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Abstract. Groupoids satisfying the equation x(yz) = (xy)(xz) are called left dis-

tributive, or LD-groupoids. We give an algorithm for their enumeration and prove
several results on the collection of LD-groupoids extending a given monounary alge-
bra.

0. Introduction

Suppose that we want to enumerate all groupoids (i.e., algebras with one mul-
tiplicatively denoted binary operation) on a given finite set A of n elements that
satisfy a given finite collection E of equations. The groupoids can be identified with
their multiplication tables, and we can suppose that A = {0, 1, . . . , n−1}. A simple
algorithm can do the task: generate the tables of all groupoids on A according to
their lexicographic order, and for each groupoid check if it satisfies the equations
from E. Of course, this can work in a reasonable time for very small numbers n

only, as the number of all tables is nn2

. With n = 5, we would have to check 525

tables, which is already too much.
If the collection E is sufficiently strong, the number of groupoids satisfying E

on a set of n elements can be essentially smaller than the number of all groupoids.
So, one can ask for a faster algorithm, avoiding large intervals in the lexicographic
ordering for which it is clear from a simple reason that they cannot contain a table
satisfying E. One such algorithm is given in Section 3 of this paper. The algorithm
is written in the language C, but does not use any hard to understand features
of the language. It is formulated for the special case of E consisting of the left
distributive law.

This algorithm makes it possible to find the number of isomorphism types of
n-element left distributive groupoids for both n = 5 and n = 6. The numbers are
given in Section 4.

Let P be a partial groupoid. By an LD-extension of P we mean a left distributive
groupoid G with the underlying set P , such that xy = z in P implies xy = z in G.
If xy is defined in P for the pairs x, y with x = y and no other ones, then P can be
identified with a monounary algebra. In Section 1 we investigate the collection of
LD-extensions of a given monounary algebra. We determine under what conditions
there exists precisely one LD-extension, and for some monounary algebras we are
able to give a simple description of all the LD-extensions. The conjectures to some
of the results were obtained by running a version of the algorithm given in Section 3.

In Section 2 we are concerned with finite zeropotent left distributive groupoids.
We prove that all of them satisfy the equation x(yz) = 0, and find recursive formulas
for their enumeration.
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In two related papers [6] and [7], finite left distributive groupoids with one gen-
erator are completely described. Related are also the papers [1], [2], [3], [4], [5], [8],
[9], and [10].

1. Finite left distributive groupoids extending

a given monounary algebra

Let (A, x′) be a monounary algebra (i.e., an algebra with one unary operation).
By an LD-extension of (A, x′) we shall mean an LD-groupoid (A, xy) such that
xx = x′ for all x ∈ A.

Let (A, x′) be given. If a ∈ A, then a(i) is defined for any nonnegative integer i

recursively in the following way: a(0) = a and a(i+1) = a′
(i)
. The set {a(i) : i ≥ 0} is

called the orbit of a. Two elements of A are called connected if their orbits are not
disjoint. This relation on A is an equivalence; its blocks will be called components
of (A, x′).

Let C be a component of (A, x′). The intersection of all orbits of elements of C
is called the cycle of C. The cycle is nonempty and coincides with the orbit of any
of its elements. An element a ∈ A is called irreducible if there is no element b with
a = b′.

Of course, every LD-groupoid is an LD-extension of precisely one monounary
algebra. Given an LD-groupoid G, we put x′ = xx for every x ∈ G, introduce
the notation x(i) and speak about orbits and components with respect to this
monounary algebra.

1.1. Lemma. Let (A, xy) be an LD-extension of (A, x′). Then:

(1) (ab)′ = ab′ for any a, b ∈ A;
(2) if b is in the orbit of a, then ab = b′.

Proof. (1) (ab)′ = ab · ab = a · bb = ab′.

