri(S) ⊆ Ru(S) ⊆ K(S).

Proof. It is obvious. �

1.2 Lemma. Let S be a finite semigroup. Then Id(S) is nonempty, Li(S) = Lu(S),

Ri(S) = Ru(S) and Lu(S) ∪ Ru(S) ⊆ Ru(S)Lu(S).

Proof. It is easy. �

1.3 Lemma. Let S be a finite semigroup with S = S2. Then S = Ru(S)Lu(S).

In particular, S = Lu(S), provided that S is commutative.

Proof. Put I = Ru(S)Lu(S) and define a relation r on S by (a, b) ∈ r if and only

if a ∈ bS. Clearly, I is an ideal of S, r is a transitive relation and a ∈ Ru(S) if and

only if (a, a) ∈ r.

Suppose that there exists an element a ∈ S − I. Since S = S2, there exists an

infinite sequence a0, a1, a2, . . . of elements of S such that a0 = a and ai = ai+1bi

for some bi ∈ S, whenever i ≥ 0. We have (ai, ai+1) ∈ r; by transitivity, (ai, aj) ∈ r
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whenever 0 ≤ i < j. Since I is an ideal and a0 /∈ I, we conclude that none of the

elements a0, a1, a2, . . . belongs to I. Since S is finite, it follows that ai = aj for

some 0 ≤ i < j. Thus (ai, ai) ∈ r, ai ∈ Ru(S) and, since Ru(S) ⊆ I by 1.2, we get

ai ∈ I, a contradiction. �

1.4 Example. Let T be the five-element semigroup with the following multiplica-

tion table:

T 0 a b c d

0 0 0 0 0 0

a 0 0 0 0 0

b 0 0 0 a b

c 0 0 0 0 0

d 0 0 0 c d

We have T = T 2 and a /∈ Lu(T ) ∪ Ru(T ).

1.5 Lemma. Let S be a semigroup with at most five elements, such that S = S2

and Lu(S) ∪ Ru(S) 6= S. Then S is isomorphic to the semigroup T from Exam-

ple 1.4.

Proof. Take an element a ∈ S − (Lu(T ) ∪ Ru(T )). By 1.3, we have a = bc for

some elements b ∈ Ru(S) and c ∈ Lu(S). Clearly, b /∈ Lu(S) and c /∈ Ru(S). Put

0 = a2. It is easy to see that the four elements 0, a, b, c are pairwise different. Since

b ∈ Ru(S), we have b = bd for some element d.

Let us prove that d /∈ {0, a, b, c}. Clearly, d 6= b and d 6= c. If either d = a or

d = 0 = a2, then either b = ba or b = ba2; then it follows from a = bc that for any

n ≥ 1 we can write a = bnx for some element x; but bn is an idempotent for some

n ≥ 1 and we get a ∈ Lu(S), a contradiction.

Hence Card(S) = 5 and S = {0, a, b, c, d}.

Quite similarly, there is an element d′ with c = d′c, and d′ /∈ {0, a, b, c}. Hence

d′ = d and we get dc = c. Now we shall try to compute the rest of the multiplication

table for S.

It is easy to see that ab 6= a, b, c, d, and hence ab = 0. We also have, by similar

arguments, bb = cc = ba = ac = ca = 0.

Clearly, ad 6= a and ad 6= b. If ad = c, then a = bc = bad = b2ad2 = . . . , a

contradiction. If ad = d, then b = bd = bad and a = bc = badc = b2a(dc)2 = . . . ,
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again a contradiction. Consequently, ad = 0 and, similarly, da = 0. Since a /∈

Ru(S) ∪ Lu(S), b /∈ Lu(S) and c /∈ Ru(S), we have cb = cd = db = 0. Clearly,

a3 6= a, b, c. If a3 = d, then a = bc = bdc = ba3c, which is not possible. Thus a3 = 0

and it follows that 00 = b0 = 0b = c0 = 0c = d0 = 0d = 0. Finally, dd = d, since

S = S2. �

An element a of a semigroup S is said to be of height n if a ∈ Sn but a /∈ Sn+1;

a is said to be of infinite height if a ∈ K(S). Clearly, if S contains only elements of

finite height, then S is infinite.

1.6 Proposition. Let G be a division groupoid. Then G/sG is a group and the

blocks of sG are all of the same cardinality.

Proof. G/sG is a division semigroup, and hence a group. Let A and B be two

blocks of sG; take two elements a ∈ A and b ∈ B. We have ca = b for some c ∈ G

and cA ⊆ B. On the other hand, if d ∈ B, e ∈ G and ce = d, then (ca, ce) ∈ sG,

(a, e) ∈ sG, e ∈ A and we see that cA = B. Consequently, Card(A) ≥ Card(B) and

the rest is clear. �

Let G be a division groupoid. We put σ(G) = Card(A), where A is a block of

sG. By 1.6, σ(G) does not depend on the choice of the block A.

Let G be a groupoid. One can define a binary hyperoperation ◦ on G by x ◦ y =

{z ∈ G : (xy, z) ∈ sG}. It is easy to check thatG(◦) is then a semihypergroup (called

the associativity semihypergroupoid of the groupoid G). This semihypergroup is

complete and it is a hypergroup if and only if G/sG is a group. In particular, G(◦)

is a hypergroup, provided G is a division groupoid.

XII.2 A necessary condition

2.1 Lemma. Let f be a representable cardinal function on a semigroup S. Then

f(a) = 1 for every a ∈ S − S3.

Proof. Let (G, g) be a pair representing the pair (S, f). Let a ∈ S−S3 and suppose

f(a) ≥ 2. Then the set A = g−1(a) is the disjoint union of two nonempty subsets,

say A = B ∪ C, and the relation r = (sG − (A × A)) ∪ (B × B) ∪ (C × C) is an

equivalence on G properly contained in sG.

If x, y, z are three elements of G, then the elements x.yz and xy.z do not belong

to A and (x.yz, xy.z) ∈ sG; hence (x.yz, xy.z) ∈ r. Now, to get a contradiction,
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it suffices to show that r is a congruence of G. This is clear if a /∈ S2. So, let

a ∈ S2. We shall prove, for example, that (x, y) ∈ r implies (zx, zy) ∈ r. Of

course, we have (zx, zy) ∈ sG. If xz /∈ A, then (zx, zy) ∈ r follows. If zx ∈ A,

then a = g(zx) = g(z)g(x), g(x) = g(y) ∈ S − S2 and therefore x = y (we have

f(g(x)) = 1); then zx = zy and (zx, zy) ∈ r. �

2.2 Lemma. Let I be a nonempty set and K be a nonempty system of pairwise

disjoint nonempty sets. The following two conditions are equivalent:

(1) There exists a mapping h of
⋃

K onto I such that I × I is the only equiva-

lence on I containing all the relations h(K)× h(K) with K ∈ K.

(2) Card(I) ≤ 1 +
∑

K∈K
(CardK − 1).

Proof. Let us start with the direct implication. Let us construct, by transfinite

induction, for an ordinal number i an element Ki of K and an element ai ∈ Ki

as follows. K0 is any element of K, and a0 is any element of K0. Now let i be

an ordinal number such that Kj and aj have been defined for all j < i. Put

K′ = {Kj : j < i}. If K′ = K, we stop the construction, so that i is the first

ordinal number for which Ki is not defined. Otherwise, it follows easily from (1)

that there is a set K ∈ K − K′ such that h(K) has a nonempty intersection with

h(Kj) for some j < i. Put Ki = K let ai be an element of Ki with h(a) = h(b) for

some b ∈ Kj . It is easy to see that h maps the set {a0} ∪
∑

i(Ki − {ai}) onto I.

