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By a paramedial groupoid we mean a groupoid satisfying the equation ax · yb =
bx·ya. This equation is, in certain sense, symmetric to the equation of mediality xa·
by = xb ·ay and, in fact, the theories of both varieties of groupoids are parallel. The
present paper, initiating the study of paramedial groupoids, is meant as a modest
contribution to the enormously difficult task of describing algebraic properties of
varieties determined by strong linear identities (and, especially, of the corresponding
simple algebras).1

1. Introduction

Let G be a groupoid (i.e., a non-empty set equipped with a binary operation).
For any x ∈ G, we define transformations Lx (= LG,x, the left translation by x)
and Rx (= RG,x, the right translation by x) of G by Lx(y) = xy and Rx(y) = yx

for every y ∈ G.

An element x is said to be

- left (right) injective if the left (right) translation Lx(Rx) is an injective
transformation of G;

- injective if x is both left and right injective;
- left (right) projective if Lx(Rx) is a projective transformation of G;
- projective if x is both left and right projective;
- left (right) bijective if Lx(Rx) is a bijective transformation (i.e., a permu-
tation) of G;

- bijective if x is both left and right bijective.

We denote by Al(G) and Bl(G) (Ar(G) and Br(G)) the set of left (right) injective
and left (right) projective elements, resp., and we put Cl(G) = Al(G) ∩ Bl(G),
Cr(G) = Ar(G) ∩ Br(G), A(G) = Al(G) ∩ Ar(G), B(G) = Bl(G) ∩ Br(G) and
C(G) = Cl(G) ∩ Cr(G).

The groupoid G is said to be

- left (right) cancellative if Al(G) = G (Ar(G) = G);
- left (right) divisible if Bl(G) = G (Br(G) = G);
- cancellative (divisible) if G is both left and right cancellative (divisible);
- a left (right) quasigroup if Cl(G) = G (Cr(G) = G);
- a quasigroup if G is both left and right quasigroup;
- left (right) regular if, for all a, b, c, d ∈ G, ca = cb (ac = bc) implies da = db

(ad = bd);
- regular if G is both left and right regular.

For every groupoid G, we define a transformation oG of G by oG(x) = xx (= x2),
x ∈ G.

1While working on this paper, the first author was supported by Korea Science Foundation

and the last two authors were partially supported by the Grant Agency of the Czech Republic,
Grant No 201/96/0312

1



2

Let H be a subgroupoid of a groupoid G. We denote by Mul(G,H) the trans-
formation semigroup (acting on G) generated by all LG,x and RG,x, x ∈ H. The
semigroup Mul(G) = Mul(G,G) is called the multiplication semigroup of G.

Let G,H be groupoids. A mapping f : G → H is said to be an antihomomor-
phism if f(xy) = f(y)f(x) for all x, y,∈ G; this is equivalent to the fact that f is
a homomorphism of G into the opposite groupoid Hop (and consequently ker(f) is
a congruence of G).

A groupoid G possesses at least one antiautomorphism f iff G and Gop are
isomorphic; then f2 is an automorphism of G and f(xf(x)) = f2(x)f(x), x ∈ G.
If, moreover, f2 = idG, then f(xf(x)) = xf(x).

A groupoid G is said to be

- a Z-semigroup if xy = uv for all x, y, u, v ∈ G;
- a LZ-semigroup if xy = x for all x, y = G;
- a RZ-semigroup if xy = y for all x, y = G;
- a band if G is an idempotent semigroup;
- a rectangular band if G is a band and xyx = x for all x, y ∈ G;
- unipotent if xx = yy for all x, y = G

- zeropotent if xx · y = y · xx = xx for all x, y ∈ G;
- left (right) permutable if x · yz = y · xz (zy · x = zx · y) for all x, y, z ∈ G;
- left (right) modular if x · yz = z · yx (zy · x = xy · z) for all x, y, z ∈ G;
- medial if xa · by = xb · ay for all a, b, x, y ∈ G;
- paramedial if ax · yb = bx · ya for all a, b, x, y ∈ G;
- entropic (extropic) if G is a homomorphic image of a cancellative medial
(paramedial) groupoid.

If G is a rectangular band, then xyz = xzx ·yz = x ·zxyz = xz for all x, y, z ∈ G.
G is unipotent iff ker(oG) = G×G; in that case, G contains a unique idempotent

element 0 and 0 = xx for every x ∈ G.
G is zeropotent iff G is unipotent and 0x = 0 = x0 for every x ∈ G (i.e., 0 is an

absorbing element).

1.1 Lemma.

(i) Every left (right) modular groupoid is medial.
(ii) Every left (right) permutable right (left) modular groupoid is paramedial.