(2) Let us prove aa(i) = a(i+1) by induction on i. For i = 0 it is clear. If i > 0,
then aa(i) = a · a(i−1)a(i−1) = aa(i−1) · aa(i−1) = a(i)a(i) = a(i+1). �

1.2. Theorem. Every monounary algebra (A, x′) has at least one LD-extension
(A, xy), e.g., xy = y′.

A monounary algebra (A, x′) has a unique LD-extension if and only if it has only
one component and, for any irreducible element a ∈ A, a′′ = b′ implies b = a′.

Proof. If xy = y′ for all x, y ∈ A, then x · yz = z′′ = xy · xz and (A, xy) is an
LD-extension of (A, x′).

Let (A, x′) have more than one component. We are going to show that then
(A, x′) has at least two different LD-extensions. If every component consists of a
single element (so that x′ = x for all x), then xy = x and xy = y are two different
LD multiplications on A, both satisfying xx = x. So, we can assume that there is
a component D with at least two elements. Take another component C 6= D. We
can define multiplication on A by xy = y if x ∈ C and y ∈ D, and xy = y′ in all
other cases. Clearly, xx = x′ for all x, and there are pairs x, y with xy 6= y′. It
remains to prove x · yz = xy · xz for all x, y, z. If z /∈ D, then x · yz = z′′ = xy · xz.
Let z ∈ D. If x /∈ C and y /∈ C, then x · yz = z′′ = xy · xz. If x ∈ C and y ∈ C,
then x · yz = z = xy · xz. If precisely one of the elements x and y belongs to C,
then x · yz = z′ = xy · xz.
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Let a ∈ A be an irreducible element and suppose that there is an element b 6= a′

such that a′′ = b′. Define multiplication on A by a′′a = b and xy = y′ whenever
(x, y) 6= (a′′, a). If b 6= a, then it is easy to see that x · yz = z′′ for all x, y, z; but
then also xy · xz = z′′ and we get x · yz = xy · xz. If b cannot be taken different
from a, then A has only two elements and it is easy to verify that the multiplication
is also left distributive in this case. Clearly, xx = x′ for all x and xy = y′ fails for
(x, y) = (a′′, a). Hence (A, x′) has at least two different LD-extensions.

Now let (A, x′) have only one component and let a′′ = b′ imply b = a′ for any
irreducible element a. Let (A, xy) be an LD-extension of (A, x′). It remains to
prove that xy = y′ for all x, y ∈ A. By Lemma 1.1(2), if a belongs to the cycle,
then xa = a′ for any x ∈ A.

Let b be an irreducible element. Put bi = b(i) for all i. By Lemma 1.1(2),
bibj = b′j for i ≤ j. Let us prove, by induction on i, that bibj = b′j for all j. For
i = 0 this has been proved, so let i > 0. If j > 0, then

bibj = bi−1bi−1 · bi−1bj−1 = bi−1 · bi−1bj−1 = bi−1bj = b′j ,

so it remains to prove bib0 = b′0. We have (bib0)
′ = bib

′

0 = bib1 = b2 = b′′; since b is
irreducible, this implies bib0 = b′ = b′0.

In particular, we get ay = y′ for any element a of the cycle and any element y.
By the depth of an element x ∈ A we shall mean the least nonnegative integer i
such that x(i) belongs to the cycle. Let us prove xy = y′ by induction on the depth
of x. If x is of depth 0, then x belongs to the cycle and we are through. Let x be
of a positive depth. The depth of x′ is less then the depth of x, so x′y = y′ for all
y by induction. Let b be an irreducible element. As before, it is sufficient to prove
xbi = bi+1 for all i, where bi = b(i). Let us proceed by induction on i. Take any
element a in the cycle. Since (xb)′ = a ·xb = ax ·ab = x′b′ = b′′ and b is irreducible,
we have xb = b′, i.e., xb0 = b1. For i > 0,

xbi = x · bi−1bi−1 = xbi−1 · xbi−1 = bibi = bi+1.

