Paramedial groupoids

Jung R.Cho, Jaroslav Ježek and Tomáš Kepka

By a paramedial groupoid we mean a groupoid satisfying the equation $a x \cdot y b=$ $b x \cdot y a$. This equation is, in certain sense, symmetric to the equation of mediality $x a$. $b y=x b \cdot a y$ and, in fact, the theories of both varieties of groupoids are parallel. The present paper, initiating the study of paramedial groupoids, is meant as a modest contribution to the enormously difficult task of describing algebraic properties of varieties determined by strong linear identities (and, especially, of the corresponding simple algebras). ${ }^{1}$

1. Introduction

Let G be a groupoid (i.e., a non-empty set equipped with a binary operation). For any $x \in G$, we define transformations $L_{x}\left(=L_{G, x}\right.$, the left translation by $\left.x\right)$ and $R_{x}\left(=R_{G, x}\right.$, the right translation by $\left.x\right)$ of G by $L_{x}(y)=x y$ and $R_{x}(y)=y x$ for every $y \in G$.

An element x is said to be

- left (right) injective if the left (right) translation $L_{x}\left(R_{x}\right)$ is an injective transformation of G;
- injective if x is both left and right injective;
- left (right) projective if $L_{x}\left(R_{x}\right)$ is a projective transformation of G;
- projective if x is both left and right projective;
- left (right) bijective if $L_{x}\left(R_{x}\right)$ is a bijective transformation (i.e., a permutation) of G;
- bijective if x is both left and right bijective.

We denote by $A_{l}(G)$ and $B_{l}(G)\left(A_{r}(G)\right.$ and $\left.B_{r}(G)\right)$ the set of left (right) injective and left (right) projective elements, resp., and we put $C_{l}(G)=A_{l}(G) \cap B_{l}(G)$, $C_{r}(G)=A_{r}(G) \cap B_{r}(G), A(G)=A_{l}(G) \cap A_{r}(G), B(G)=B_{l}(G) \cap B_{r}(G)$ and $C(G)=C_{l}(G) \cap C_{r}(G)$.

The groupoid G is said to be

- left (right) cancellative if $A_{l}(G)=G\left(A_{r}(G)=G\right)$;
- left (right) divisible if $B_{l}(G)=G\left(B_{r}(G)=G\right)$;
- cancellative (divisible) if G is both left and right cancellative (divisible);
- a left (right) quasigroup if $C_{l}(G)=G\left(C_{r}(G)=G\right)$;
- a quasigroup if G is both left and right quasigroup;
- left (right) regular if, for all $a, b, c, d \in G, c a=c b(a c=b c)$ implies $d a=d b$ ($a d=b d$);
- regular if G is both left and right regular.

For every groupoid G, we define a transformation o_{G} of G by $o_{G}(x)=x x\left(=x^{2}\right)$, $x \in G$.

[^0]Let H be a subgroupoid of a groupoid G. We denote by $\operatorname{Mul}(G, H)$ the transformation semigroup (acting on G) generated by all $L_{G, x}$ and $R_{G, x}, x \in H$. The semigroup $\operatorname{Mul}(G)=\operatorname{Mul}(G, G)$ is called the multiplication semigroup of G.

Let G, H be groupoids. A mapping $f: G \rightarrow H$ is said to be an antihomomorphism if $f(x y)=f(y) f(x)$ for all $x, y, \in G$; this is equivalent to the fact that f is a homomorphism of G into the opposite groupoid $H^{o p}$ (and consequently $\operatorname{ker}(f)$ is a congruence of G).

A groupoid G possesses at least one antiautomorphism f iff G and $G^{o p}$ are isomorphic; then f^{2} is an automorphism of G and $f(x f(x))=f^{2}(x) f(x), x \in G$. If, moreover, $f^{2}=i d_{G}$, then $f(x f(x))=x f(x)$.

A groupoid G is said to be

- a Z-semigroup if $x y=u v$ for all $x, y, u, v \in G$;
- a LZ-semigroup if $x y=x$ for all $x, y=G$;
- a RZ-semigroup if $x y=y$ for all $x, y=G$;
- a band if G is an idempotent semigroup;
- a rectangular band if G is a band and $x y x=x$ for all $x, y \in G$;
- unipotent if $x x=y y$ for all $x, y=G$
- zeropotent if $x x \cdot y=y \cdot x x=x x$ for all $x, y \in G$;
- left (right) permutable if $x \cdot y z=y \cdot x z(z y \cdot x=z x \cdot y)$ for all $x, y, z \in G$;
- left (right) modular if $x \cdot y z=z \cdot y x(z y \cdot x=x y \cdot z)$ for all $x, y, z \in G$;
- medial if $x a \cdot b y=x b \cdot a y$ for all $a, b, x, y \in G$;
- paramedial if $a x \cdot y b=b x \cdot y a$ for all $a, b, x, y \in G$;
- entropic (extropic) if G is a homomorphic image of a cancellative medial (paramedial) groupoid.
If G is a rectangular band, then $x y z=x z x \cdot y z=x \cdot z x y z=x z$ for all $x, y, z \in G$.
G is unipotent iff $\operatorname{ker}\left(o_{G}\right)=G \times G$; in that case, G contains a unique idempotent element 0 and $0=x x$ for every $x \in G$.
G is zeropotent iff G is unipotent and $0 x=0=x 0$ for every $x \in G$ (i.e., 0 is an absorbing element).