Proof. (i) xa · by = y(b · xa) = y(a · xb) = xb · ay.
(ii) ax · yb = y(ax · b) = y(bx · a) = bx · ya.
1.2 Lemma. Let G be a paramedial groupoid possessing a left (right) neutral

element e. Then G is left (right) permutable and right (left) modular. Moreover,
if e is a neutral element, then G is a commutative semigroup.

Proof. If e is left neutral, then ax · b = ax · eb = bx · ea = bx · a and x · yb =
ex · yb = ey · xb = y · xb (we have used the fact that G is medial by 1.1(i)). If e is
neutral, then ab = ae · eb = be · ea = ba.

1.3 Lemma. Let G be unipotent and left (right) cancellative. Then G is para-
medial if and only if G is medial.

Proof. If G is paramedial, then (xa · by)(xb · ay) = (ay · by)(xb · xa) = (yy ·
ba)(ab · xx) = (0 · ba)(ab · 0) = (0 · ba)(ab · bb) = (0 · ba)(bb · ba) = (0 · ba)(0 · ba) =
0 = (xa · by)(xa · by). If G is medial, then (ax · yb)(bx · ya) = (ax · bx)(yb · ya) =
(ab ·xx)(yy ·ba) = (ab ·0)(0 ·ba) = (ab ·0)(aa ·ba) = (ab ·0)(ab ·aa) = (ab ·0)(ab ·0) =
0 = (ax · yb)(ax · yb).
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1.4 Lemma. Every idempotent paramedial groupoid is commutative.
Proof. xy = xy · xy = yy · xx = yx.
1.5 Corollary. A paramedial groupoid G is medial, provided that at least one of

the following conditions is satisfied:

(1) G possesses a left (right) neutral element.
(2) G is unipotent and left (right) cancellative.
(3) G is idempotent.
(4) G is commutative.

2. Basic properties of paramedial groupoids

2.1 Lemma. Let G be a paramedial groupoid. Then:

(i) oG is an antiendomorphism of G.
(ii) oG(G) is a subgroupoid of G.
(iii) ker(oG) is a congruence of G.

2.2 Proposition. Let G be a paramedial groupoid with oG injective. Then G is
a subgroupoid of a paramedial groupoid Q satisfying the following properties:

(1) Q is the union of a chain Q0 ⊆ Q1 ⊆ Q2 ⊆ . . . of subgroupoids such that
Q0 = G, Qi=̃G and o2(Qi) = Qi−1 for every i ≥ 1.

(2) oQ is an antiautomorphism of Q.
(3) G and Q satisfy the same groupoid equations.
(4) Q is (left, right) cancellative (or regular) iff G is so.
(5) If G is simple, then Q is so.

Proof. Put H = o2(G) and f = o2. Then H is a subgroupoid of G and f can be
viewed as an isomorphism of G onto H. Now, it is clear that there exist a groupoid
Q1 and an isomorphism g : Q1 → G such that G is a subgroupoid of Q1, g|G = f

and G = o2(Q1). The rest of the proof is clear.
2.3 Example. Let G(∗) be a medial groupoid with two antiendomorphisms f

and g such that f2 = g2 and let w ∈ G. Define a multiplication on G by xy =
(f(x)∗ g(y))∗w. Then G becomes a paramedial groupoid. (The same remains true
if we have defined xy = w ∗ (f(x) ∗ g(y)) or xy = f(x) ∗ g(y).)

2.4 Proposition. The following conditions are equivalent for a groupoid G:

(i) G is paramedial and oG is a permutation.
(ii) There exist an idempotent medial groupoid G(∗) and an antiautomorphism

f of G(∗) such that xy = f(x) ∗ f(y) (= f(y ∗ x)) for all x, y ∈ G.

Proof. (i) implies (ii). It is sufficient to put f = oG and x ∗ y = f−1(yx) for all
x, y ∈ G. (ii) implies (i). See 2.3.

2.5 Remark. Consider the situation from 2.4. Let r be a congruence of
G. If (a, b) ∈ r, then (f(a), f(b)) = (aa, bb) ∈ r and (x ∗ f(a), x ∗ f(b)) =
(f−1(x)a, f−1(x)b) ∈ r, (f(a) ∗ x, f(b) ∗ x) ∈ r for every x ∈ G. Now, if r is
invariant under f−1 (e.g., if G is finite or, more generally, if the order of f = oG is
finite), then r is a congruence of G(∗).

Conversely, let r be a congruence of G(∗) such that r is invariant under f−1.
Then r is also a congruence of G.