This proves xy = y′ for all x, y ∈ A. �

1.3. Lemma. Let G be a finite LD-groupoid and let a, b be two elements of G such
that b belongs to a cycle and ab = b(k) for some k ≥ 0. Then a(i)b(j) = b(k+j) for
all i and j.

Proof. By Lemma 1.1, ab(j) = b(k+j) for all j. Now it is sufficient to prove aa · b =
b(k). We have aa · b(k) = aa · ab = a · ab = ab(k) = b(k+k), so that aa · b(k+j) =
b(k+k+j) for all j ≥ 0. Since b belongs to a cycle, for a suitable j this means that
aa · b = b(k). �

Let n1, . . . , nd (where d ≥ 1) be positive integers; for every pair i, j of elements
of {1, . . . , d} with i 6= j let mi,j be a number from {0, . . . , nj − 1}. We denote by
Hni,mi,j

the groupoid with the underlying set {(i, k) : i ∈ {1, . . . , d}, k ∈ {0, . . . , ni−
1}} and multiplication given by

(i, k)(j, l) = (j, l +j mi,j)

where mi,i = 1 and +j denotes addition modulo nj .
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1.4. Theorem. Hni,mi,j
is an LD-groupoid of cardinality n1 + · · · + nd and with

cycles of cardinalities n1, . . . , nd.
Let n1, . . . , nd be positive integers such that ni is not a multiple of nj for any

i 6= j. Then every LD-groupoid of cardinality n1+· · ·+nd with cycles of cardinalities
n1, . . . , nd is isomorphic to Hni,mi,j

for some collection of numbers mi,j (i 6= j) as

above. There are precisely (n1n2 . . . nd)
d−1 isomorphism types of such groupoids.

Proof. The first assertion is straightforward. Let G be an LD-groupoid which is the
disjoint union of cycles of mutually prime cardinalities n1, . . . , nd. Define a bijection
f of {(i, k) : i ∈ {1, . . . , d}, k ∈ {0, . . . , ni − 1}} onto G in the following way. For
every i ∈ {1, . . . , d} let f(i, 0) be an arbitrarily chosen element of the cycle of
cardinality ni, and put f(i, k) = f(i, 0)(k) for all k. By Lemma 1.1, f(i, k)f(i, l) =
f(i, l +i 1).

Let i 6= j. By Lemma 1.1, (f(i, 0)f(j, 0))(nj) = f(i, 0)f(j, 0); since nj is not
a multiple of any other number from {n1, . . . , nd}, it follows that f(i, 0)f(j, 0) =
(j,mi,j) for precisely one number mi,j ∈ {0, . . . , nj − 1}. By Lemma 1.3 we get
f(i, k)f(j, l) = (j, l +j mi,j) for all k and l. The last assertion follows easily. �

1.5. Example. The partition of an LD-groupoid into components is not neces-
sarily a congruence. The following five-element LD-groupoid is a counterexample:

a b c d e

a b a d d d
b b a e d d
c a b c d e
d a b c d e
e a b c d e

Let us take n+ 2 elements a, b, c1, . . . , cn for some positive integer n. For every
pair M,N of subsets of {c1, . . . , cn} and every reflexive relation R on {c1, . . . , cn}
denote by EM,N,R the groupoid with the underlying set {a, b, c1, . . . , cn} and mul-
tiplication given by

xa = a

xb = a

aci =

{

b for ci ∈ M

a for ci /∈ M

bci =

{

b for ci ∈ N

a for ci /∈ N

cicj =

{

b for (i, j) ∈ R

a for (i, j) /∈ R

1.6. Theorem. Let (A, x′) be the monounary algebra with the underlying set
A = {a, b, c1, . . . , cn} and the operation a′ = b′ = a, c′i = b. The collection of
groupoids EM,N,R is just the collection of all LD-extensions of (A, x′).