1.1 Lemma.

(i) Every left (right) modular groupoid is medial.
(ii) Every left (right) permutable right (left) modular groupoid is paramedial.

Proof. (i) $x a \cdot b y=y(b \cdot x a)=y(a \cdot x b)=x b \cdot a y$.
(ii) $a x \cdot y b=y(a x \cdot b)=y(b x \cdot a)=b x \cdot y a$.
1.2 Lemma. Let G be a paramedial groupoid possessing a left (right) neutral element e. Then G is left (right) permutable and right (left) modular. Moreover, if e is a neutral element, then G is a commutative semigroup.

Proof. If e is left neutral, then $a x \cdot b=a x \cdot e b=b x \cdot e a=b x \cdot a$ and $x \cdot y b=$ $e x \cdot y b=e y \cdot x b=y \cdot x b$ (we have used the fact that G is medial by 1.1(i)). If e is neutral, then $a b=a e \cdot e b=b e \cdot e a=b a$.
1.3 Lemma. Let G be unipotent and left (right) cancellative. Then G is paramedial if and only if G is medial.

Proof. If G is paramedial, then $(x a \cdot b y)(x b \cdot a y)=(a y \cdot b y)(x b \cdot x a)=(y y$. $b a)(a b \cdot x x)=(0 \cdot b a)(a b \cdot 0)=(0 \cdot b a)(a b \cdot b b)=(0 \cdot b a)(b b \cdot b a)=(0 \cdot b a)(0 \cdot b a)=$ $0=(x a \cdot b y)(x a \cdot b y)$. If G is medial, then $(a x \cdot y b)(b x \cdot y a)=(a x \cdot b x)(y b \cdot y a)=$ $(a b \cdot x x)(y y \cdot b a)=(a b \cdot 0)(0 \cdot b a)=(a b \cdot 0)(a a \cdot b a)=(a b \cdot 0)(a b \cdot a a)=(a b \cdot 0)(a b \cdot 0)=$ $0=(a x \cdot y b)(a x \cdot y b)$.
1.4 Lemma. Every idempotent paramedial groupoid is commutative.

Proof. $x y=x y \cdot x y=y y \cdot x x=y x$.
1.5 Corollary. A paramedial groupoid G is medial, provided that at least one of the following conditions is satisfied:
(1) G possesses a left (right) neutral element.
(2) G is unipotent and left (right) cancellative.
(3) G is idempotent.
(4) G is commutative.

2. Basic properties of paramedial groupoids

2.1 Lemma. Let G be a paramedial groupoid. Then:
(i) o_{G} is an antiendomorphism of G.
(ii) $o_{G}(G)$ is a subgroupoid of G.
(iii) $\operatorname{ker}\left(o_{G}\right)$ is a congruence of G.
2.2 Proposition. Let G be a paramedial groupoid with o_{G} injective. Then G is a subgroupoid of a paramedial groupoid Q satisfying the following properties:
(1) Q is the union of a chain $Q_{0} \subseteq Q_{1} \subseteq Q_{2} \subseteq \ldots$ of subgroupoids such that $Q_{0}=G, Q_{i} \simeq G$ and $o^{2}\left(Q_{i}\right)=Q_{i-1}$ for every $i \geq 1$.
(2) o_{Q} is an antiautomorphism of Q.
(3) G and Q satisfy the same groupoid equations.
(4) Q is (left, right) cancellative (or regular) iff G is so.
(5) If G is simple, then Q is so.

Proof. Put $H=o^{2}(G)$ and $f=o^{2}$. Then H is a subgroupoid of G and f can be viewed as an isomorphism of G onto H. Now, it is clear that there exist a groupoid Q_{1} and an isomorphism $g: Q_{1} \rightarrow G$ such that G is a subgroupoid of $Q_{1}, g \mid G=f$ and $G=o^{2}\left(Q_{1}\right)$. The rest of the proof is clear.
2.3 Example. Let $G(*)$ be a medial groupoid with two antiendomorphisms f and g such that $f^{2}=g^{2}$ and let $w \in G$. Define a multiplication on G by $x y=$ $(f(x) * g(y)) * w$. Then G becomes a paramedial groupoid. (The same remains true if we have defined $x y=w *(f(x) * g(y))$ or $x y=f(x) * g(y)$.)
2.4 Proposition. The following conditions are equivalent for a groupoid G :
(i) G is paramedial and o_{G} is a permutation.
(ii) There exist an idempotent medial groupoid $G(*)$ and an antiautomorphism f of $G(*)$ such that $x y=f(x) * f(y)(=f(y * x))$ for all $x, y \in G$.
Proof. (i) implies (ii). It is sufficient to put $f=o_{G}$ and $x * y=f^{-1}(y x)$ for all $x, y \in G$. (ii) implies (i). See 2.3.
2.5 Remark. Consider the situation from 2.4. Let r be a congruence of G. If $(a, b) \in r$, then $(f(a), f(b))=(a a, b b) \in r$ and $(x * f(a), x * f(b))=$ $\left(f^{-1}(x) a, f^{-1}(x) b\right) \in r,(f(a) * x, f(b) * x) \in r$ for every $x \in G$. Now, if r is invariant under f^{-1} (e.g., if G is finite or, more generally, if the order of $f=o_{G}$ is finite), then r is a congruence of $G(*)$.