Consequently, Card(I) cannot be bigger than the cardinality of the set, which is

just the right side of the inequality (2).

It remains to prove the converse. For every K ∈ K take an element aK ∈ K

arbitrarily. Moreover, take an element b ∈ I. It follows from (2) that there exists a

mapping h0 of
⋃

K∈K
(K − {aK}) onto I − {b}. Let h be the extension of h0 with

h(aK) = b for all K ∈ K. It is easy to see that h has the desired property. �

Let S be a semigroup and a be an element of S. We denote Ma = {(b, c) ∈ S×S :

bc = a}. Further, we denote by Ea the equivalence on Ma generated by the pairs

((bc, d), (b, cd)) where b, c, d ∈ S are such that bcd = a. Put ea = Card(Ma/Ea), so

that ea is the number of blocks of Ea.

Let f be a cardinal function on a semigroup S. We introduce the following

condition:
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(R) f(a) ≤ 1 +
∑

B∈Ma/Ea

(

(

∑

(b,c)∈B

f(b)f(c)
)

− 1

)

for every a ∈ S.

2.3 Theorem. Let f be a cardinal function on a semigroup S. If f is representable,

then the condition (R) is satisfied.

Proof. Let G be a groupoid and g be a homomorphism of G onto S such that (G, g)

represents (S, f). For an element a ∈ S such that f(a) = 1, the inequality in (R)

is trivially true; with respect to 2.1, we can assume that a ∈ S3 and f(a) ≥ 2. Put

I = g−1(a), so that Card(I) ≥ 2.

Define a binary relation s onG by (u, v) ∈ s if and only if (u, v) ∈ ker(g) = sG and

if u, v ∈ I, then either u = v or u, v ∈ GG. One can easily see that s is a congruence

of G, s ⊆ ker(g) and G/s is a semigroup. Consequently, s = ker(g) = sG and we

have proved that I ⊆ GG (use the fact that Card(I) ≥ 2).

Further, define a binary relation r on G as follows: (u, v) ∈ r if and only if

u, v ∈ ker(g) and if u, v ∈ I then there exists a finite sequence u0, . . . , uk, k ≥ 0, of

elements of I such that u0 = u, uk = v and such that for each i = 1, . . . , k there exist

elements x, y, z, t ∈ G with ui−1 = xy, ui = zt and ((g(x), g(y)), (g(z), g(t))) ∈ Ea.

Again, it is easy to see that r is an equivalence on G. It is a congruence, as well,

since if (u, v) ∈ r and w ∈ G, then in the case uw, vw ∈ I we can put k = 1,

u0 = uw, u1 = vw, x = u, y = w, z = v and t = w to get (uw, vw) ∈ r (we have

(g(x), g(y)) = (g(z), g(t))); similarly, (wu,wv) ∈ r. In order to be able to assert

that G/r is a semigroup, we have to prove (uv.w, u.vw) ∈ r for all u, v, w ∈ G.

We have, of course, (uv.w, u.vw) ∈ ker(g). Let both uv.w and u.vw belong to I.

Then we can put k = 1, u0 = uv.w, u1 = u.vw, x = uv, y = w, z = u, t = vw

to get (uv.w, u.vw) ∈ r. We have proved that G/r is a semigroup, and therefore

r = ker(g) = sG. This means that for any two elements u, v in I, there exists a

finite sequence u0, . . . , uk as above.

For every block B of Ea, let KB denote the set of the elements x ∈ I such

that x = yz for some y, z ∈ G with (g(y), g(z)) ∈ B. From what we have proved it

follows that the system K of the sets KB , B ∈ Ma/Ea, has the following properties:
⋃

K = I, and I×I is the only equivalence on I containing all the relationsKB×KB .

The system K need not be, in general, a system of pairwise disjoint sets, but in such
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a case we can take a system K′ of pairwise disjoint copies of the sets KB instead,

and the natural projection h :
⋃

K′ → I. By 2.2, we get

Card(I) ≤ 1 +
∑

B∈Ma/Ea

(Card(KB)− 1).

However, Card(I) = f(a) and, as it is easy to see,

Card(KB) ≤
∑

(b,c)∈B

f(b)f(c). �

2.4 Corollary. Let f be a cardinal function on a semigroup S. If f is representable,

then

f(a) ≤
∑

(b,c)∈Ma

f(b)f(c)

for every a ∈ S2. �

2.5 Theorem. Let S be a semigroup (which may but need not contain a zero)

in which every nonzero element is of finite height. A cardinal function f on S is

representable if and only if the condition (R) is satisfied.

Proof. The necessity of (R) was proved in Theorem 2.3. Let (R) be satisfied.

For every element a ∈ S take a set Aa of cardinality f(a) and denote by G the

disjoint union of the sets Aa, a ∈ S. Define a mapping g of G onto S by g(x) = a

for all a ∈ S and x ∈ Aa. We are going to define a binary operation (multiplication)

on G.

Let a be a nonzero element of SS. For every B ∈ Ma/Ea letKB =
⋃

(b,c)∈B(Ab×

Ac). From (R) we get that condition (2) of 2.2 is satisfied for the system K of the

sets KB , B ∈ Ma/Ea. Consequently, by Lemma 2.2, there exists a mapping ha of
⋃

(b,c)∈Ma

onto Aa such that Aa ×Aa is the only equivalence on Aa containing the

relation
⋃

(b,c)∈B ha(Ab × Ac) for any block B of Ea. Now, if (b, c) ∈ Ma, x ∈ Ab

and y ∈ Ac, then we put xy = ha(x, y).

So far, we have defined the product xy for all x, y ∈ G such that x ∈ Ab and

y ∈ Ac, where bc 6= 0. If S has no zero, the multiplication on G is well defined.

In the opposite case, we need to complete the definition by considering the pairs

x ∈ Ab, y ∈ Ac, where bc = 0. Then, take a fixed element o ∈ A0 and put xo = x if

x ∈ A0 and xy = o in the remaining cases. Now, we have obtained a groupoid G.
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Clearly, g is a homomorphism of G onto S and it remains to show that ker(g) =

sG. For, let r be a congruence of G such that G/r is a semigroup. We have to prove

that Aa ×Aa ⊆ r for any element a ∈ S. If S contains a zero, then A0 ×A0 ⊆ r is

easily seen: for any element x ∈ A0 − {o} we have xo.x = o and x.ox = x, so that

(o, x) ∈ r.

Now, we have to show that Aa × Aa ⊆ r for every 0 6= a ∈ S. This will be

done by induction on the height of a. If the height is at most 2, then f(a) = 1 and

everything is clear. Let a ∈ S3. By induction we can suppose that Ab × Ab ⊆ r

whenever b has smaller height than a.

According to the construction of ha, it is enough to prove that if B is a block of

Ea and if (b, c) and (d, e) are two elements of B, then (xy, zu) ∈ r for all x ∈ Ab,

y ∈ Ac, z ∈ Ad, and u ∈ Ae. In other words, to prove that the equivalence Ea is

contained in the binary relation E on Ma defined as follows: E is the set of the

ordered pairs ((b, c), (d, e)) ∈ Ma×Ma such that (xy, zu) ∈ r for all x ∈ Ab, y ∈ Ac,

z ∈ Ad and u ∈ Ae.