2.6 Lemma. Let G be paramedial and e ∈ Id(G). Then:

(i) L2
e = R2

e is an endomorphism of G.
(ii) Le is injective (projective, bijective) iff Re is so.
(iii) Le(xy) = Re(y)Re(x) and Re(xy) = Le(y)Le(x) for all x, y ∈ G.
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2.7 Proposition. Let G be a paramedial groupoid and e ∈ Id(G) ∩ Al(G) (e ∈
Id(G) ∩ Ar(G)). Then G is a subgroupoid of a paramedial groupoid Q satisfying
the following properties:

(1) Q is the union of a chain Q0 ⊆ Q1 ⊆ Q2 ⊆ . . . of subgroupoids such that
Q0 = G, Qi=̃G and L2

e(Qi) = Qi−1 (R2
e(Qi) = Qi−1) for every i ≥ 1.

(2) Both LQ,e and RQ,e are permutations of Q and L2
Q,e = R2

Q,e is an automor-
phism of Q.

(3) G and Q satisfy the same groupoid equations.
(4) Q is (left, right) cancellative (or regular) iff G is so.
(5) If G is simple, then Q is so.

Proof. Using 2.6, we can proceed similarly as in the proof of 2.2.
2.8 Proposition. The following conditions are equivalent for a groupoid G.

(i) G is paramedial and Id(G) ∩ Cl(G) 6= ∅.
(ii) G is paramedial and Id(G) ∩ Cr(G) 6= ∅.
(iii) G is paramedial and Id(G) ∩ C(G) 6= ∅.
(iv) There exist a commutative semigroup G(+) with a neutral element and

automorpisms f, g of G(+) such that f2 = g2 and xy = f(x) + g(y) for all
x, y ∈ G.

Moreover, if these (equivalent) conditions are satisfied and G is unipotent, then
G(+) is an abelian group and G is a quasigroup.

Proof. The first three conditions are equivalent by 2.6(ii). Now, let e ∈ Id(G) ∩
C(G), f = Re, g = Le, and let x+ y = f−1(x)g−1(y). Then e is a neutral element
of G(+) and xy = f(x) + g(y). Further, it is easy to check directly that G(+)
is medial, and hence G(+) is a commutative semigroup. Of course, f(x + y) =
f(f−1(x)g−1(y)) = ygf−1(x) = f−1f(y)g−1g2f−1(x) = f−1f(y)g−1f(x) = f(y) +
f(x) = f(x) + f(y). Quite similarly, g is an automorphism of G(+).

Finally, if G is unipotent, then e = f−1(x)f−1(x) = x+gf−1(x) and we conclude
that G(+) is a group.

2.9 Proposition. Let G be a unipotent paramedial groupoid ({0} = Id(G) =
oG(G)). Then:

(i) L0R0 = R0L0 is an endomorphism of G.
(ii) If L0 (R0) is injective, then G is a medial cancellative groupoid.

Proof. (i) 0 · x0 = xx · x0 = 0x · xx = 0x · 0, 0(xy · 0) = 0(xy · 00) = 0(0y · 0x) =
(00)(0y · 0x) = (0x · 0)(0y · 0) = (0 · x0)(0 · y0).

(ii) By 2.6(ii), both L0 and R0 are injective. If ab = ac, then b0 · 0 = b0 · aa =
a0 · ab = a0 · ac = c0 · aa = c0 · 0, and hence b = c. Similarly, G is right cancellative
and, finally, G is medial by 1.3.

3. Injective and projective elements in paramedial groupoids

3.1 Lemma. Let G be a paramedial groupoid and a, b, x, y ∈ G. Then:

(i) LaxLy = RyaRx.
(ii) LaxRb = LbxRa.
(iii) RybLa = RyaLb.

3.2 Proposition. The following conditions are equivalent for a paramedial
groupoid G.

(i) G is left cancellative (left divisible).
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(ii) G is right cancellative (right divisible).
(iii) G is cancellative (divisible).

Proof. Use 3.1(i) (notice that G = GG in the divisible case).

3.3 Corollary. The following conditions are equivalent for a paramedial groupoid
G:

(i) G is a left quasigroup.
(ii) G is a right quasigroup.
(iii) G is a quasigroup.

3.4 Lemma. Let G be a paramedial groupoid and a, b ∈ G.

(i) If ab ∈ Al(G), then a, b ∈ Ar(G).
(ii) If ab ∈ Ar(G), then a, b ∈ Al(G).
(iii) If ab ∈ A(G), then a, b ∈ A(G).

Proof. The transformation LabLab = Rab·aRb (3.1(i)) is injective, and hence Rb

is injective. Further, LabRb = LbbRa (3.1(ii)) is injective, and hence Ra is so.

