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Abstract. Let W be the free monoid over a finite alphabet A. We prove that a
congruence of W generated by a finite number of pairs 〈au, u〉, where a ∈ A and
u ∈ W , is always decidable.

0. Introduction

Consider an equational theory E (of an arbitrary signature) based on a finite set
of equations of the form F (t1, . . . , tn) ≈ t1. It was proved in [2] and [3] that E has a
unique perfect base P ; this perfect base is a convergent term rewrite system for E.
If P turns out to be finite, or at least recursive, it follows that the equational
theory E is decidable. In many cases P is infinite, and we do not know if it is
always recursive. For this reason, the question whether E is always decidable was
formulated as an open problem in [3]. In this paper we will show that the answer
is yes in the special case of equational theories (of the above form) of algebras with
unary operations.

For a given unary signature τ , the terms over a single variable stand in a nat-
ural one-to-one correspondence with words over the alphabet A consisting of the
operation symbols in τ . This natural correspondence can be extended to a corre-
spondence between regular equations (equations having the same variables at the
left and the right sides) and ordered pairs of words. Due to this correspondence,
there is a natural isomorphism between the lattice of regular equational theories of
signature τ and congruences of the free monoid over A. So, we are not going to
work with equational theories; congruences of the free monoid will take their place.

A congruence r of the free monoid W over a finite alphabet A is called decidable
if there is an algorithm deciding which ordered pairs of words belong to r. The
aim of this paper is to prove that every congruence generated by a finite number of
ordered pairs of the form 〈au, u〉, where a ∈ A and u ∈ W , is decidable. The equiv-
alent formulation, in terms of equational theories of unary algebras, is a corollary.
The techniques used are those of term rewriting (see [1] for a survey) and perfect
bases [3].

1. Congruences of free monoids

Let A be a finite alphabet and W be the free monoid over A. The elements of
W are called words. A word u is said to be a subword of a word v if v = puq for
some words p and q. We write u ⊆ v if u is a subword of v. If u ⊆ v and u 6= v,
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we say that u is a proper subword of v and write u ⊂ v. Two words are called
incomparable if neither is a subword of the other. We say that u is a beginning (or
an end) of v if v = up (or v = pu, respectively) for some word p. The length of a
word u is denoted by λ(u).

Let S be a set of nonempty words. We denote by BS the set of the ordered pairs
〈au, u〉 such that au ∈ S and a ∈ A, and by αS the congruence of W generated by
BS . Our aim is to study this congruence and to determine under what conditions
it is decidable.

Given three words u, v and ar (where a ∈ A), we write u →ar v if v can be
obtained from u by replacing a subword ar with r. We write u →S v if u →ar v for
some ar ∈ S. We say that u can be rewritten to v with respect to S if there exists
a finite sequence u0, u1, . . . , uk (k ≥ 1) such that u0 = u, uk = v and ui →S ui+1

for all i.
We denote by Q(S) the least set of words containing S and satisfying the fol-

lowing two conditions:

(1) if au ∈ Q(S) and u →bw v for some bw ∈ Q(S) (where a, b ∈ A), then
av ∈ Q(S);

(2) if aubv ∈ Q(S) and bvw ∈ Q(S) (where a, b ∈ A), then auvw ∈ S.

By a derivation from S we mean a finite nonempty sequence u0, . . . , un of words
such that for every i ∈ {0, . . . , n} we have either ui ∈ S or there exist two (not
necessarily distinct) indexes j, k < i such that either uj = au, uk = bw, u →bw v
and ui = av, or else uj = aubv, uk = bvw and ui = auvw (where a, b ∈ A). We
also say that u0, . . . , un is a derivation of un from S. Clearly, a word u belongs to
Q(S) if and only if there exists a derivation of u from S.

1.1. Lemma. Let S be a set of nonempty words. Then αQ(S) = αS.

Proof. Since S ⊆ Q(S), we have αS ⊆ αQ(S). Let a0u0, . . . , anun be a derivation
from S and let us prove by induction on i that 〈aiui, ui〉 ∈ αS . The only case
deserving attention is the case ajuj = aubv, akuk = bvw, aiui = auvw. By
induction, aubv αS ubv and bvw αS vw. We have auvw αS aubvw αS ubvw αS

uvw. �

For any set S of words we denote by R(S) the subset of S consisting of the words
u ∈ S that have no subword belonging to S.

