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Abstract. The paper contains two remarks on finite sets of groupoid terms closed

under subterms and the application of unifying pairs.

Abstrakt. lnek obsahuje dv poznmky o konench mnoinch grupoidovch term, uza-

vench pro podtermy a pro aplikaci unifikujcch dvojic.

By a term we shall mean a groupoid term. Let us write u+ v ∼ t if t = f(u) =
g(v) for a unifying pair f, g of the terms u and v, i.e., if t is a substitution instance
of both u and v and any term that is a substitution instance of both u and v, is a
substitution instance of t. (A survey of unification theory is contained, for example,
in Dershowitz and Jouannaud [1].)

Let us call a set S of terms SU-closed if it is closed with respect to subterms and
whenever u+ v ∼ t for two terms u, v ∈ S, then t ∼ t′ ∈ S for some t′.

Theorem 1. There is no finite, SU-closed set of terms containing the following
three terms:

(xy · z)x, x(yz · u), x · yx.

Proof. Let us define an infinite sequence a0, a1, . . . of terms as follows: a0 is a
variable; ai+1 = aix for a variable x not occurring in ai. So, ai = (((x0x1)x2) . . . )xi,
where x0, . . . , xi is a sequence of pairwise distinct variables. Also, put bi = yai,
where y is a variable not occurring in ai. Hence b2 ∼ x(yz ·u). It is easy to see that

(xy · z)x+ bi ∼ ((aix)y)ai ⊇ ai+2

for i ≥ 2 (where x, y are two distinct variables not occurring in ai, and

x · yx+ ai+1 ∼ ai · xai ⊇ bi

for i ≥ 3. �

The depth of a term is defined inductively as follows: the depth of a variable
is 0; the depth of t1t2 is 1 + max(d1, d2), where d1 is the depth of t1 and d2 is the
depth of t2. So, xy · zu is of depth 2.
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Theorem 2. There exists a finite, SU-closed set of terms containing (up to simi-
larity) all terms of depth at most 2.

Proof. The set consists of the terms of depth 2, plus the twelve terms

xx · (xx · xx) ∼ x · xx + xx · y

xy · (xy · xy) ∼ x · xx + xy · z

xx · (xx · y) ∼ x · xy + xx · y

xy · (xy · z) ∼ x · xy + xy · z

xx · (xx · x) ∼ x · xy + xx · yx

xy · (xy · x) ∼ x · xy + xy · zx

xy · (xy · y) ∼ x · xy + xy · zy

xx · (y · xx) ∼ x · yx + xx · y

xy · (z · xy) ∼ x · yx + xy · z

xx · (x · xx) ∼ x · yx + xx · xy

xy · (x · xy) ∼ x · yx + xy · xz

xy · (y · xy) ∼ x · yx + xy · yz

and their duals. �
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