3.5 Proposition. Let G be a divisible paramedial groupoid such that Al(G) 6= ∅

(Ar(G) 6= ∅). Then G is a quasigroup.

Proof. If a ∈ G and c ∈ Al(G), then c = ab and we have a ∈ Ar(G) by 3.4(i). It
follows that G is right cancellative, and hence a quasigroup by 3.2.

3.6 Remark. Let G be a paramedial groupoid.

(i) If G is not cancellative, then I = G−A(G) is non-empty and it follows from
3.4 that I is an ideal of G. In particular, if G is ideal-simple, then either I = G

(and A(G) = ∅) or I = {0}, where 0 is an absorbing element (and then A(G) is a
subgroupoid of G).

(ii) If Al(G) 6= ∅ = Ar(G), then Al(G) ⊆ G−GG. In particular, G 6= GG and
G is infinite.

3.7 Lemma. Let G be a paramedial groupoid and a, b, c ∈ G.

(i) If ab, c ∈ Bl(G), then ca ∈ Br(G).
(ii) If ab, c ∈ Br(G), then bc ∈ Bl(G).
(iii) If ab ∈ Bl(G) and c ∈ Br(G), then cb ∈ Bl(G).
(iv) If ab ∈ Br(G) and c ∈ Bl(G), then ac ∈ Br(G).

Proof. Use 3.1.

3.8 Lemma. Let G be a paramedial groupoid. Then:

(i) Bl(G)Bl(G) ⊆ Br(G) and Br(G)Br(G) ⊆ Bl(G).
(ii) Bl(G)Br(G) ⊆ B(G) and Br(G)Bl(G) ⊆ B(G).

Proof. (i) If a, b ∈ Bl(G), then b = be for some e ∈ G and we have ab ∈ Br(G)
by 3.7(i).

(ii) Let a ∈ Bl(G) and b ∈ Br(G). By (i), aa ∈ Br(G), bb ∈ Bl(G), and hence,
given x ∈ G, there are y, z, u, v ∈ G such that y ·aa = x = bb ·z and y = ub, z = av.
Now, x = y · aa = ub · aa = ab · au and x = bb · z = bb · av = vb · ab. We have proved
that ab ∈ B(G).

3.9 Proposition. Let G be a paramedial groupoid.

(i) If Bl(G) 6= ∅ (or Br(G) 6= ∅), then B(G) 6= ∅.
(ii) Bl(G) ∪Br(G) is either empty or a subgroupoid of G.
(iii) B(G) is either empty or a subgroupoid of G.

Proof. Use 3.8.



6

3.10 Lemma. Let G be a paramedial groupoid and a, b, c, d, e ∈ G.

(i) If a ∈ Bl(G) and be = b ∈ Al(G), then ab ∈ Ar(G).
(ii) If bc = ae = a ∈ Al(G) and e = ad, then ab ∈ Ar(G).
(iii) Bl(G)Cl(G) ⊆ Cr(G) and Cl(G)Bl(G) ⊆ Cr(G).
(iv) If b ∈ Br(G) and ea = a ∈ Ar(G), then ab ∈ Al(G).
(v) If ca = eb = b ∈ Ar(G) and e = db, then ab ∈ Al(G).
(vi) Cr(G)Br(G) ⊆ Cl(G) and Br(G)Cr(G) ⊆ Cl(G).

Proof. (i) Let ac = e and x · ab = y · ab. Then b · bx = be · bx = (be · ac)(bx) =
(ce · ab)(bx) = (x · ab)(b · ce) = (y · ab)(b · ce) = (ce · ab)(by) = (be · ac)(by) = b · by,
and hence x = y.

(ii) If x · ab = y · ab, then a · ax = ae · ax = (bc · ad)(ax) = (dc · ab)(ax) =
(x · ab)(a · dc) = (y · ab)(a · dc) = a · ay, so that x = y.

(iii) Combine (i), (ii) and 3.8(i).
3.11 Lemma. Let G be a paramedial groupoid and a, b ∈ G.

(i) If ab ∈ Br(G) and b ∈ Cr(G), then a ∈ Bl(G).
(ii) If ab ∈ Bl(G) and a ∈ Cl(G), then b ∈ Br(G).
(iii) If ab ∈ Bl(G) and b ∈ Cr(G), then a ∈ Br(G).
(iv) If ab ∈ Br(G) and a ∈ Cl(G), then b ∈ Bl(G).

Proof. (i) By 3.10(vi), bb ∈ Cl(G). Now, given x ∈ G, there are y, z ∈ G such
that z · ab = bb · x and yb = z. We have bb · ay = yb · ab = z · ab = bb · x and ay = x.