By the definition of Ea, it suffices to show that E is an equivalence relation

containing all the pairs ((bc, d), (b, cd)) where b, c, d ∈ S are such that bcd = a. The

reflexivity of E can be verified easily: if (b, c) ∈ Ma and x ∈ Ab, y ∈ Ac, z ∈ Ab,

u ∈ Ac, then (x, z) ∈ r and (y, u) ∈ r (since both b and c have smaller height

than a), so that (xy, zu) ∈ r, which yields ((b, c), (b, c)) ∈ E. The symmetry and

the transitivity of E are easily seen, as well. Now, let b, c, d ∈ S and bcd = a. Take

x ∈ Abc, y ∈ Ad, z ∈ Ab, u ∈ Acd, and v ∈ Ac. Since the elements bc and cd are of

smaller height than a, we have (zv, x) ∈ r and (vy, u) ∈ r. Further, (zv.y, z.vy) ∈ r

by the definition of r, and hence, since r is a congruence, (xy, zy) ∈ r. From this,

((bc, d), (b, cd)) ∈ r, which concludes the proof. �

2.6 Corollary. Let S be a nilpotent semigroup. A cardinal function f on S is

representable if and only if the condition (R) is satisfied. �

The following condition is related to (R):

f(a) = 1 for every a ∈ S − S3 and(R’)

f(a) + ea ≤ 1 +
∑

(b,c)∈Ma

f(b)f(c) for every a ∈ S3.
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2.7 Proposition. Let S be a semigroup and let f be a cardinal function on S.

Then:

(1) (R) implies (R’). (In particular, (R) implies that f(a) = 1 whenever a ∈

S − S3.)

(2) If Ma is finite for every a ∈ S (in particular, if S is finite), then also (R’)

implies (R).

Proof. It is easy. �

2.8 Theorem. Let S be a free semigroup (or, more generally, a subsemigroup of

a free semigroup) and let f be a cardinal function on S. Then f is representable if

and only if it satisfies the condition (R’).

Proof. It follows from theorems 2.3, 2.5 and 2.7(2). �

2.9 Example. Let S be a semigroup nilpotent of class at most 3. According

to 2.6, a cardinal function f on S is representable if and only if f(a) = 1 for every

a ∈ S − {0}.

2.10 Example. Let S = {0, 1, . . . } ∪ ({2, 3, . . . } × {2, 3, . . . }). Define a binary

operation ∗ on S as follows: for i, j, k ≥ 2, i ∗ j = (i, j) and (i, j) ∗ k = k ∗ (i, j) = 1;

all the remaining products are 0. It is easy to check that S(∗) is a semigroup

nilpotent of class 4. By 2.6, a cardinal function f on this semigroup is representable

if and only if f(i) = f(i, j) = 1 for all i, j ≥ 2 and f(1) ≤ ℵ0.

2.11 Example. Let S = {0, 1, 2, 3, . . . }. Define a binary operation ∗ on S as

follows: 3 ∗ 3 = 2, 2 ∗ 3 = 3 ∗ 2 = 1, i ∗ j = 1 for all i, j ≥ 4; and all the remaining

products are 0. By 2.6, a cardinal function on this semigroup is representable if

and only if f(i) = 1 for all i ≥ 2 and f(1) ∈ {1, 2}.

This example shows that condition (R’) is not strong enough (even for semigroups

nilpotent of class 4) to characterize the representable cardinal functions: here, (R’)

is satisfied if f(i) = 1 for all i ≥ 2 and f(1) ≤ ℵ0.

2.12 Example. Let S = {0, a, b, c, d, e, f, g, h, i, z1, z2, . . . } and let a multiplication

on S be given as follows: bc = di = hf = a, dzk = b, ef = c, zke = g, be = dg = h,

gf = zkc = i, and the remaining products are all equal to 0. It needs just a tedious

checking to show that S is a semigroup nilpotent of class 4, S2 = {0, a, b, c, g, h, i},
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S3 = {0, a, h, i}, and ea = eh = ei = 1. By Theorem 2.5, a cardinal function F

on S is representable if and only if F (b) = F (c) = F (d) = F (e) = F (f) = F (g) =

F (zk) = 1, F (h) ≤ 2, F (i) ≤ ℵ0 and F (a) ≤ 3 + F (i). Hence, if F (i) = ℵ0, we can

take F (a) = ℵ0, as well.

XII.3 Catalan numbers and representability

of cardinal functions on free semigroups

Let 0! = 1 and n! = 1 · 2 · · · (n− 1) · n for every positive integer n.

In the following, we shall make use of the numbers
(

n
m

)

, n and m being arbitrary

integers. These are defined as follows:
(

n
m

)

= 0 if n < 0;
(

0
0

)

= 1 and
(

0
m

)

= 0

for every m 6= 0; if n > 0, then
(

n
m

)

are defined by induction on n, namely,
(

n
m

)

=
(

n−1
m−1

)

+
(

n−1
m

)

. For any integers n and m, the following are clearly true:

(1)
(

n
m

)

is a nonnegative integer and
(

n
m

)

= 0 if and only if either n < 0 or

m < 0 or n < m.

(2) If n < 0, then
(

n
0

)

=
(

n
n

)

= 1.

(3) If 0 ≤ m ≤ n, then
(

n
m

)

= n! / m!(n−m)!

(4) If n ≥ 0, then
(

n
m

)

is just the number of the m-element subsets of an n-

element set and 2n =
∑n

m=0

(

n
m

)

.

For any rational number q and any nonnegative integer n, define q(n) as follows:

q(0) = 1; q(n+1) = q(n) · (q − n). Obviously, q(n) = q(q − 1) · · · (q − n+ 1) for n > 0

and 1(n) = 0 for n ≥ 2.

3.1 Lemma. We have

(r + s)(n) =

n
∑

m=0

(

n

m

)

r(m)s(n−m)

for all rational numbers r, s and nonnegative integers n.

Proof. It is easy by induction on n. �

3.2 Lemma. (1/2)(n) = (−1)n−1 · (1/2)n · (2n − 3)! / (2n−2 · (n − 2)!) for every

n ≥ 2.

Proof. It follows easily from

1 · 3 · 5 · · · (2m+ 1) = (2m+ 1)! / (2m ·m!),
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which is easy to prove for any m ≥ 0. �

The Catalan numbers cn, n ≥ 1, are defined by c1 = 1 and cn = c1cn−1 +

c2cn−2 + · · ·+ cn−2c2 + cn−1c1 for n ≥ 2. Clearly,

cn =

{

2c1cn−1 + · · ·+ 2c(n−1)/2c(n+1)/2 for n ≥ 3 odd,

2c1cn−1 + · · ·+ 2c(n−2)/2c(n+2)/2 + c2n/2 for n ≥ 2 even.

In particular, we have

c1 = 1, c2 = 1, c3 = 2, c4 = 5, c5 = 14, c6 = 42, c7 = 132, c8 = 429,

c9 = 1430, c10 = 4862.

For any nonnegative integer n, let vn = (1/2)(n) / n! By 3.2,

v0 = 1, v1 = 1/2 and vn = (−1)n−1(2n− 3)! / 22n−2 · (n− 2)! · n! for n ≥ 2.

Let Q{x} denote the integral domain of formal power series in one indeterminate

x over Q. Put f =
∑∞

k=0 vkx
k ∈ Q{x} and let f2 =

∑∞

k=0 ukx
k. Then, for every

n ≥ 0,

un =

n
∑

m=0

vmvn−m =

n
∑

m=0

(1/2)(m) · (1/2)(n−m) / m! · (n−m)!

= (1/n!)

n
∑

m=0

(

n

m

)

(1/2)(m)(1/2)(n−m) = (1/n!) · 1(n)

by Lemma 3.1. Thus u0 = 1, u1 = 1 and un = 0 for n ≥ 2. We have proved that

f2 = 1 + x.