Conversely, let r be a congruence of $G(*)$ such that r is invariant under f^{-1}. Then r is also a congruence of G.
2.6 Lemma. Let G be paramedial and $e \in I d(G)$. Then:
(i) $L_{e}^{2}=R_{e}^{2}$ is an endomorphism of G.
(ii) L_{e} is injective (projective, bijective) iff R_{e} is so.
(iii) $L_{e}(x y)=R_{e}(y) R_{e}(x)$ and $R_{e}(x y)=L_{e}(y) L_{e}(x)$ for all $x, y \in G$.
2.7 Proposition. Let G be a paramedial groupoid and $e \in I d(G) \cap A_{l}(G)(e \in$ $\left.\operatorname{Id}(G) \cap A_{r}(G)\right)$. Then G is a subgroupoid of a paramedial groupoid Q satisfying the following properties:
(1) Q is the union of a chain $Q_{0} \subseteq Q_{1} \subseteq Q_{2} \subseteq \ldots$ of subgroupoids such that $Q_{0}=G, Q_{i} \simeq G$ and $L_{e}^{2}\left(Q_{i}\right)=Q_{i-1}\left(R_{e}^{2}\left(Q_{i}\right)=Q_{i-1}\right)$ for every $i \geq 1$.
(2) Both $L_{Q, e}$ and $R_{Q, e}$ are permutations of Q and $L_{Q, e}^{2}=R_{Q, e}^{2}$ is an automorphism of Q.
(3) G and Q satisfy the same groupoid equations.
(4) Q is (left, right) cancellative (or regular) iff G is so.
(5) If G is simple, then Q is so.

Proof. Using 2.6 , we can proceed similarly as in the proof of 2.2 .
2.8 Proposition. The following conditions are equivalent for a groupoid G.
(i) G is paramedial and $\operatorname{Id}(G) \cap C_{l}(G) \neq \varnothing$.
(ii) G is paramedial and $\operatorname{Id}(G) \cap C_{r}(G) \neq \varnothing$.
(iii) G is paramedial and $\operatorname{Id}(G) \cap C(G) \neq \varnothing$.
(iv) There exist a commutative semigroup $G(+)$ with a neutral element and automorpisms f, g of $G(+)$ such that $f^{2}=g^{2}$ and $x y=f(x)+g(y)$ for all $x, y \in G$.
Moreover, if these (equivalent) conditions are satisfied and G is unipotent, then $G(+)$ is an abelian group and G is a quasigroup.

Proof. The first three conditions are equivalent by 2.6(ii). Now, let $e \in \operatorname{Id}(G) \cap$ $C(G), f=R_{e}, g=L_{e}$, and let $x+y=f^{-1}(x) g^{-1}(y)$. Then e is a neutral element of $G(+)$ and $x y=f(x)+g(y)$. Further, it is easy to check directly that $G(+)$ is medial, and hence $G(+)$ is a commutative semigroup. Of course, $f(x+y)=$ $f\left(f^{-1}(x) g^{-1}(y)\right)=y g f^{-1}(x)=f^{-1} f(y) g^{-1} g^{2} f^{-1}(x)=f^{-1} f(y) g^{-1} f(x)=f(y)+$ $f(x)=f(x)+f(y)$. Quite similarly, g is an automorphism of $G(+)$.

Finally, if G is unipotent, then $e=f^{-1}(x) f^{-1}(x)=x+g f^{-1}(x)$ and we conclude that $G(+)$ is a group.
2.9 Proposition. Let G be a unipotent paramedial groupoid $(\{0\}=\operatorname{Id}(G)=$ $\left.o_{G}(G)\right)$. Then:
(i) $L_{0} R_{0}=R_{0} L_{0}$ is an endomorphism of G.
(ii) If $L_{0}\left(R_{0}\right)$ is injective, then G is a medial cancellative groupoid.

Proof. (i) $0 \cdot x 0=x x \cdot x 0=0 x \cdot x x=0 x \cdot 0,0(x y \cdot 0)=0(x y \cdot 00)=0(0 y \cdot 0 x)=$ $(00)(0 y \cdot 0 x)=(0 x \cdot 0)(0 y \cdot 0)=(0 \cdot x 0)(0 \cdot y 0)$.
(ii) By 2.6(ii), both L_{0} and R_{0} are injective. If $a b=a c$, then $b 0 \cdot 0=b 0 \cdot a a=$ $a 0 \cdot a b=a 0 \cdot a c=c 0 \cdot a a=c 0 \cdot 0$, and hence $b=c$. Similarly, G is right cancellative and, finally, G is medial by 1.3 .

3. Injective and projective elements in paramedial groupoids

3.1 Lemma. Let G be a paramedial groupoid and $a, b, x, y \in G$. Then:
(i) $L_{a x} L_{y}=R_{y a} R_{x}$.
(ii) $L_{a x} R_{b}=L_{b x} R_{a}$.
(iii) $R_{y b} L_{a}=R_{y a} L_{b}$.
3.2 Proposition. The following conditions are equivalent for a paramedial groupoid G.
(i) G is left cancellative (left divisible).
(ii) G is right cancellative (right divisible).
(iii) G is cancellative (divisible).

Proof. Use 3.1(i) (notice that $G=G G$ in the divisible case).
3.3 Corollary. The following conditions are equivalent for a paramedial groupoid G :
(i) G is a left quasigroup.
(ii) G is a right quasigroup.
(iii) G is a quasigroup.
3.4 Lemma. Let G be a paramedial groupoid and $a, b \in G$.
(i) If $a b \in A_{l}(G)$, then $a, b \in A_{r}(G)$.
(ii) If $a b \in A_{r}(G)$, then $a, b \in A_{l}(G)$.
(iii) If $a b \in A(G)$, then $a, b \in A(G)$.