(iii) By 3.10(vi), bb ∈ Cl(G). Now, given x ∈ G, there are y, z ∈ G such that
bb · x = ab · y and y = zb. We have bb · x = ab · y = ab · zb = bb · za and za = x.

3.12 Theorem. Let G be a paramedial groupoid. Then:

(i) Cl(G) = Cr(G) = C(G).
(ii) C(G) is either empty or a subgroupoid of G.

Proof. (i) If b ∈ Cr(G), then b = ab, a ∈ G, and we have a ∈ Cl(G) by 3.4(ii)
and 3.11(i). Further, b ∈ Al(G) by 3.4(ii) and b ∈ Bl(G) by 3.11(iv). Consequently,
b ∈ Cl(G) and we have proved that Cl(G) ⊆ Cr(G).

(ii) By (i) and 3.10(iii), C(G) (if non-empty) is a subgroupoid of G.

4. Multiplication semigroups of paramedial groupoids

4.1 Lemma. Let H be a subgroupoid of a paramedial groupoid G. For every
f ∈ Mul(G,H) there exists g ∈ Mul(G,H) such that at least one of the following
two conditions is satisfied:

(1) gLG,x = LG,f(x)f and gRG,x = RG,f(x)f for every x ∈ G.
(2) gLG,x = RG,f(x)f and gRG,x = LG,f(x)f for every x ∈ G.

Proof. We have f = S1,a1
. . . Sn,an

, n ≥ 1, ai ∈ H and Si ∈ {L,R}. Put

g = S1,b1 . . . Sn,bn , where bi = a2i and L = R, R = L. Then g ∈ Mul(G,H) and (1)
is true for n even and (2) for n odd.

4.2 Proposition. Let H be a subgroupoid of a paramedial groupoid G. Then the
semigroup Mul(G,H) is left uniform.

Proof. We have to show that the intersection of any two left ideals of M =
Mul(G,H) is non-empty. For, let f1, f2 ∈ M , f1 = S1,a1

. . . Sn,an
, n ≥ 1, ai ∈ H,

Si ∈ {L,R}. Now, using 4.1 and induction, we can find gn, . . . , g1 ∈ M and
hn, . . . , h1 ∈ M such that

gnSn,an
= hnf2,



7

gn−1Sn−1,an−1
= hn−1gn,

·

·

·

g2S2,a2
= h2g3

g1S1,a1
= h1g2.

Then g1f1 = g1S1,a1
. . . Sn,an

= h1g2S2,a2
. . . Sn,an

= h1h2g3S3,a3
. . . Sn,an

=
· · · = h1h2 . . . hn−1gnSn,an

= h1h2 . . . hnf2.
4.3 Corollary. The multiplication semigroup Mul(G) is left uniform for every

paramedial groupoid G.
In the remaining part of this section, let G be a cancellative paramedial groupoid.

By 4.3, Mul(G) is left uniform. Further, every transformation from Mul(G) is
injective and consequently Mul(G) is left cancellative.

Let M (N) be the set of f ∈ Mul(G) which can be written in the form f =
S1,a1

. . . Sn,an
, where n is even (odd). Clearly, we have Mul(G) = M ∪N , M is a

subsemigroup of Mul(G), NN ⊆ M,MN ⊆ N and NM ⊆ N .
4.4 Lemma. Suppose that G = GG. If f, g ∈ N(f, g ∈ M) and h ∈ Mul(G) are

such that fh = gh, then f = g.
Proof. Let h = S1,a1

. . . Sn,an
. Now, we shall proceed by induction on M .

First, let n = 1, a1 = a, S1 = L (the other case, S1 = R, being similar). Fur-
ther, let f ′, g′ ∈ Mul(G) be such that f ′(xy) = f(y)f(x) and g′(xy) = g(y)g(x)
(f ′(xy) = f(x)f(y) and g′(xy) = g(x)g(y)) for all x, y ∈ G (see 4.1). Now,
f(aa) = fh(a) = gh(a) = g(aa) and f(aa)f(xy) = f ′(xy · aa) = f ′(ay · ax) =
f(ax)f(ay) = fh(x)fh(y) = gh(x)gh(y) = g(aa)g(xy) = f(aa)g(xy), so that
f(xy) = g(xy) and, since G = GG, we have f = g.