Now, put g =
∑∞

k=0 ckx
k ∈ Q{x}, where c0 = 0 and the other coefficients are

Catalan numbers. Let g2 =
∑∞

k=0 dkx
k. Then d0 = c20 = 0 = c0, d1 = 2c0c1 =

0 and dn = c0cn + c1cn−1 + · · · + cn−1c1 + cnc0 = cn for each n ≥ 2. Hence

g2 = g − x and g2 − g + x = 0 in Q{x}. On the other hand, it follows from what

was proved above that h2 = 1 − 4x, where h =
∑∞

k=0 vk(−4x)k ∈ Q{x}. Hence

(g − 1/2)2 = h2/4. From this, either g = (h + 1)/2 or g = (1 − h)/2. The first

case is not possible, since c0 = 0 and v0 = 1. Consequently, g = (1− h)/2. We get

ck = (−1)k+122k−1vk = (2k− 2)! / (k− 1)! · k! for k ≥ 2. The result is also true for

k = 1. So, we have proved the following

3.3 Proposition. cn = (2n− 2)! / n!(n− 1)! for every n ≥ 1. �
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3.4 Remark. From 3.3 it follows that cn/cn−1 = (4n− 6)/n for every n ≥ 2 and

cn − cn−1 = 3(2n − 4)! / n!(n− 3)! Since n! = n(n) and
(

n
m

)

= n(m)/m(m) for all

0 ≤ m ≤ n, we have cn = (2n− 2)(n−1)/n(n).

3.5 Theorem. A cardinal function f on the additive semigroup of positive integers

is representable if and only if f(1) = f(2) = 1 and f(n) ≤
∑n−1

i=1 f(i)f(n − i) for

all n ≥ 3.

Proof. The semigroup is a free semigroup with one generator. By Theorem 2.8, f

is representable if and only if (R′) is satisfied. Now, (R’) is equivalent to the above

condition, since evidently en = 1 for every n ≥ 3. �

Let us call an infinite sequence a1, a2, . . . representable, if the cardinal function

f , where f(n) = an, is representable on the additive semigroup of positive integers.

It follows from Theorem 3.5 and Proposition 3.3 that if a1, a2, . . . is representable,

then an ≤ cn = (2n − 2)! / n!(n − 1)! for every positive integer n. On the other

hand, the sequence c1, c2, . . . is representable by Theorem 3.5. Consequently, the

sequence of Catalan numbers is the best upper bound for representable sequences

of positive integers.

3.6 Example. It follows easily from Theorem 3.5 that any sequence a1, a2, . . .

of positive integers, such that a1 = 1 and an ≤ n(n − 1)/2 for all n ≥ 2, is

representable. In particular, there are uncountably many representable sequences

of positive integers.

3.7 Theorem. Let S be a free semigroup with free generating set X. A cardi-

nal function f on S is representable if and only if f(x) = 1 for all x ∈ X and

f(x1 . . . xn) ≤
∑n−1

i=1 f(x1 . . . xi)f(xi+1 . . . xn) for all n ≥ 2 and x1, . . . , xn ∈ X. If

f is representable, then f(u) ≤ cλ(u) for every u ∈ S, where λ(u) denotes the length

of u.

Proof. It follows from Theorem 2.8; note that eu = 1 for all elements u ∈ S of

length ≥ 2. �

3.8 Example. Let S be a free semigroup with free generating set X. The cardinal

function f on S, defined by f(u) = cλ(u), is representable. In fact, if G is the

absolutely free groupoid over X and g : G → S is the natural projection, then

ker(g) = sG and Card(g−1(u)) = cλ(u) for every u ∈ S.
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XII.4 A representation criterion

Let f be a cardinal function on a semigroup S. For every a ∈ S we define a

cardinal function fa on S by fa(a) = f(a) and fa(b) = 1 for every b ∈ S, b 6= a.

4.1 Theorem. Let f be a cardinal function on a semigroup S. If fa is representable

for any a ∈ S, then f is also representable.

Proof. There exist pairwise disjoint groupoids Ga (a ∈ S) and projective homo-

morphisms ga : Ga → S such that ker(ga) = sGa
and Card(g−1

a (a)) = f(a) and

Card(g−1
a (b)) = 1 for b 6= a. The operations of the groupoids Ga will be denoted

by ∗. We put Ha = g−1
a (a) and G =

⋃

a∈S Ha. We shall make G a groupoid by

defining its operation in the following way.

(1) If x, y ∈ Ha and a = aa, then xy = x ∗ y ∈ Ha.

(2) If x ∈ Ha, y ∈ Hb and ab = c, where a 6= c 6= b, then xy = g−1
c (a)∗g−1

c (b) ∈

Hc.

(3) If x ∈ Ha, y ∈ Hb, a 6= b and ab = a, then xy = x ∗ g−1
a (b) ∈ Ha.

(4) If x ∈ Ha, y ∈ Hb, a 6= b and ab = b, then xy = g−1
b (a) ∗ y ∈ Hb.

It is obvious that the mapping g : G → S, defined by g(Ha) = a for all a ∈ S,

is a homomorphism of G onto S. We still have to show that sG = ker(g). Clearly,

sG ⊆ ker(g). For every a ∈ S define an equivalence ta on G by

ta = (ker(g)− (Ha ×Ha)) ∪ (sG ∩ (Ha ×Ha))

and an equivalence ra on Ga by

ra = {(x, x) : x ∈ Ga} ∪ (sG ∩ (Ha ×Ha)).

We are going to show that ta is a congruence of G and ra is a congruence of Ga.

In order to prove that (x, y) ∈ ta implies (zx, zy) ∈ ta for any elements x, y, z ∈

G, we will distinguish two cases.

Case 1: x, y ∈ Hb for some b 6= a. Then (zx, zy) ∈ ker(g) and (zx, zy) ∈ ta,

if zx /∈ Ha. If zx ∈ Ha, then zy ∈ Ha, too, and there is an element c ∈ S such

that z ∈ Hc and a = cb. If a 6= c, then zx = g−1
a (c) ∗ g−1

a (b) = zy, and hence

(zx, zy) ∈ ta. If a = c, then zx = z ∗ g−1
a (b) = zy and again (zx, zy) ∈ ta.
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Case 2: x, y ∈ Ha and (x, y) ∈ sG. If zx /∈ Ha and zy /∈ Ha, then (zx, zy) ∈

ker(g) and (zx, zy) ∈ ta. If zx, zy ∈ Ha, then (zx, zy) ∈ sG ∩ (Ha ×Ha), and hence

(zx, zy) ∈ ta.

One can prove similarly that (x, y) ∈ ta implies (xz, yz) ∈ ta. We conclude that

ta is a congruence of G.

Now let x, y, z be three elements of Ga with (x, y) ∈ ra. We have to take into

account the following three cases.

Case 1: x /∈ Ha. Then y /∈ Ha, x = y and (z ∗ x, z ∗ y) ∈ ra.

Case 2: x ∈ Ha and z ∗x ∈ Ha. We have y ∈ Ha, (x, y) ∈ ker(ga), (z ∗x, z ∗ y) ∈

ker(ga) and thus z ∗ x = z ∗ y, which implies (z ∗ x, z ∗ y) ∈ ra.

Case 3: x ∈ Ha and z ∗ x ∈ Ha. Then y ∈ Ha, z ∗ y ∈ Ha and, naturally,

(x, y) ∈ sG. Put b = ga(z), so that a = ba. If b 6= a (this means z /∈ Ha), then, for

any u ∈ Hb, (ux, uy) ∈ sG and, moreover, ux = z ∗ x and uy = z ∗ y; consequently,

(z ∗ x, z ∗ y) ∈ ra. If b = a (then z ∈ Ha), we have (zx, zy) ∈ sG, zx = z ∗ x and

zy = z ∗ y; once again, (z ∗ x, z ∗ y) ∈ ra.

Since (x ∗ z, y ∗ z) ∈ ra could be proved similarly, we see that ra is a congruence

of Ga.