Proof. The transformation $L_{a b} L_{a b}=R_{a b \cdot a} R_{b}(3.1(\mathrm{i}))$ is injective, and hence R_{b} is injective. Further, $L_{a b} R_{b}=L_{b b} R_{a}$ (3.1(ii)) is injective, and hence R_{a} is so.
3.5 Proposition. Let G be a divisible paramedial groupoid such that $A_{l}(G) \neq \varnothing$ $\left(A_{r}(G) \neq \varnothing\right)$. Then G is a quasigroup.

Proof. If $a \in G$ and $c \in A_{l}(G)$, then $c=a b$ and we have $a \in A_{r}(G)$ by 3.4(i). It follows that G is right cancellative, and hence a quasigroup by 3.2.
3.6 Remark. Let G be a paramedial groupoid.
(i) If G is not cancellative, then $I=G-A(G)$ is non-empty and it follows from 3.4 that I is an ideal of G. In particular, if G is ideal-simple, then either $I=G$ (and $A(G)=\varnothing$) or $I=\{0\}$, where 0 is an absorbing element (and then $A(G)$ is a subgroupoid of G).
(ii) If $A_{l}(G) \neq \varnothing=A_{r}(G)$, then $A_{l}(G) \subseteq G-G G$. In particular, $G \neq G G$ and G is infinite.
3.7 Lemma. Let G be a paramedial groupoid and $a, b, c \in G$.
(i) If $a b, c \in B_{l}(G)$, then $c a \in B_{r}(G)$.
(ii) If $a b, c \in B_{r}(G)$, then $b c \in B_{l}(G)$.
(iii) If $a b \in B_{l}(G)$ and $c \in B_{r}(G)$, then $c b \in B_{l}(G)$.
(iv) If $a b \in B_{r}(G)$ and $c \in B_{l}(G)$, then $a c \in B_{r}(G)$.

Proof. Use 3.1.
3.8 Lemma. Let G be a paramedial groupoid. Then:
(i) $B_{l}(G) B_{l}(G) \subseteq B_{r}(G)$ and $B_{r}(G) B_{r}(G) \subseteq B_{l}(G)$.
(ii) $B_{l}(G) B_{r}(G) \subseteq B(G)$ and $B_{r}(G) B_{l}(G) \subseteq B(G)$.

Proof. (i) If $a, b \in B_{l}(G)$, then $b=b e$ for some $e \in G$ and we have $a b \in B_{r}(G)$ by $3.7(\mathrm{i})$.
(ii) Let $a \in B_{l}(G)$ and $b \in B_{r}(G)$. By (i), $a a \in B_{r}(G), b b \in B_{l}(G)$, and hence, given $x \in G$, there are $y, z, u, v \in G$ such that $y \cdot a a=x=b b \cdot z$ and $y=u b, z=a v$. Now, $x=y \cdot a a=u b \cdot a a=a b \cdot a u$ and $x=b b \cdot z=b b \cdot a v=v b \cdot a b$. We have proved that $a b \in B(G)$.
3.9 Proposition. Let G be a paramedial groupoid.
(i) If $B_{l}(G) \neq \varnothing$ (or $\left.B_{r}(G) \neq \varnothing\right)$, then $B(G) \neq \varnothing$.
(ii) $B_{l}(G) \cup B_{r}(G)$ is either empty or a subgroupoid of G.
(iii) $B(G)$ is either empty or a subgroupoid of G.

Proof. Use 3.8.
3.10 Lemma. Let G be a paramedial groupoid and $a, b, c, d, e \in G$.
(i) If $a \in B_{l}(G)$ and $b e=b \in A_{l}(G)$, then $a b \in A_{r}(G)$.
(ii) If $b c=a e=a \in A_{l}(G)$ and $e=a d$, then $a b \in A_{r}(G)$.
(iii) $B_{l}(G) C_{l}(G) \subseteq C_{r}(G)$ and $C_{l}(G) B_{l}(G) \subseteq C_{r}(G)$.
(iv) If $b \in B_{r}(G)$ and $e a=a \in A_{r}(G)$, then $a b \in A_{l}(G)$.
(v) If $c a=e b=b \in A_{r}(G)$ and $e=d b$, then $a b \in A_{l}(G)$.
(vi) $C_{r}(G) B_{r}(G) \subseteq C_{l}(G)$ and $B_{r}(G) C_{r}(G) \subseteq C_{l}(G)$.

Proof. (i) Let $a c=e$ and $x \cdot a b=y \cdot a b$. Then $b \cdot b x=b e \cdot b x=(b e \cdot a c)(b x)=$ $(c e \cdot a b)(b x)=(x \cdot a b)(b \cdot c e)=(y \cdot a b)(b \cdot c e)=(c e \cdot a b)(b y)=(b e \cdot a c)(b y)=b \cdot b y$, and hence $x=y$.
(ii) If $x \cdot a b=y \cdot a b$, then $a \cdot a x=a e \cdot a x=(b c \cdot a d)(a x)=(d c \cdot a b)(a x)=$ $(x \cdot a b)(a \cdot d c)=(y \cdot a b)(a \cdot d c)=a \cdot a y$, so that $x=y$.
(iii) Combine (i), (ii) and 3.8(i).
3.11 Lemma. Let G be a paramedial groupoid and $a, b \in G$.
(i) If $a b \in B_{r}(G)$ and $b \in C_{r}(G)$, then $a \in B_{l}(G)$.
(ii) If $a b \in B_{l}(G)$ and $a \in C_{l}(G)$, then $b \in B_{r}(G)$.
(iii) If $a b \in B_{l}(G)$ and $b \in C_{r}(G)$, then $a \in B_{r}(G)$.
(iv) If $a b \in B_{r}(G)$ and $a \in C_{l}(G)$, then $b \in B_{l}(G)$.