Proof. The groupoids EM,N,R are left distributive, since x · yz = a for all x, y, z;
clearly, they are LD-extensions of (A, x′). Conversely, let G be an LD-extension of
(A, x′).
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By Lemma 1.1 we have xa = a for all x, and cib = a.
Suppose ab = b. If also bci = b for some i, then a = bb = b ·bci = bb ·bci = ab = b,

a contradiction. Since b · cici = a, we cannot have bci = cj . Hence bci = a for all i.
Now a = cia = ci · bci = cib · cici = ab = b, a contradiction.

We have proved ab 6= b. If ab = ci, then a ·bb = cici, i.e., aa = b, a contradiction.
Hence ab = a. In total, xb = a for all x.

Since xci · xci = x · cici = xb = a, we get xci ∈ {a, b} for all x. Now it is clear
that G = EM,N,R for some M,N,R. �

1.7. Corollary. There are precisely 2n(n+1) LD-extensions of the monounary
algebra (A, x′) from 1.6. The number of isomorphism types of the LD-extensions
is the same as the number of isomorphism types of n-element relation systems with
two unary relations and one binary reflexive relation. �

2. Finite zeropotent left distributive groupoids

A groupoid is called zeropotent if it satisfies xx · y = y · xx = xx. Equivalently,
a groupoid G is zeropotent if it contains a zero element 0 and xx = 0 for all x ∈ G.

2.1. Theorem. A finite zeropotent groupoid (with zero 0) is left distributive if and
only if it satisfies x · yz = 0.

Proof. Let G be a finite zeropotent groupoid with zero 0. If G satisfies x · yz = 0,
then x · yz = 0 = xy · xz and G is left distributive. Conversely, let G be left
distributive. By a bad triple we shall mean a triple a, b, c of elements of G with
a · bc 6= 0; we need to prove that there is no bad triple.

Since ab · ac = a · bc, we get: if a, b, c is a bad triple, then also ab, a, c is a bad
triple.

For any pair a, b of elements of G, define an infinite sequence P a,b
i (i = 0, 1, · · · )

of elements of G as follows:

P a,b
0 = a, P a,b

1 = ab, P a,b
i = P a,b

i−1P
a,b
i−2 for i ≥ 2.

It is easy to see that

P ab,a
i = P a,b

i+1

for any a, b ∈ G and any i ≥ 0.

Let us prove by induction on i that aP a,b
i = 0. We have aP a,b

0 = aa = 0 and

aP a,b
1 = a·ab = aa·ab = 0·ab = 0. For i ≥ 2, aP a,b

i = a·P a,b
i−1P

a,b
i−2 = aP a,b

i−1 ·aP
a,b
i−2 =

00 = 0.
Let us prove by induction on i ≥ 1 that P a,b

i · P a,b
i−1c = a · bc for any elements

a, b, c ∈ G. For i = 1 this is just the left distributive law. If i ≥ 2, then we can use
the induction hypothesis:

P a,b
i · P a,b

i−1c = P a,b
i−1P

a,b
i−2 · P

a,b
i−1c = P a,b

i−1 · P
a,b
i−2c = a · bc.

Let us prove by induction on n ≥ 0 that if a, b, c is a bad triple, then the elements

P a,b
0 , · · ·P a,b

n are pairwise different. For n = 0 there is nothing to prove. Let

n ≥ 1. By the induction hypothesis applied to a, b, c, the elements P a,b
0 , · · · , P a,b

n−1

are pairwise different. By the induction hypothesis applied to the triple ab, a, c

(which is also bad), the elements P ab,a
0 , · · · , P ab,a

n−1 are also pairwise different. Since
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P ab,a
i = P a,b

i+1, the elements P a,b
1 , · · · , P a,b

n are pairwise different. So, it remains

to prove P a,b
0 6= P a,b

n . Suppose, on the contrary, that a = P a,b
n . Then a · bc =

P a,b
n · P a,b

n−1c = a · P a,b
n−1c = aP a,b

n−1 · ac = 0 · ac = 0, a contradiction.