Since sG ⊆ ta ⊆ ker(g), there exist natural projections p : G → G/sG, q :

G/sG → G/ta and a homomorphism k : G/ta → S such that g = kqp. Since ra ⊆

ker(ga), we also have the natural projection w : Ga → Ga/ra and a homomorphism

v : Ga/ra → S such that ga = vw. Finally, define a mapping h : G → Ga by

h(x) = x for x ∈ Ha and h(x) = g−1
a (b) for x ∈ Hb with b 6= a. This mapping h is

a homomorphism of G onto Ga and we have the following commutative diagram:

G/sG
q

−−−−→ G/ta
k

−−−−→ S
x





p

x





v

G
h

−−−−→ Ga
w

−−−−→ Ga/ra

It is easy to verify that ker(wh) = ta = ker(qp), from which it follows that the

groupoids G/ta and Ga/ra are isomorphic. Since G/ta is a homomorphic image of

G/sG, it is a semigroup and it implies that Ga/ra is a semigroup, too. Moreover,

we get ra = sGa
= ker(ga) and then sG ∩ (Ha × Ha) = Ha × Ha. This yields

Ha×Ha ⊆ sG for every a ∈ S and therefore sG = ker(g), completing the proof. �
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XII.5 Semigroups with local units

5.1 Lemma. Let M be a nonempty set. Then there exists a mapping t of M onto

M such that for all x, y ∈ M there are positive integers m,n with tm(x) = tn(y).

Proof. If M is finite, we can take a full cycle on M . Now let M be infinite. Denote

by B the set of the mappings f of M into the set of positive integers, such that

f(x) = 1 for all but finitely many elements x ∈ M . Define a mapping t : B → B by

t(f)(x) = 1 if f(x) = 1 and t(f)(x) = f(x)−1 if f(x) ≥ 2. Clearly, t has the desired

property with respect to the set B, which has the same cardinality as M . �

5.2 Lemma. Let S be a semigroup, a ∈ Lu(S) and let f be a cardinal function on

S such that f(b) = 1 for every b ∈ S − {a}. Then f is representable.

Proof. Let M be a set with Card(M) = f(a) and S ∩M = ∅; let t be a mapping of

M onto M as given in 5.1. Put R = S − {a} and G = R ∪M . Define a mapping g

of G onto S by g(x) = x for x ∈ R and g(x) = a for x ∈ M .

Consider first the case aa 6= a. Since a ∈ Lu(S), we have a = ea for some e ∈ S.

Define a binary operation ∗ on G as follows.

(1) e ∗ x = (ee) ∗ x = t(x) for every x ∈ M ;

(2) b ∗ c = bc for all b, c ∈ R with bc 6= a;

(3) b ∗ c is any element of M if b, c ∈ R and bc = a;

(4) b ∗ x = ba if b ∈ R, x ∈ M and ba 6= a;

(5) b ∗ x is any element of M if b ∈ R, x ∈ M , b /∈ {e, ee} and ba = a;

(6) x ∗ b = ab if b ∈ R, x ∈ M and ab 6= a;

(7) x ∗ b is any element of M if b ∈ R, x ∈ M and ab = a;

(8) x ∗ y = aa ∈ R for any x, y ∈ M .

This makes G a groupoid. Evidently, g is a homomorphism of G onto S. It remains

to show that ker(g) = sG. Put s = sG ∩ (M ×M). If (x, y) ∈ s, then (t(x), t(y)) =

(e ∗ x, e ∗ y) ∈ s, which means that s is a congruence of the algebra (M, t) with one

unary operation t. If x ∈ M then, by the definition of sG, (e∗(e∗x), (e∗e)∗x) ∈ sG.

But e ∗ (e ∗ x) = t2(x) and (e ∗ e) ∗ x = t(x), hence (t2(x), t(x)) ∈ s. In fact,

(tn(x), t(x)) ∈ s for any positive integer n. Let (u, v) ∈ M × M . There exist

w, z ∈ M such that u = t(w) and v = t(z). By 5.1, there also exist positive

integers m,n with tm(w) = tn(z). On the other hand, (tm(w), t(w)) ∈ s and
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(tn(z), t(z)) ∈ s. Consequently, (t(w), t(z)) = (u, v) ∈ s. We have proved that

s = M ×M and then M ×M ⊆ sG and sG = ker(g).

Now consider the case aa = a. Choose an element w ∈ M and define a binary

operation ∗ on G as follows.

(1) x ∗ y = w for all x, y ∈ M with y 6= w;

(2) x ∗ w = x for every x ∈ M ;

(3) b ∗ c = bc for all b, c ∈ R with bc 6= a;

(4) b ∗ c = w for all b, c ∈ R with bc = a;

(5) b ∗ x = ba for all b ∈ R and x ∈ M with ba 6= a;

(6) b ∗ x = w for all b ∈ R and x ∈ M with ba = a;

(7) x ∗ b = ab for all b ∈ R and x ∈ M with ab 6= a;

(8) x ∗ b = w for all b ∈ R and x ∈ M with ab = a.

This makes G a groupoid. Evidently, g is a homomorphism of G onto S. Let

(x, y) ∈ M ×M . Then (x ∗ (w ∗ x), (x ∗ w) ∗ x) ∈ sG, i.e., (x,w) ∈ sG. Similarly,

(y, w) ∈ sG and hence (x, y) ∈ sG. We have proved ker(g) = sG also in this case,

completing thus the proof. �

5.3 Theorem. Let S be a semigroup. The following two conditions are equivalent:

(1) Every cardinal function on S is representable.

(2) S = Lu(S) ∪ Ru(S).

Proof. Suppose that (1) is satisfied but there exists an element a ∈ S − (Lu(S) ∪

Ru(S)). By 2.1, S = S2. Put κ = Card(Ma) and take a cardinal function f

on S such that f(a) > κ and f(b) = 1 for every b ∈ S − {a}. By 2.4, we have

κ < f(a) ≤
∑

(b,c)∈Ma

f(b)f(c) =
∑

Ma

1, a contradiction.

For the converse implication, just combine Theorem 4.1 with Lemma 5.2 and its

dual. �

5.4 Remark. The following semigroups belong to the class of semigroups S satis-

fying S = Lu(S) ∪ Ru(S):

(1) semigroups with a left (or right) neutral element;

(2) groups;

(3) regular semigroups;

(4) idempotent semigroups;
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(5) finite commutative semigroups S with S = S2 (see 1.3).

(6) at most four-element semigroups S with S = S2 (see 1.5).

XII.6 An example

6.1 Example. Consider the five-element semigroup T with elements 0, a, b, c, d

from Example 1.4. We will see that a cardinal function f on T is representable if

and only if (R) is satisfied, i.e., if and only if f(a) ≤ f(b)f(c).

The necessity is settled by 2.6. Let f(a) ≤ f(b)f(c). Put G = P ∪A∪B∪C ∪D

where P,A,B,C,D are five pairwise disjoint sets with Card(P ) = f(0), Card(A) =

f(a), Card(B) = f(b), Card(C) = f(c) and Card(D) = f(d). By 5.1, there exist a

mapping p of B onto B and a mapping q of C onto C such that for all x, y ∈ B there

are positive integers m,n with pm(x) = pn(y) and for all x, y ∈ C there are positive

integers m,n with qm(x) = qn(y). From f(a) ≤ f(b) it follows that there exists

a mapping h of B × C onto A. Take two elements z ∈ P and w ∈ D arbitrarily.

Define a multiplication on G as follows.