Proof. (i) By 3.10 (vi), $b b \in C_{l}(G)$. Now, given $x \in G$, there are $y, z \in G$ such that $z \cdot a b=b b \cdot x$ and $y b=z$. We have $b b \cdot a y=y b \cdot a b=z \cdot a b=b b \cdot x$ and $a y=x$.
(iii) By $3.10(\mathrm{vi}), b b \in C_{l}(G)$. Now, given $x \in G$, there are $y, z \in G$ such that $b b \cdot x=a b \cdot y$ and $y=z b$. We have $b b \cdot x=a b \cdot y=a b \cdot z b=b b \cdot z a$ and $z a=x$.
3.12 Theorem. Let G be a paramedial groupoid. Then:
(i) $C_{l}(G)=C_{r}(G)=C(G)$.
(ii) $C(G)$ is either empty or a subgroupoid of G.

Proof. (i) If $b \in C_{r}(G)$, then $b=a b, a \in G$, and we have $a \in C_{l}(G)$ by 3.4(ii) and 3.11(i). Further, $b \in A_{l}(G)$ by $3.4(\mathrm{ii})$ and $b \in B_{l}(G)$ by 3.11 (iv). Consequently, $b \in C_{l}(G)$ and we have proved that $C_{l}(G) \subseteq C_{r}(G)$.
(ii) By (i) and $3.10(\mathrm{iii}), C(G)$ (if non-empty) is a subgroupoid of G.

4. Multiplication semigroups of paramedial groupoids

4.1 Lemma. Let H be a subgroupoid of a paramedial groupoid G. For every $f \in \operatorname{Mul}(G, H)$ there exists $g \in \operatorname{Mul}(G, H)$ such that at least one of the following two conditions is satisfied:
(1) $g L_{G, x}=L_{G, f(x)} f$ and $g R_{G, x}=R_{G, f(x)} f$ for every $x \in G$.
(2) $g L_{G, x}=R_{G, f(x)} f$ and $g R_{G, x}=L_{G, f(x)} f$ for every $x \in G$.

Proof. We have $f=S_{1, a_{1}} \ldots S_{n, a_{n}}, n \geq 1, a_{i} \in H$ and $S_{i} \in\{L, R\}$. Put $g=\bar{S}_{1, b_{1}} \ldots \bar{S}_{n, b_{n}}$, where $b_{i}=a_{i}^{2}$ and $\bar{L}=R, \bar{R}=L$. Then $g \in \operatorname{Mul}(G, H)$ and (1) is true for n even and (2) for n odd.
4.2 Proposition. Let H be a subgroupoid of a paramedial groupoid G. Then the semigroup $\operatorname{Mul}(G, H)$ is left uniform.

Proof. We have to show that the intersection of any two left ideals of $M=$ $\operatorname{Mul}(G, H)$ is non-empty. For, let $f_{1}, f_{2} \in M, f_{1}=S_{1, a_{1}} \ldots S_{n, a_{n}}, n \geq 1, a_{i} \in H$, $S_{i} \in\{L, R\}$. Now, using 4.1 and induction, we can find $g_{n}, \ldots, g_{1} \in M$ and $h_{n}, \ldots, h_{1} \in M$ such that

$$
g_{n} S_{n, a_{n}}=h_{n} f_{2}
$$

$$
g_{n-1} S_{n-1, a_{n-1}}=h_{n-1} g_{n},
$$

$$
\begin{aligned}
& g_{2} S_{2, a_{2}}=h_{2} g_{3} \\
& g_{1} S_{1, a_{1}}=h_{1} g_{2} .
\end{aligned}
$$

Then $g_{1} f_{1}=g_{1} S_{1, a_{1}} \ldots S_{n, a_{n}}=h_{1} g_{2} S_{2, a_{2}} \ldots S_{n, a_{n}}=h_{1} h_{2} g_{3} S_{3, a_{3}} \ldots S_{n, a_{n}}=$ $\cdots=h_{1} h_{2} \ldots h_{n-1} g_{n} S_{n, a_{n}}=h_{1} h_{2} \ldots h_{n} f_{2}$.
4.3 Corollary. The multiplication semigroup $\operatorname{Mul}(G)$ is left uniform for every paramedial groupoid G.

In the remaining part of this section, let G be a cancellative paramedial groupoid. By 4.3, $\operatorname{Mul}(G)$ is left uniform. Further, every transformation from $\operatorname{Mul}(G)$ is injective and consequently $\operatorname{Mul}(G)$ is left cancellative.