Now, let n ≥ 2 and k = S1,a1
. . . Sn−1,an−1

. Then either fk, gk ∈ N or fk, gk ∈
M and fkSn,an

= gkSn,an
. According to the preceding part of the proof, we have

fk = gk, and hence f = g by the induction hypothesis.
4.5 Lemma. If G = GG, then M is a left uniform cancellative semigroup.
Proof. M is cancellative by 4.4 and it follows easily from the proof of 4.2 that

M is left uniform.
4.6 Corollary. If G = GG and M = Mul(G), then Mul(G) is a left uniform

cancellative semigroup.
4.7 Proposition. If G = GG and M ∩ N = ∅, then Mul(G) is a left uniform

cancellative semigroup.
Proof. We have to show that Mul(G) is right cancellative. Let f, g, h ∈ Mul(G)

be such that fh = gh. With respect to 4.4, we can assume that f ∈ M and g ∈ N .
If h ∈ M , then fh ∈ M , gh ∈ N and fh = gh ∈ M ∩ N = ∅, a contradiction.
Similarly, if h ∈ N .

4.8 Remark. Let f ∈ M ∩ N, f = S1,a1
. . . Sn,an

= T1,b1 . . . Tm,bm , n even and

m odd. Put g = S1,c1 . . . Sn,cn and h = T 1,d1
. . . Tm,dm

, ci = a2i and di = b2i .
Then g(xy) = f(x)f(y) and h(xy) = f(y)f(x) for all x, y ∈ G. Consequently,
hg(xy) = f2(y)f2(x) = gh(xy) and g2(xy) = f2(x)f2(y) = h2(xy). In particular,
if G = GG, then hg = gh and h2 = g2. Moreover, g(x2) = h(x2). Finally, if
oG(G) = G, then g = h, and hence g(xy) = g(yx) for all x, y ∈ G. Since g is an
injective transformation, it follows that the groupoid G is commutative.
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4.9 Theorem. Suppose that oG(G) = G. Then:

(i) Either M ∩N = ∅ or G is commutative.
(ii) Mul(G) is a left uniform cancellative semigroup.

Proof. (i) See 4.8.
(ii) The assertion is proved in 4.7 for M ∩N = ∅. However, if G is commutative,

then we can proceed similarly as in the proof of 4.4.
4.10 Lemma. Let H be a subgroupoid of G and K = [H]G,c = {a ∈ G; f(a) ∈ H

for some f ∈ Mul(G,H)}. Then:

(i) H ⊆ K and K is a subgroupoid of G.
(ii) If a, b ∈ G, ab ∈ K and a ∈ K(b ∈ K), then b ∈ K(a ∈ K).
(iii) If G is a quasigroup, then K is a quasigroup.

Proof. (i) Let a, b ∈ K and f, g ∈ Mul(G,H) be such that f(a), g(b) ∈ H. We
have q = hf = kg for suitable h, k ∈ Mul(G,H), q(a), q(b) ∈ H and we can assume
that q ∈ M . Now, q′(ab) = q(a)q(b) ∈ H.

(ii) There is f ∈ Mul(G,H) such that f ∈ M and f(ab), f(a) ∈ H. Now,
f ′(ab) = f(a)f(b) = Lf(a)f(b) ∈ H and Lf(a)f ∈ Mul(G,H).

4.11 Lemma. Let H be a subgroupoid of G such that [H]G,c = G. Then every
cancellative congruence of H can be extended to a cancellative congruence of G.

Proof. Let r be a cancellative congruence of H and define a relation s on G by
(a, b) ∈ s iff (f(a), f(b)) ∈ r for some f ∈ Mul(G,H) . Using 4.1 and the fact that
Mul(G,H) is left uniform, it is easy to check that s is a cancellative congruence of
G. Finally, since r is cancellative, we have s ∩ (H ×H) = r.

5. Embeddings of cancellative paramedial groupoids into paramedial

quasigroups

Denote by Iq the class of subgroupoids of paramedial quasigroups. It seems to
be an open problem whether Iq consists of all cancellative paramedial groupoids.
Some properties of the class Iq are established in this section. First, notice that
Iq is closed under subgroupoids, cartesian products and cancellative homomorphic
images (4.11).

5.1 Proposition. Let G be a cancellative paramedial groupoid such that oG is an
injective transformation of G. Then G ∈ Iq.

Proof. We can assume without loss of generality that f = oG is an antiauto-
morphism of G (see 2.2). Put x ∗ y = f−1(xy) for all x, y ∈ G. By 2.4, G(∗) is an
idempotent medial groupoid, f is an antiautomorphism of G(∗) and xy = f(x)∗f(y)
for all x, y ∈ G. One also checks easily that G(∗) is cancellative. Now, due to [1,
5.3.1], G(∗) can be embedded into an idempotent medial quasigroup Q(∗) and
the isomorphisms f : G(∗) → G(∗)op and f−1 : G(∗)op → G(∗) can be uniquely
extended to isomorphisms g : Q(∗) → Q(∗)op and g−1 : Q(∗)op → Q(∗) (the em-
bedding G(∗) → Q(∗) is reflexion of G(∗) into the category of medial quasigroups).
In other words, f is extended by an antiautomorphism g of Q(∗). Finally, define a
multiplication on Q by xy = g(x) · g(y). Then Q becomes a paramedial quasigroup
and G is a subgroupoid of Q.