1.2. Lemma. Let S be a set of nonempty words. Then αRQ(S) = αS.

Proof. By 1.1, αQ(S) = αS . Since RQ(S) ⊆ Q(S), we have αRQ(S) ⊆ αS . It
remains to prove 〈au, u〉 ∈ αRQ(S) by induction on the length of a word au ∈ Q(S).
If au ∈ RQ(S), it is clear. Now let au have a proper subword belonging to S.

If the subword is a beginning of au, then we can write u = u1u2 where u2 is
nonempty and au1 ∈ Q(S). By induction, au1 αRQ(S) u1; but then au1u2 αRQ(S)

u1u2, i.e., au αRQ(S) u.
In the other case we have au = au1bvu2 where b ∈ A and bv ∈ Q(S). By

induction, bv αRQ(S) v. We have au1vu2 ∈ Q(S), so by induction au1vu2 αRQ(S)

u1vu2. But au αRQ(S) au1vu2 and u1vu2 αRQ(S) u, so au αRQ(S) u. �

By a perfect set of words we mean a set S satisfying the following two conditions:

(1) S is a set of nonempty, pairwise incomparable words;
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(2) if aubv ∈ S and bvw ∈ S (where a ∈ A and b ∈ A), then there is a word t
such that uvw can be rewritten to t with respect to S and the word at has
a beginning belonging to S.

By a perfect modification of a set S of nonempty words we mean a perfect set S′

such that αS = αS′ .

1.3. Theorem. Let S be a perfect set of words. Then for any word u there exists

a unique word u′ such that u can be rewritten to u′ and u′ has no subword belonging

to S. For any two words u, v we have u αS v if and only if u′ = v′.

Proof. In the terminology of term rewriting, it is sufficient to prove that the set
BS has confluent critical pairs. Applied to our case, this means to prove that if
aubv ∈ S and bvw ∈ S, then ubvw and auvw can be rewritten to the same word with
respect to S. Now ubvw can be rewritten to uvw, and the rest follows from (2). �

1.4. Theorem. Every set S of nonempty words has precisely one perfect modifi-

cation. RQ(S) is the perfect modification of S.

Proof. By Lemma 1.2, αS = αQR(S). Clearly, QR(S) has the property (1); it is
easy to see that it also has the property (2).

Let S1 and S2 be two perfect sets such that αS1
= αS2

; denote this congruence
by α. We are going to prove S1 = S2. Let au ∈ S1. Since au α u, it follows from
Theorem 1.3 applied to S2 that au contains a subword bv ∈ S2. Now bv α v, so
Theorem 1.3 applied to S1 yields the existence of a subword cw ∈ S1 in bv. But au
contains no subword from S1 other than itself, so cw = bv = au. We get au ∈ S2

and thus S1 ⊆ S2. Similarly one can prove S2 ⊆ S1. �

For any set S of nonempty words denote by HS the set of the words that contain
no subword belonging to S. This set is always nonempty: at least it contains the
empty word. For any word t we define a word νS(t) ∈ HS by induction on the
length of t as follows: if t is empty, then νS(t) = t; if t = aw where a ∈ A, then

νS(aw) =

{

aνS(w) if aνS(w) ∈ HS ,

νS(w) otherwise.

Equivalently,

νS(aw) =

{

aνS(w) if no beginning of aνS(w) belongs to S,

νS(w) otherwise.

Clearly, νS is a mapping of W onto HS and is the identity on HS . It is easy to
see that 〈t, νS(t)〉 ∈ αS for any word t. If S is recursive, then νS is a computable
mapping.

Let U be a set of words. For any word t and any u ∈ U we define a word
t ∗U u ∈ U by induction on the length of t as follows: if t is empty, then t ∗U u = u;
if t = aw where a ∈ A, then

aw ∗U u =

{

a(w ∗U u) if a(w ∗U u) ∈ U ,

w ∗U u otherwise.