Let $M(N)$ be the set of $f \in \operatorname{Mul}(G)$ which can be written in the form $f=$ $S_{1, a_{1}} \ldots S_{n, a_{n}}$, where n is even (odd). Clearly, we have $\operatorname{Mul}(G)=M \cup N, M$ is a subsemigroup of $\operatorname{Mul}(G), N N \subseteq M, M N \subseteq N$ and $N M \subseteq N$.
4.4 Lemma. Suppose that $G=G G$. If $f, g \in N(f, g \in M)$ and $h \in \operatorname{Mul}(G)$ are such that $f h=g h$, then $f=g$.

Proof. Let $h=S_{1, a_{1}} \ldots S_{n, a_{n}}$. Now, we shall proceed by induction on M.
First, let $n=1, a_{1}=a, S_{1}=L$ (the other case, $S_{1}=R$, being similar). Further, let $f^{\prime}, g^{\prime} \in \operatorname{Mul}(G)$ be such that $f^{\prime}(x y)=f(y) f(x)$ and $g^{\prime}(x y)=g(y) g(x)$ $\left(f^{\prime}(x y)=f(x) f(y)\right.$ and $\left.g^{\prime}(x y)=g(x) g(y)\right)$ for all $x, y \in G$ (see 4.1). Now, $f(a a)=f h(a)=g h(a)=g(a a)$ and $f(a a) f(x y)=f^{\prime}(x y \cdot a a)=f^{\prime}(a y \cdot a x)=$ $f(a x) f(a y)=f h(x) f h(y)=g h(x) g h(y)=g(a a) g(x y)=f(a a) g(x y)$, so that $f(x y)=g(x y)$ and, since $G=G G$, we have $f=g$.

Now, let $n \geq 2$ and $k=S_{1, a_{1}} \ldots S_{n-1, a_{n-1}}$. Then either $f k, g k \in N$ or $f k, g k \in$ M and $f k S_{n, a_{n}}=g k S_{n, a_{n}}$. According to the preceding part of the proof, we have $f k=g k$, and hence $f=g$ by the induction hypothesis.
4.5 Lemma. If $G=G G$, then M is a left uniform cancellative semigroup.

Proof. M is cancellative by 4.4 and it follows easily from the proof of 4.2 that M is left uniform.
4.6 Corollary. If $G=G G$ and $M=\operatorname{Mul}(G)$, then $\operatorname{Mul}(G)$ is a left uniform cancellative semigroup.
4.7 Proposition. If $G=G G$ and $M \cap N=\varnothing$, then $M u l(G)$ is a left uniform cancellative semigroup.

Proof. We have to show that $\operatorname{Mul}(G)$ is right cancellative. Let $f, g, h \in \operatorname{Mul}(G)$ be such that $f h=g h$. With respect to 4.4, we can assume that $f \in M$ and $g \in N$. If $h \in M$, then $f h \in M, g h \in N$ and $f h=g h \in M \cap N=\varnothing$, a contradiction. Similarly, if $h \in N$.
4.8 Remark. Let $f \in M \cap N, f=S_{1, a_{1}} \ldots S_{n, a_{n}}=T_{1, b_{1}} \ldots T_{m, b_{m}}, n$ even and m odd. Put $g=\bar{S}_{1, c_{1}} \ldots \bar{S}_{n, c_{n}}$ and $h=\bar{T}_{1, d_{1}} \ldots \bar{T}_{m, d_{m}}, c_{i}=a_{i}^{2}$ and $d_{i}=b_{i}^{2}$. Then $g(x y)=f(x) f(y)$ and $h(x y)=f(y) f(x)$ for all $x, y \in G$. Consequently, $h g(x y)=f^{2}(y) f^{2}(x)=g h(x y)$ and $g^{2}(x y)=f^{2}(x) f^{2}(y)=h^{2}(x y)$. In particular, if $G=G G$, then $h g=g h$ and $h^{2}=g^{2}$. Moreover, $g\left(x^{2}\right)=h\left(x^{2}\right)$. Finally, if $o_{G}(G)=G$, then $g=h$, and hence $g(x y)=g(y x)$ for all $x, y \in G$. Since g is an injective transformation, it follows that the groupoid G is commutative.
4.9 Theorem. Suppose that $o_{G}(G)=G$. Then:
(i) Either $M \cap N=\varnothing$ or G is commutative.
(ii) $\operatorname{Mul}(G)$ is a left uniform cancellative semigroup.

Proof. (i) See 4.8.
(ii) The assertion is proved in 4.7 for $M \cap N=\varnothing$. However, if G is commutative, then we can proceed similarly as in the proof of 4.4.
4.10 Lemma. Let H be a subgroupoid of G and $K=[H]_{G, c}=\{a \in G ; f(a) \in H$ for some $f \in \operatorname{Mul}(G, H)\}$. Then:
(i) $H \subseteq K$ and K is a subgroupoid of G.
(ii) If $a, b \in G, a b \in K$ and $a \in K(b \in K)$, then $b \in K(a \in K)$.
(iii) If G is a quasigroup, then K is a quasigroup.

Proof. (i) Let $a, b \in K$ and $f, g \in \operatorname{Mul}(G, H)$ be such that $f(a), g(b) \in H$. We have $q=h f=k g$ for suitable $h, k \in \operatorname{Mul}(G, H), q(a), q(b) \in H$ and we can assume that $q \in M$. Now, $q^{\prime}(a b)=q(a) q(b) \in H$.
(ii) There is $f \in \operatorname{Mul}(G, H)$ such that $f \in M$ and $f(a b), f(a) \in H$. Now, $f^{\prime}(a b)=f(a) f(b)=L_{f(a)} f(b) \in H$ and $L_{f(a)} f \in \operatorname{Mul}(G, H)$.
4.11 Lemma. Let H be a subgroupoid of G such that $[H]_{G, c}=G$. Then every cancellative congruence of H can be extended to a cancellative congruence of G.