5.2 Proposition. Let G be a cancellative paramedial groupoid such that oG is a
projective transformation of G. Then G ∈ Iq.

Proof. Let H be the set of sequences α = (a0, a1, a2, . . . ) of elements from G

such that oG(ai+1) = ai, i ≥ 0. For α = (ai) and β = (bi) from H we define the
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product αβ = (ci) by ci = aibi for i ≥ 0 even and ci = biai for i ≥ 1 odd. Then
we have αβ ∈ H and H becomes a cancellative paramedial groupoid (in fact, H
is a subgroupoid of the product G×Gop ×G×Gop × . . . ). Further, the mapping
f : H → G defined by f(α) = a0 is a projective homomorphism. Moreover, if
α = (ai) ∈ H and γ = (a0, a1, a2, . . . ), then γ2 = α, so that oH is a projective
transformation of H. On the other hand, if α = (ai) and β = (bi) are such that
α2 = β2, then (a20, a0, a1, a2, . . . ) = α2 = β2 = (b20, b0, b1, b2, . . . ), and so α = β. We
have thus proved that oH is an antiautomorphism of H, and hence H ∈ Iq by 5.1.
Finally, G is a (cancellative) homomorphic image of H, and therefore G ∈ Iq.

5.3 Remark. Let A be a group given by two generators α, β and by one relation
α2 = β2 and let R = ZA be the corresponding group-ring of A over the ring Z of
integers. We check that (0 : α+ β)l = 0 in R.

Assume, on the contrary, that u(α + β) = 0 for some 0 6= u ∈ R, u = k1a1 +
· · · + knan, ki ∈ Z − {0} and ai ∈ A pair-wise different. Now, 0 = k1a1α +
· · ·+ knanα + k1a1β + · · ·+ knanβ and it follows that there is a permutation p of
{1, 2, . . . , n} such that kiaiα = −kp(i)ap(i)β; then ki = −kp(i) and aiα = ap(i)β.
Clearly, p(i) 6= i for every i and, since p is composed from cycles, we can assume
that p(1) = 2, p(2) = 3, . . . , p(m−1) = m and p(m) = 1 for some 2 ≤ m ≤ n. Then
a2 = a1αβ

−1, a3 = a1(αβ
−1)2, . . . , am = a1(αβ

−1)m−1 and a1 = a1(αβ
−1)m. From

this, (αβ−1)m = 1, a contradiction with the obvious fact that αβ−1 is of infinite
order in the group A.

5.4 Theorem. The following conditions are equivalent for a cancellative parame-
dial groupoid G:

(i) G ∈ Id.
(ii) There exists a cancellative paramedial groupoid H such that oH is a pro-

jective transformation of H and G is a subgroupoid of H.
(iii) There exists a cancellative paramedial groupoid K such that oK is an in-

jective transformation of K and G is a homomorphic image of K.

Proof. (i) implies (ii). We can assume that G is a quasigroup. By 6.2, there are
an abelian group G(+), automorphisms f, g of G(+) and an element w ∈ G such
that f2 = g2 and xy = f(x) + g(y) + w for all x, y ∈ G. Now, there is a unique
R-module structure on G(+) such that αx = f(x) and βx = g(x) (R = ZA by 5.3).
Let Q(+) be an injective R-module containing G(+). Since (0 : α + β)l = 0 in R

(5.3), we have (α+ β)Q = Q. Defining xy = αx+ βy +w, we obtain a paramedial
quasigroup Q such that oQ(Q) = Q and G is a subquasigroup of Q.

(ii) implies (iii). In view of the proof of 5.2, H is homomorphic image of a
cancellative paramedial groupoid L such that oL is a bijection. Now, for K we can
take the inverse image of G.

(iii) implies (i). Combine 5.1 and 4.11.
5.5 Remark. Let F be a free extropic groupoid of countable infinite rank. Now,

it follows easily form 5.4 that the following conditions are equivalent:

(a) Iq contains every cancellative paramedial groupoid.
(b) oF is an injective transformation of F .

6. Linear representations of paramedial groupoids

Let G be a groupoid. By a pm-linear representation of G we mean an algebra
S(+, f, g, e) such that G is a subset of S, S(+) is a commutative semigroup, f and
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g are endomorphisms of S(+), f2 = g2, e ∈ S0 and xy = f(x) + g(y) + e for all
x, y ∈ G. The representation is said to be exact if S = G.