(1) xy = yx = z for all x ∈ P and y ∈ A ∪B ∪ C ∪D;

(2) xy = z for all x, y ∈ A ∪B;

(3) xy = yx = z for all x ∈ A and y ∈ C ∪D;

(4) xy = z for all x ∈ C and y ∈ B ∪ C ∪D;

(5) xy = z for all x ∈ D and y ∈ B;

(6) xy = z for all x, y ∈ P with y 6= z;

(7) xz = x for all x ∈ P ;

(8) xy = w for all x, y ∈ D with y 6= w;

(9) xw = x for all x ∈ D;

(10) xy = p(x) for all x ∈ B and y ∈ D;

(11) xy = q(y) for all x ∈ D and y ∈ C;

(12) xy = h(x, y) for all x ∈ B and y ∈ C.

Define a mapping g : G → T by g(P ) = 0, g(A) = a, g(B) = b, g(C) = c and

g(D) = d. It is easy to check that g is a homomorphism. Now, we have to show

that ker(g) = sG.

We have (x.xx, xx.x) ∈ sG for any x ∈ P , so that x.xx = xz = x and xx.x =

zx = z yield (x, z) ∈ sG; we get P × P ⊆ sG. The inclusion D × D ⊆ sG can
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be proved in the same way. The inclusions B × B ⊆ sG and C × C ⊆ sG can

be proved as in 5.2, with p and q, respectively, playing the role of t. Finally, if

(x, y) ∈ B × B and (u, v) ∈ C × C, then (x, y) ∈ sG and (u, v) ∈ sG, so that

(h(x, u), h(y, v)) = (xu, yv) ∈ sG; we see that A × A ⊆ sG. We conclude that

ker(g) = sG.

XII.7 Representability of “small” cardinal functions

7.1 Proposition. Let S be a semigroup, a be an element of S and f be the cardinal

function on S with f(a) = 2 and f(b) = 1 for every b ∈ S − {a}. Then f is

representable if and only if at least one of the following two conditions is satisfied:

(1) a ∈ Lu(S) ∪ Ru(S);

(2) there exist elements x, y, z ∈ S such that xyz = a and either xy 6= x or

yz 6= z.

Proof. If (1) is satisfied, the result follows from from 5.2 and its dual. Let a /∈

Lu(S)∪Ru(S) and a = xyz, where xy 6= x. Take an element e /∈ S, put G = S∪{e}

and define a binary operation ∗ on G in the following way.

(i) u ∗ v = uv for all u, v ∈ S with uv 6= a;

(ii) u ∗ v = a for all u, v ∈ S with uv = a and either u 6= x or v 6= yz;

(iii) x ∗ (yz) = e;

(iv) e ∗ u = a ∗ u and u ∗ e = u ∗ a for every u ∈ S;

(v) e ∗ e = a ∗ a.

Clearly, the mapping g : G → S, defined by g(e) = a and g(x) = x for every x ∈ S,

is a homomorphism of G onto S and ker(g) = sG. We can proceed similarly if

a = xyz and yz 6= z.

Now, we are going to prove the converse. Suppose that neither (1) nor (2) is

satisfied, but there exists a groupoid G and a homomorphism g of G onto S such

that ker(g) = sG, Card(g
−1(a)) = 2 and Card(g−1(b)) = 1 for every b 6= a. Let

u, v, w ∈ G; put x = uv and y = vw. If g(uy) 6= a, then also g(xw) 6= a, and

hence uy = xw. Let g(uy) = a. Then g(xw) = a and we have a = g(u)g(v)g(w).

Since (2) is not satisfied, g(u) = g(u)g(v) = g(x) and g(w) = g(v)g(w) = g(y).

Since (1) is not satisfied, g(u) 6= a 6= g(w), yielding u = x and w = y. But then

u.vw = uy = uw = xw = uv.w. We see that G is a semigroup, a contradiction. �
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7.2 Proposition. Let S be a semigroup such that for every element a ∈ S3 −

(Lu(S)∪Ru(S)) there exist elements x, y, z ∈ S with a = xyz and (x, yz) 6= (xy, z).

(In the notation introduced in Section 2, this can be expressed by saying that the

equivalence Ea on Ma is not identical.) If f is a cardinal function on S such that

f(a) ≤ 2 for all a ∈ S, then f is representable if and only if f(b) = 1 for every

b ∈ S − S3.

Proof. Just combine 2.1, 4.1 and 7.1. �

7.3 Corollary. Let S be a commutative semigroup and f be a cardinal function on

S such that f(a) ≤ 2 for all a ∈ S. Then f is representable if and only if f(a) = 1

for every a ∈ S − S3. �

XII.8 Some constructions of quasigroups and loops

Let G be a group, H be an abelian group and g be a mapping of G×G into H.

Then Q(G,H, g) denotes the groupoid Q(∗) with the underlying set Q = G × H

and the operation ∗ defined by (x, a) ∗ (y, b) = (xy, a+ b+ g(x, y)) for all x, y ∈ G

and a, b ∈ H. Further, define a relation t on Q by ((x, a), (y, b)) ∈ t if and only if

x = y. For a subset L of H, define a relation tL on Q by ((x, a), (y, b)) ∈ tL if and

only if x = y and a− b ∈ L. Denote by K the subgroup of H generated by all the

elements g(y, z) + g(x, yz)− g(x, y)− g(xy, z), for x, y, z ∈ G.

8.1 Lemma.

(1) Q(∗) is a quasigroup, t is a congruence of Q(∗), the factor Q(∗)/t is isomor-

phic to G and every block of t has the same cardinality, equal to Card(H).

(2) The quasigroup Q(∗) is commutative if and only if G is commutative and

g(x, y) = g(y, x) for all x, y ∈ G.

(3) Q(∗) is a loop if and only if g(1, x) = g(y, 1) for all x, y ∈ G.

(4) Q(∗) is a group if and only if g(x, y) + g(xy, z) = g(y, z) + g(x, yz) for all

x, y, z ∈ G.

(5) tL is an equivalence if and only if L is a subgroup of H. In that case, tL is

a cancellative congruence of Q(∗).

(6) If L is a subgroup of H, then Q(∗)/tL is a group if and only if K ⊆ L.

(7) If r is a congruence of Q(∗) with r ⊆ t, then r = tL for a subgroup L of H.

(8) t = sQ(∗) if and only if K = H. In that case, σ(Q(∗)) = Card(H).
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(9) If G contains at least three elements and H is cyclic, then the mapping

g can be chosen in such a way that K = H and g(x, y) = g(y, x) and

g(1, x) = g(y, 1) for all x, y ∈ G.

Proof. (1) through (6) are easy. (7) Let ((x, a), (x, b)) ∈ r, y ∈ G, c, d ∈ H,

c−d = a−b. Then (yx−1, g(yx−1, x))∗(x, a) = (y, b) and (yx−1, g(yx−1, x))∗(x, b) =

(y, b), so that ((y, a), (y, b)) ∈ r. Further, (1, c − a − g(1, x)) ∗ (x, a) = (x, c) and

(1, c−a−g(1, x))∗(x, b) = (1, d−b−g(1, x))∗(x, b) = (x, d), so that ((x, c), (x, d)) ∈ r

and then also ((y, c), (y, d)) ∈ r. From this we see that r = tL, where L = {a− b :

((x, a), (x, b)) ∈ r}. By (5), L is a subgroup of H.

(8) This follows easily from (6) and (7).

(9) Let u, v ∈ G be such that the elements 1, u, v are pairwise different and let

a be a generator of H. It is easy to see that we can define g in such a way that

g(x, y) = g(y, x), g(1, x) = g(y, 1), g(u, v) = a, g(u, uv) = g(u2, v) and g(u, u) = 0.

Then g(u, v) + g(u, uv)− g(u, u)− g(u2, v) = a, and so K = H. �

8.2 Proposition. Let G be a group containing at least three elements and let

1 ≤ κ ≤ ℵ0 be a cardinal number. Then there exists a loop Q such that σ(Q) = κ

and Q/sQ is isomorphic to G. Moreover, Q can be chosen commutative, provided

that G is commutative.