Proof. Let r be a cancellative congruence of H and define a relation s on G by $(a, b) \in s$ iff $(f(a), f(b)) \in r$ for some $f \in \operatorname{Mul}(G, H)$. Using 4.1 and the fact that $\operatorname{Mul}(G, H)$ is left uniform, it is easy to check that s is a cancellative congruence of G. Finally, since r is cancellative, we have $s \cap(H \times H)=r$.

5. Embeddings of cancellative paramedial groupoids into paramedial quasigroups

Denote by $I q$ the class of subgroupoids of paramedial quasigroups. It seems to be an open problem whether $I q$ consists of all cancellative paramedial groupoids. Some properties of the class $I q$ are established in this section. First, notice that $I q$ is closed under subgroupoids, cartesian products and cancellative homomorphic images (4.11).
5.1 Proposition. Let G be a cancellative paramedial groupoid such that o_{G} is an injective transformation of G. Then $G \in I q$.

Proof. We can assume without loss of generality that $f=o_{G}$ is an antiautomorphism of G (see 2.2). Put $x * y=f^{-1}(x y)$ for all $x, y \in G$. By $2.4, G(*)$ is an idempotent medial groupoid, f is an antiautomorphism of $G(*)$ and $x y=f(x) * f(y)$ for all $x, y \in G$. One also checks easily that $G(*)$ is cancellative. Now, due to [1, 5.3.1], $G(*)$ can be embedded into an idempotent medial quasigroup $Q(*)$ and the isomorphisms $f: G(*) \rightarrow G(*)^{o p}$ and $f^{-1}: G(*)^{o p} \rightarrow G(*)$ can be uniquely extended to isomorphisms $g: Q(*) \rightarrow Q(*)^{o p}$ and $g^{-1}: Q(*)^{o p} \rightarrow Q(*)$ (the embedding $G(*) \rightarrow Q(*)$ is reflexion of $G(*)$ into the category of medial quasigroups). In other words, f is extended by an antiautomorphism g of $Q(*)$. Finally, define a multiplication on Q by $x y=g(x) \cdot g(y)$. Then Q becomes a paramedial quasigroup and G is a subgroupoid of Q.
5.2 Proposition. Let G be a cancellative paramedial groupoid such that o_{G} is a projective transformation of G. Then $G \in I q$.

Proof. Let H be the set of sequences $\alpha=\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ of elements from G such that $o_{G}\left(a_{i+1}\right)=a_{i}, i \geq 0$. For $\alpha=\left(a_{i}\right)$ and $\beta=\left(b_{i}\right)$ from H we define the
product $\alpha \beta=\left(c_{i}\right)$ by $c_{i}=a_{i} b_{i}$ for $i \geq 0$ even and $c_{i}=b_{i} a_{i}$ for $i \geq 1$ odd. Then we have $\alpha \beta \in H$ and H becomes a cancellative paramedial groupoid (in fact, H is a subgroupoid of the product $\left.G \times G^{o p} \times G \times G^{o p} \times \ldots\right)$. Further, the mapping $f: H \rightarrow G$ defined by $f(\alpha)=a_{0}$ is a projective homomorphism. Moreover, if $\alpha=\left(a_{i}\right) \in H$ and $\gamma=\left(a_{0}, a_{1}, a_{2}, \ldots\right)$, then $\gamma^{2}=\alpha$, so that o_{H} is a projective transformation of H. On the other hand, if $\alpha=\left(a_{i}\right)$ and $\beta=\left(b_{i}\right)$ are such that $\alpha^{2}=\beta^{2}$, then $\left(a_{0}^{2}, a_{0}, a_{1}, a_{2}, \ldots\right)=\alpha^{2}=\beta^{2}=\left(b_{0}^{2}, b_{0}, b_{1}, b_{2}, \ldots\right)$, and so $\alpha=\beta$. We have thus proved that o_{H} is an antiautomorphism of H, and hence $H \in I q$ by 5.1. Finally, G is a (cancellative) homomorphic image of H, and therefore $G \in I q$.
5.3 Remark. Let A be a group given by two generators α, β and by one relation $\alpha^{2}=\beta^{2}$ and let $R=Z A$ be the corresponding group-ring of A over the ring Z of integers. We check that $(0: \alpha+\beta)_{l}=0$ in R.