So, we have proved that if there is a bad triple a, b, c, then all members of the

infinite sequence P a,b
i (i = 0, 1, · · · ) are pairwise different, a contradiction with the

finiteness of G. �

2.2. Corollary. The number of zeropotent left distributive groupoids with a given
underlying set of n elements and a given zero element 0 is given by

n−2
∑

i=0

(

n− 1

i

)

Ci,i

where
Ck,0 = 1,

Ck,m = (m+ 1)(n−k−1)(n−2) −
m−1
∑

i=0

(

m

i

)

Ck,i for 0 < m ≤ k.

Proof. It is easy. Let G be a set of n elements with a fixed element 0 ∈ G. For a
given k-element subset K of G− {0} and a given m-element subset M of K, Ck,m

is the number of the groupoids such that K = {xy : x, y ∈ G}−{0} and xa = 0 for
all x ∈ G, a ∈ K. �

2.3. Example. For n = 2, 3, 4, 5, 6 the numbers are, respectively, 1, 3, 52, 5681,
and 6026496.

Although it seems probable that the assumption of finiteness in Theorem 2.1 can-
not be eliminated, the author has not been able to find the corresponding example.
The question remains open:

2.4. Conjecture. There are infinite zeropotent left distributive groupoids not sat-
isfying x · yz = 0.

This is equivalent to the following:

2.5. Conjecture. The term x · yz is not equivalent to any term containing a
subterm tt, for any term t, with respect to the equational theory of left distributive
groupoids.

It is easy to see that the two conjectures are equivalent. The negation of 2.4,
together with Theorem 2.1, would be equivalent to saying that x · yz = uu is a
consequence of the left distributive law together with xx · y = y · xx = xx. If
x · yz = uu is a consequence, then there exists a formal proof of the equation, a
finite sequence of terms w0, · · · , wn such that w0 = x · yz, wn = uu and, for any
i > 0, the equation wi−1 = wi is an immediate consequence of either x ·yz = xy ·xz
or xx · y = xx or y · xx = xx; if n is the last index such that wi−1 = wi is an
immediate consequence of the distributive law, then clearly wn contains a subterm
tt for some term t, and x · yz = wn is a consequence of the left distributive law.
The converse implication is clear.
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3. The enumeration algorithm

The following fragment of a C program can be used to find the number of LD-
extensions of a given monounary algebra on n elements. We need two arrays A

and B of the size n2. A holds the multiplication table, which is generated in the
lexicographic order. The array B holds information on the current state of A; if
B[i]= j < i, then the value of A[i] was forced by A[j] and should be kept un-
changed until A[i] is changed; this makes it possible to skip over intervals in the
lexicographic order. In particular, B[i]= −1 means that A[i] should never be
changed.

The function Verify() deals with the table A which may also contain the number
−1, meaning that the corresponding place is undefined and A is the table of a partial
groupoid. The function returns

-1 if the partial groupoid was found contradictory,
0 if no completion was done,
1 if at least one completion was done.

Here is the fragment (for n ≤ 26):

#include <stdio.h>

int n,n1,nn,nn1,P; long int N=0L,NI=0L; int A[676]; int B[676];

int Verify(I){ int i,j,k,a,b,c,d,e,p,q,Z=0;

for(i=0;i<n;i++)for(j=0;j<n;j++){
c=A[n*i+j];if(c>=0)for(k=0;k<n;k++){
d=A[n*i+k];a=A[n*j+k];if(a>=0&&d>=0){
p=n*i+a;q=n*c+d;b=A[p];e=A[q];

if(b>=0&&e<0){A[q]=b;B[q]=I;Z=1;}
else if(b<0&&e>=0){A[p]=e;B[p]=I;Z=1;}
else if(b>=0&&b!=e)return -1;}}}

return Z;}

int FindNext(I){
while(I>=0&&(A[I]==n1||B[I]<I))I--;

if(I>=0)A[I]++; return I;}

void MakePartial(I){ int i;

for(i=I+1;i<nn;i++)if(B[i]>=I){A[i]=-1;B[i]=nn;P++;}}

void MakeComplete(I){ int i;