Proof. Some of the assertions in Lemma 8.1 may turn out to be useful. �

8.3 Remark. Let P be a loop such that σ(P ) = 2. Put G = P/sP and, for every

x ∈ G, choose an element wx ∈ x; the choice should be such that w1 = 1. Let {1, a}

be the block of sP containing the unit of P . Then, clearly, G = {{wx, awx} : x ∈ G};

the element a belongs to the center of P and a2 = 1. Further, define a mapping g of

G×G into the two-element cyclic group Z2 = {0, 1} by g(x, y) = 0 if wxwy = wxy

and g(x, y) = 1 otherwise. Then g(x, 1) = g(1, y) for all x, y ∈ G. Moreover, if P

is commutative, then g(x, y) = g(y, x) for all x, y ∈ G. Finally, define a mapping

f : P → Q(G,Z2, g) by f(wx) = (x, 0) and f(awx) = (x, 1) for every x ∈ G. It is

easy to check that f is an isomorphism of P onto Q(G,Z2, g).

8.4 Remark. There exists no loop P with σ(P ) = 2 and Card(P/sP ) = 2. Indeed,

every four-element loop is a group. On the other hand, consider the four-element

commutative quasigroup Q with the following multiplication table:
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Q 0 1 2 3

0 0 3 2 1

1 3 2 1 0

2 2 1 0 3

3 1 0 3 2

One can easily check that σ(Q) = 2 and Q/sQ is isomorphic to Z2.

8.5 Lemma. Let G(+) be an abelian group of order n ≥ 5 such that the trans-

formations x 7→ 2x and x 7→ 3x are permutations of G (i.e., G is uniquely 2- and

3-divisible). Take an element e /∈ G, put P = G ∪ {e} and define multiplication on

P by

xy =































(x+ y)/2 for x, y ∈ G, x 6= y,

e for x = y,

x for y = e,

y or x = e.

Then P is a simple, commutative and nonassociative loop of order n+ 1.

Proof. It is easy to check that P is a commutative loop of order n+1; it is nonasso-

ciative, because n ≥ 5. Let r be a congruence of P and putK = {x ∈ P : (x, e) ∈ r}.

If K = {e}, then r = idP . Assume K 6= {e} and take an element a ∈ K−{e}. Then

for every element b ∈ G− {a} we have ((a+ b)/2, b) ∈ r and ((a+ 3b)/4, e) ∈ r, so

that (a+ 3b)/4 ∈ K. From this it is easy to see that K = P and r = P × P . �

8.6 Lemma. For every cardinal number κ ≥ 1, κ 6= 4, there exists a simple

commutative loop P of order κ. If κ ≥ 6, then P can be chosen nonassociative.

Proof. It follows from Griffin [8] and Lemma 8.5. �

8.7 Proposition. Let G be a group and κ ≥ 6 be a cardinal number. Then there

exists a loop Q such that σ(Q) = κ and Q/sQ is isomorphic to G. Moreover, if G

is abelian, then Q can be chosen commutative.

Proof. By 8.6, there is a simple commutative and nonassociative loop P of order κ.

It suffices to put Q = G× P . �
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XII.9 Quasigroups with subquasigroups of index 2

Let P be a nonempty set and ∗, ◦,△,▽ be four quasigroup operations on P . Put

Q = P × {0, 1} and define multiplication on Q as follows:

(x, 0)(y, 0) = (x ∗ y, 0);

(x, 1)(y, 1) = (x ◦ y, 0);

(x, 0)(y, 1) = (x△ y, 1);

(x, 1)(y, 0) = (x▽ y, 1)

for all x, y ∈ P . The groupoid just obtained will be denoted by Q(P, ∗, ◦,△,▽).

Put R = {(x, 0) : x ∈ P}.

9.1 Lemma.

(1) Q is a quasigroup, R is a normal subquasigroup of Q, R is isomorphic to

P (∗) and Q/R is a two-element group.

(2) Q is commutative if and only if the operations ∗ and ◦ are commutative and

x△ y = y ▽ x for all x, y ∈ P .

(3) Let e ∈ P and a ∈ {0, 1}. Then (e, a) is a unit of Q if and only if a = 0, e

is a unit of P (∗), e is a left unit of P (△) and e is a right unit of P (▽).

(4) Q is a group if and only if P (∗) is a group and x△ (y △ z) = (x ∗ y)△ z,

x△ (y▽ z) = (x△ y)▽ z, x▽ (y ∗ z) = (x▽ y)▽ z, x ∗ (y ◦ z) = (x△ y) ◦ z,

x◦ (y▽ z) = (x◦ y)∗ z, x◦ (y△ z) = (x▽ y)◦ z and x▽ (y ◦ z) = (x◦ y)△ z

for all x, y, z ∈ P .

Proof. It is easy. �

Define a relation t on Q by ((x, a), (y, b)) ∈ t if and only if a = b. Then t is a

normal congruence of Q and Q/t is isomorphic to Z2.

Let r, s be two equivalences defined on P . Then we define a relation t(r, s) on

Q by ((x, a), (y, b)) ∈ t(r, s) if and only if either a = b = 0 and (x, y) ∈ r or else

a = b = 1 and (x, y) ∈ s. Consider the following two conditions:

(P1) If x, y, z ∈ P and (x, y) ∈ r, then (z ▽ x, z ▽ y) ∈ s and (x△ z, y △ z) ∈ s;

(P2) If x, y, z ∈ P and (x, y) ∈ s, then (z ◦ x, z ◦ y) ∈ r, (x ◦ z, y ◦ z) ∈ r,

(z △ x, z △ y) ∈ s and (x▽ z, y ▽ z) ∈ s.

9.2 Lemma.

(1) t(r, s) is an equivalence contained in t and t(r, s) is a congruence of Q if
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and only if r is a congruence of P (∗) and the conditions (P1) and (P2) are

satisfied.

(2) Suppose that (P1) is satisfied and either P (△) (resp. P (▽)) possesses a

right (resp. left) unit or s is a right (resp. left) cancellative relation on

P (△) (resp. P (▽)). Then r ⊆ s.

(3) Suppose that (P2) is satisfied and that r is a left or a right cancellative

relation on P (◦). Then s ⊆ r.

(4) Suppose that (P2) is satisfied and r ⊆ s. Then both r and s are congruences

of P (◦).

(5) Suppose that (P2) is satisfied and P (△) (resp. P (▽)) is commutative. Then

s is a congruence of P (△) (resp. P (▽)).

Proof. It is easy. �

9.3 Lemma. Suppose that t(r, s) is a congruence of Q. Then the corresponding

factor of Q is a group if and only if P (∗)/r is a group and ((x∗y)△z, x△(y△z)) ∈ s,

((x△y)▽z, x△(y▽z)) ∈ s, ((x▽y)▽z, x▽(y∗z)) ∈ s, ((x◦y)△z, x▽(y◦z)) ∈ s,

((x▽ y) ◦ z, x ◦ (y△ z)) ∈ r, ((x△ y) ◦ z, x ∗ (y ◦ z)) ∈ r, ((x ◦ y) ∗ z, x ◦ (y▽ z)) ∈ r

for all x, y, z ∈ P .

Proof. It is easy. �

9.4 Lemma. Suppose that t(r, s) is a congruence of Q and the corresponding factor

is a group. Let e ∈ P .

(1) If e is a right unit of P (△), then (x ∗ y, x△ y) ∈ s for all x, y ∈ P .

(2) If e is a left unit of P (▽), then (x ∗ y, x▽ y) ∈ s for all x, y ∈ P .