6.1 Theorem. Let G be a paramedial groupoid such that C(G) is non-empty.
Then there exists an exact pm-linear representation G(+, f, g, e) of G such that
both f and g are automorphisms of G(+), G(+) posses a neutral element, e ∈ G

and e is invertible in G(+).
Proof. Let w = C(G), 0 = ww and x + y = R−1

w (x)L−1
w (y) for all x, y ∈ G.

Clearly, x+0 = R−1
w (x)w = x and 0+ y = wL−1

w (y), so that 0 is a neutral element
of G(+).

Now, let x, y, u, v ∈ G, α = R−1
w (R−1

w (x)y)L−1
w (uL−1

w (v)) and β =
R−1

w (R−1
w (v)y)L−1

w (uL−1
w (x)). We are going to show that α = β.

Since w ∈ C(G), there are a, b, c, d ∈ G such that aw = w, wb = a

and wc = w. Then αw = α · aw = (wL−1
w (uL−1

w (v)))(aR−1
w (R−1

w (x)y))
= (uL−1

w (v))(aR−1
w (R−1

w (x)y)), w = aw = wb · wc = cb · ww, αw · w =
((uL−1

w (v))(aR−1
w (R−1

w (x)y))(cb · ww) = (ww · aR−1
w (R−1

w (x)y))(cb · uL−1
w (v)) =

(R−1
w (x)y · aw)(cb · uL−1

w (v)) = (uL−1
w (v) · aw)(cb · R−1

w (x)y) = (wL−1
w (v) ·

au)(cb · R−1
w (x)y) = (v · aw)(cb · R−1

w (x)y), w = aw = a · aw = a(a · wc) and
w(αw ·w) = (a(a ·wc))((v ·au)(cb ·R−1

w (x)y)) = ((cb ·R−1
w (x)y)(a ·wc))((v ·au)a) =

((wc ·R−1
w (x)y)(a · cb))((v · au)a) = ((yc ·R−1

w (x)w)(a · cb))((v · au)a) = ((yc · x)(a ·
cb))((v ·au)a). Quite similarly, w(βw ·w) = ((yc ·v)(a ·cb))((x ·au)a). However, the
last term can be written as (a(a · cb))((x · au)(yc · v)) = (a(a · cb))((v · au)(yc ·x)) =
((yc · x)(a · cb))((v · au)a). We have thus shown that w(αw ·w) = w(βw ·w). Since
w ∈ C(G), it follows that α = β.

Now, it is clear that G(+) is paramedial. According to 1.2, G(+) is a com-
mutative semigroup. We have xy = xw + wy for all x, y ∈ G. In particular,
ww · w + w · aa = ww · aa = aw · aw = ww = 0 (a is such that aw = w), and so
p = ww ·w is an invertible element of G(+). Similarly, q = w ·ww is also invertible,
and hence e = p+ q = ww · w + w · ww = ww · ww = 00 is invertible.

Now, define two permutations f and g of G by f(x) = xw − p and g(x) =
wx − q. Then f(x + y) = (x + y)w − p = (R−1

w (x)L−1
w (y))w + w · ww − q − p =

(R−1
w (x)L−1

w (y))(ww) − q − p = (wL−1
w (y))(wR−1

w (x)) − q − p = y(wR−1
w (x)) −

q − p = yw + w(w(R−1
w (x)) − q − p = yw + ww · w + w(wR−1

w (x)) − q − 2p =
yw+(ww)(wR−1

w (x))−q−2p = yw+(R−1
w (x)w)(ww)−q−2p = yw+x·ww−q−2p =

yw+xw+w·ww−q−2p = yw−p+xw−p = f(x)+f(y). We have shown that f is an
automorphism of G(+) and, similarly, the same is true for g. Further, we have xy =
xw+wy = xw−p+wy−q+e = f(x)+g(y)+e for all x, y ∈ G and it remains to check
that f2 = g2. But f2(x)+f(e)+g(e)+e = f(f(x)+g(0)+e)+g(f(0)+g(0)+e)+e =
f(x0)+g(00)+e = x0·00 = 00·0x = g2(x)+f(e)+g(e)+e. The element f(e)+g(e)+e

is invertible in G(+) and we get f2(x) = g2(x) for every x ∈ G.
6.2 Corollary. Let Q be a paramedial quasigroup. Then Q possesses an exact

pm-linear representation Q(+, f, g, e) such that Q(+) is an abelian group and both
f and g are automorphisms of Q(+).
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