Clearly, aw ∗U u = a ∗U (w ∗U u). So, if t = a1 . . . ak, where ai ∈ A, then t ∗U u =
a1 ∗U (a2 ∗U . . . (ak ∗U u)). We get t1t2 ∗U u = t1 ∗U (t2 ∗U u) for any words t1, t2
and u ∈ U .

U is called a model of S if av ∗U u = v ∗U u for all av ∈ S and all u ∈ U .
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1.5. Lemma. Let αS1
= αS2

. Then S1 and S2 have the same models.

Proof. Let U be a model of S1. Define a binary relation r on W by 〈p, q〉 ∈ r if and
only if p ∗U u = q ∗U u for all u ∈ U . It is easy to check that r is a congruence of
W containing BS1

, so r contains αS1
= αS2

⊇ BS2
and U is a model of S2. �

1.6. Lemma. Let S be a set of nonempty words and P be the perfect modification

of S. Let n be a positive integer. The set of the words of length at most n that

belong to HP is a model of S.

Proof. Put U = {u ∈ HP : λ(u) ≤ n}. It is easy to prove by induction for any
word t that if u ∈ U , then either t ∗U u αS tu or λ(t ∗U u) = n. From this we get:
either t∗U u = νP (tu) or λ(t∗U ) = n. Let av ∈ S and u ∈ U . We are going to prove
av∗Uu = v∗Uu. Of course, av∗Uu = a∗U (v∗Uu). If λ(v∗Uu) = n, then a(v∗Uu) /∈ U
and so a ∗U (v ∗U u) = v ∗U u. Let λ(v ∗U u) < n. Then a ∗U (v ∗U u) = a ∗U νP (vu);
this word is either aνP (vu) = νP (avu) = νP (vu) = v ∗U u, or νP (vu) = v ∗U u, so
in both cases a ∗U (v ∗U u) = v ∗U u. �

1.7. Lemma. Let S be a set of nonempty words and P be the perfect modification

of S. Let U be a nonempty set of words. If U is closed with respect to subwords

and contains a word not belonging to HP , then it is not a model of S.

Proof. Let w be a shortest word from U − HP . Since w does not belong to HP ,
it contains a subword belonging to P ; this subword belongs to U −HP , so by the
minimality of w we get w ∈ P . We have w = au for some a ∈ A and some word u.
The empty word o belongs to U . Evidently au ∗U o = au and u ∗U o = u, so
au ∗U o 6= u ∗U o and U is not a model of P . By Lemma 1.5, U is not a model
of S. �

1.8. Theorem. Let S be a finite set of nonempty words. The perfect modification

of S is a recursive set, and the congruence αS is decidable.

Proof. Let n be a positive integer. Suppose that we can decide for any word of
length less than n whether it belongs to the perfect modification P of S. We shall
show how to decide the same for any word of length n.

Let us consider all sets U of words with the following three properties:

(1) every word in U is of length at most n;
(2) a word of length less than n belongs to U if and only if it belongs to HP ;
(3) U is a model of S.

Clearly, every set with these properties is finite, there are finitely many of them,
and we are able to find them effectively. Now, according to 1.6 and 1.7, the largest
among these sets is precisely the intersection of HP with the set of words of length
at most n.

So, the set HP is recursive. Consequently, the set P is recursive: a word u
belongs to P if and only if it does not belong to HP , but every proper subword
of u belongs to HP . Also, the mapping νP is computable. We have 〈u, v〉 ∈ αS if
and only if νP (u) = νP (v), so we are able to decide which pairs of words belong
to αS . �

1.9. Example. One would be tempted to speed up the algorithm in 1.8 a little by
saying that a word u belongs to HP iff the set U = {u} ∪ {v ∈ HP : λ(v) < λ(u)}
is a model of S. But this is not true. Let, for example, S = {aba}, so that
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P = {abia : i ≥ 1}, and let u = aa. Then u belongs to HP , although U is not a
model of S: we have aba ∗U o = aa 6= a = ba ∗U o, where o is the empty word.

2. Equational theories of unary algebras

2.1. Theorem. Let E be an equational theory of a finite unary signature, based

on a finite number of equations of the form F0F1 . . . Fk(x) ≈ F1 . . . Fk(x). Then E
is decidable.

Proof. This is a reformulation of Theorem 1.8. �
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