(3) If e is a right unit of both P (∗) and P (△) and a left unit of P (▽), and if

e ◦ e = e, then (x ∗ y, x ◦ y) ∈ r for all x, y ∈ P .

Proof. Use 9.3. �

9.5 Lemma. Suppose that t(r, s) is a congruence of Q, the corresponding factor is

a group and P (∗), P (△), P (▽) are commutative loops with the same unit e = e ◦ e.

Then r = s is a cancellative congruence of all the four quasigroups P (∗), P (◦), P (△)

and P (▽) and (x ∗ y, x ◦ y) ∈ r and (x△ y, x▽ y) ∈ r for all x, y ∈ P .

Proof. Apply the preceding lemmas. �
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9.6 Lemma. Let p be a congruence of Q with p ⊆ t. Then there exist a congruence

r of P (∗) and an equivalence s on P such that the conditions (P1) and (P2) are

satisfied and p = t(r, s).

Proof. Define r and s as follows: (x, y) ∈ r if and only if ((x, 0), (y, 0)) ∈ p and

(x, y) ∈ s if and only if ((x, 1), (y, 1)) ∈ p. �

9.7 Lemma. Suppose that Q is not associative and that the quasigroup P (∗) is

simple. Then t = sQ and σ(Q) = Card(P ).

Proof. We have p = sQ ⊆ t and p = t(r, s) by 9.6. If r = P × P , then s = P × P

by (P1), and therefore p = t. If r = idP , then s = idP by (P2) and Q is a group, a

contradiction. �

9.8 Lemma. Let P be a finite set with n ≥ 4 elements and let 0 ∈ P . Then there

exist two cyclic groups P (∗) and P (◦) such that 0 is the neutral element of both

P (∗) and P (◦) and x∗y 6= x◦y for some x, y ∈ P . Moreover, 0 and P are the only

common subgroups of P (∗) and P (◦).

Proof. Let n = pk1

1 . . . pkm

m where m, k1, . . . , km ≥ 1 and p1 < p2 < · · · < pm

are primes. Further, let P (∗) be an arbitrary cyclic group such that 0 is its zero

element. If n is a prime, then the result is clear. Suppose that n is composed and

let a1, . . . , am ∈ P (∗) be some elements of orders p1, . . . , pm, respectively. It is easy

to construct a cyclic group P (◦) such that 0 is its zero and each of the elements

a1, . . . , am is a generator of P (◦). Now, if R is a nonzero subgroup of both P (∗)

and P (◦), then ai ∈ R for at least one 1 ≤ i ≤ m, and hence R = P . Finally, P (∗)

contains a nonzero proper subgroup, and so P (∗) 6= P (◦). �

9.9 Remark. Let Q(∗) be a quasigroup containing a normal sugquasigroup P (∗)

of index 2. Let a ∈ Q, a /∈ P . Then Q is formed by the elements x and a ∗ x, with

x running over P , and we can define three binary operations ◦,△ and ▽ on P as

follows:

x ◦ y = (a ∗ x) ∗ (a ∗ y);

x△ y = z, where x ∗ (a ∗ y) = a ∗ z;

x▽ y = z, where (a ∗ x) ∗ y = a ∗ z

for all x, y ∈ P . It is easy to see that P (◦), P (△) and P (▽) are quasigroups and

that Q(∗) is isomorphic to Q(P, ∗, ◦,△,▽) (define f : Q(P, ∗, ◦,△,▽) → Q(∗) by
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f(x, 0) = x and f(x, 1) = a ∗ x).

9.10 Proposition. Let κ ≥ 1, κ 6= 2 be a cardinal number. Then there exists a

commutative loop Q such that σ(Q) = κ and Q/sQ is isomorphic to Z2.

Proof. Let 4 ≤ κ < ℵ0. By 9.8, there exist two different cyclic groups P (∗)

and P (◦) with the same underlying set P , Card(P ) = κ, with the same zero

element 0 and without nontrivial common subgroups. Consider the quasigroup

Q = Q(P, ∗, ◦, ∗, ∗). By 9.1, Q is a commutative loop. Put s = sQ. We have s ⊆ t

and s = t(r, r) for a congruence r of both P (◦) and P (∗) (see 9.5 and 9.6) such

that (x ∗ y, x ◦ y) ∈ r for all x, y ∈ P . Put K = {x ∈ P : (x, 0) ∈ r}. Then K is a

subgroup of both P (∗) and P (◦). If K = P , then r = P ×P and s = t. If K = {0},

then r = idP and x ∗ y = x ◦ y for all x, y ∈ P , a contradiction.

Let κ 6= 2, 4 and let P (∗) be an abelian group of order κ and with a zero element 0.

It is easy to see that there exists a simple commutative quasigroup P (◦) such that

0 ◦ 0 = 0 and either κ = 1 or P (◦) is not associative. Now, put Q = Q(P, ∗, ◦, ∗, ∗)

and s = sQ. Then s = t(r, r) for a congruence r of both P (∗) and P (◦) such that

(x ∗ y, x ◦ y) ∈ r for all x, y ∈ P . If r = P × P , then s = t. If r 6= P × P , then

κ ≥ 3, r = idP and P (∗) = P (◦), a contradiction. �

XII.10 Representations of cardinal functions

on groups by quasigroups and loops

10.1 Proposition. Let G be a group of order β and let α ≥ 1 be a cardinal number.

Then, except for the cases listed below, there exists a loop Q such that σ(Q) = α

and Q/sQ is isomorphic to G. The exceptional cases for (α, β) are (2, 1), (2, 2),

(3, 1) and (4, 1).

Proof. If α ≥ 6, then the result is settled by 8.7. If α 6= 2 and β = 2, then 9.10

applies. If α ≤ ℵ0 and β ≥ 3, then 8.2 takes place. The five-element loop Q with

the multiplication table
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Q 1 2 3 4 5

1 1 2 3 4 5

2 2 3 4 5 1

3 3 5 1 2 4

4 4 1 5 3 2

5 5 4 2 1 3

is simple and nonassociative, solving the question for (α, β) = (5, 1). The four

cases for (α, β) are excluded by the fact that every at most four-element loop is

associative. �

10.2 Proposition. Let G be an abelian group of order β and let α ≥ 1 be a cardinal

number. Then, except for the cases listed below, there exists a commutative loop Q

such that σ(Q) = α and Q/sQ is isomorphic to G. The exceptional cases for (α, β)

are (2, 1), (2, 2), (3, 1), (4, 1) and (5, 1).

Proof. Similar to that of 10.1. (Every commutative loop of order 5 is a group.) �

10.3 Proposition. Let G be a (commutative) group of order β and α ≥ 1 be

a cardinal number. Then, in all cases except for (α, β) = (2, 1), there exists a

(commutative) quasigroup Q such that σ(Q) = α and Q/sQ is isomorphic to G.

Proof. Similar to that of 10.1. (See 8.4; it is easy to construct simple nonassociative

and commutative quasigroups of orders 3, 4 and 5.) �

XII.11 Comments and open problems

The investigation of representability of cardinal-valued functions on semigroups

by groupoids was initiated by P. Corsini in [3] (see also [5] and [6]). His results

were generalized and completed in [7], [9] and [14]. The case of cardinal functions

on groups was studied in [12].

According to Theorem 2.3, the condition (R) is necessary for a cardinal function

f on a given semigroup S to be representable. We have seen that for some classes

of semigroups, the condition is also sufficient. However, we do not know if this is

true in general. The idea to Section 2 came from [9], where condition (R’) was

formulated. Section 2 is a correction to [9].
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6. P. Corsini, Prolegomena of hypergroup theory, Aviani, Udine 1984.
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