P=0;for(i=I+1;i<nn;i++)if(A[i]==-1)A[i]=0;}

void Process(){ N++;}

void main(){ int i,I,V,a,b,c; char s[80];]

printf("\nInput cardinality of groupoid: "); scanf("%d",&n);

n1=n-1;nn=n*n;nn1=nn-1;

for(i=0;i<nn;i++){A[i]=0;B[i]=nn;}
do{scanf("%s",s);

if(strlen(s)==3){a=s[0]-’a’;b=s[1]-’a’;c=s[2]-’a’;
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A[n*a+b]=c;B[n*a+b]=-1;}}
while(strlen(s)==3);

I=nn1;P=0;

while(I>=0){
do V=Verify(I); while(V==1&&P);

if(!V&&P){MakeComplete(I);I=nn1;V=Verify(I);}
if(!V)Process();

I=FindNext(I);MakePartial(I);}
printf("N=%ld\n",N);}

Of course, one may ask for more than simply counting the number of multiplica-
tion tables. The changes should be done in the function Process(), which is called
each time when a new valid table was found. For example, one may be interested
in finding the number of isomorphism types. It is not necessary to store all the
preceding tables in order to check if the current table is isomorphic to one of them.
Since the tables are found in the lexicographic order, it is sufficient to ask if the new
table can be isomorphic to one which came in the lexicographic order earlier, and
this can be done by checking all permutations of the underlying aset. There are
no requirements on either space or memory in the program. To make the program
more user friendly, changes in the function main() should be done.

One is often interested in enumerating not all tables, but only those that are
extensions of a given partial groupoid. For that purpose one can append

A[n*i+j]=k; B[n*i+j]=-1;

to the fifth line of the function main(), for each item ij = k of the given partial
groupoid.

4. Six-element groupoids

The numbers of all left distributive groupoids and of all isomorphism types of
left distributive groupoids on a given set of two, three, four, five and six elements
are given in the following table:

Elements: 2 3 4 5 6

Groupoids: 9 224 14067 3717524

Iso types: 6 48 720 33425 35527485

For six elements, we did not count the number of groupoids. Instead, the iso-
morphism types were divided into 130 groups according to the isomorphism types
of their diagonals. There are 130 isomorphism types of monounary algebras on six
elements. For each of them, the number of isomorphism types of LD-extensions
was computed using the algorithm described in Section 3.

Let us denote the six elements by a, b, c, d, e, f . For a 6-tuple a1, . . . , a6, denote
by N(a1, . . . , a6) the ordered pair (n,m) where n is the number of LD-extensions of
the monounary algebra on a, b, c, d, e, f with a′ = a1, b

′ = a2, . . . , f
′ = a6, and m is

the number of their isomorphism types. Among the 130 cases, there were nineteen
with n ≥ 105:

N(baaabb) = (122263, 15426) N(aaaaaa) = (160006292, 1342744)
N(acaaaa) = (47321604, 7902069) N(addaaa) = (30826684, 7721940)
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N(acaeaa) = (15399116, 7701169) N(aeeeaa) = (15405702, 2581806)
N(addafa) = (14348907, 7184295) N(affffa) = (1048576, 45960)
N(abbbbb) = (1403331, 61166) N(abdbbb) = (384558, 193263)
N(abeebb) = (226518, 114520) N(abdbfb) = (138240, 69489)
N(aacccc) = (178839, 31039) N(abcccc) = (250078, 24965)
N(abcddd) = (294766, 31215) N(abccee) = (110569, 29150)
N(abcdfe) = (121736, 5891) N(abcdee) = (1049690, 51254)
N(abcdef) = (17711155, 32541)
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