Assume, on the contrary, that $u(\alpha+\beta)=0$ for some $0 \neq u \in R, u=k_{1} a_{1}+$ $\cdots+k_{n} a_{n}, k_{i} \in Z-\{0\}$ and $a_{i} \in A$ pair-wise different. Now, $0=k_{1} a_{1} \alpha+$ $\cdots+k_{n} a_{n} \alpha+k_{1} a_{1} \beta+\cdots+k_{n} a_{n} \beta$ and it follows that there is a permutation p of $\{1,2, \ldots, n\}$ such that $k_{i} a_{i} \alpha=-k_{p(i)} a_{p(i)} \beta$; then $k_{i}=-k_{p(i)}$ and $a_{i} \alpha=a_{p(i)} \beta$. Clearly, $p(i) \neq i$ for every i and, since p is composed from cycles, we can assume that $p(1)=2, p(2)=3, \ldots, p(m-1)=m$ and $p(m)=1$ for some $2 \leq m \leq n$. Then $a_{2}=a_{1} \alpha \beta^{-1}, a_{3}=a_{1}\left(\alpha \beta^{-1}\right)^{2}, \ldots, a_{m}=a_{1}\left(\alpha \beta^{-1}\right)^{m-1}$ and $a_{1}=a_{1}\left(\alpha \beta^{-1}\right)^{m}$. From this, $\left(\alpha \beta^{-1}\right)^{m}=1$, a contradiction with the obvious fact that $\alpha \beta^{-1}$ is of infinite order in the group A.
5.4 Theorem. The following conditions are equivalent for a cancellative paramedial groupoid G :
(i) $G \in I d$.
(ii) There exists a cancellative paramedial groupoid H such that o_{H} is a projective transformation of H and G is a subgroupoid of H.
(iii) There exists a cancellative paramedial groupoid K such that o_{K} is an injective transformation of K and G is a homomorphic image of K.
Proof. (i) implies (ii). We can assume that G is a quasigroup. By 6.2 , there are an abelian group $G(+)$, automorphisms f, g of $G(+)$ and an element $w \in G$ such that $f^{2}=g^{2}$ and $x y=f(x)+g(y)+w$ for all $x, y \in G$. Now, there is a unique R-module structure on $G(+)$ such that $\alpha x=f(x)$ and $\beta x=g(x)(R=Z A$ by 5.3). Let $Q(+)$ be an injective R-module containing $G(+)$. Since $(0: \alpha+\beta)_{l}=0$ in R (5.3), we have $(\alpha+\beta) Q=Q$. Defining $x y=\alpha x+\beta y+w$, we obtain a paramedial quasigroup Q such that $o_{Q}(Q)=Q$ and G is a subquasigroup of Q.
(ii) implies (iii). In view of the proof of $5.2, H$ is homomorphic image of a cancellative paramedial groupoid L such that o_{L} is a bijection. Now, for K we can take the inverse image of G.
(iii) implies (i). Combine 5.1 and 4.11 .
5.5 Remark. Let F be a free extropic groupoid of countable infinite rank. Now, it follows easily form 5.4 that the following conditions are equivalent:
(a) $I q$ contains every cancellative paramedial groupoid.
(b) o_{F} is an injective transformation of F.

6. Linear representations of paramedial groupoids

Let G be a groupoid. By a pm-linear representation of G we mean an algebra $S(+, f, g, e)$ such that G is a subset of $S, S(+)$ is a commutative semigroup, f and
g are endomorphisms of $S(+), f^{2}=g^{2}, e \in S^{0}$ and $x y=f(x)+g(y)+e$ for all $x, y \in G$. The representation is said to be exact if $S=G$.
6.1 Theorem. Let G be a paramedial groupoid such that $C(G)$ is non-empty. Then there exists an exact pm-linear representation $G(+, f, g, e)$ of G such that both f and g are automorphisms of $G(+), G(+)$ posses a neutral element, $e \in G$ and e is invertible in $G(+)$.

Proof. Let $w=C(G), 0=w w$ and $x+y=R_{w}^{-1}(x) L_{w}^{-1}(y)$ for all $x, y \in G$. Clearly, $x+0=R_{w}^{-1}(x) w=x$ and $0+y=w L_{w}^{-1}(y)$, so that 0 is a neutral element of $G(+)$.

Now, let $x, y, u, v \in G, \alpha=R_{w}^{-1}\left(R_{w}^{-1}(x) y\right) L_{w}^{-1}\left(u L_{w}^{-1}(v)\right)$ and $\beta=$ $R_{w}^{-1}\left(R_{w}^{-1}(v) y\right) L_{w}^{-1}\left(u L_{w}^{-1}(x)\right)$. We are going to show that $\alpha=\beta$.

Since $w \in C(G)$, there are $a, b, c, d \in G$ such that $a w=w, w b=a$ and $w c=w$. Then $\alpha w=\alpha \cdot a w=\left(w L_{w}^{-1}\left(u L_{w}^{-1}(v)\right)\right)\left(a R_{w}^{-1}\left(R_{w}^{-1}(x) y\right)\right)$ $=\left(u L_{w}^{-1}(v)\right)\left(a R_{w}^{-1}\left(R_{w}^{-1}(x) y\right)\right), w=a w=w b \cdot w c=c b \cdot w w, \alpha w \cdot w=$ $\left(\left(u L_{w}^{-1}(v)\right)\left(a R_{w}^{-1}\left(R_{w}^{-1}(x) y\right)\right)(c b \cdot w w)=\left(w w \cdot a R_{w}^{-1}\left(R_{w}^{-1}(x) y\right)\right)\left(c b \cdot u L_{w}^{-1}(v)\right)=\right.$ $\left(R_{w}^{-1}(x) y \cdot a w\right)\left(c b \cdot u L_{w}^{-1}(v)\right)=\left(u L_{w}^{-1}(v) \cdot a w\right)\left(c b \cdot R_{w}^{-1}(x) y\right)=\left(w L_{w}^{-1}(v)\right.$. $a u)\left(c b \cdot R_{w}^{-1}(x) y\right)=(v \cdot a w)\left(c b \cdot R_{w}^{-1}(x) y\right), w=a w=a \cdot a w=a(a \cdot w c)$ and $w(\alpha w \cdot w)=(a(a \cdot w c))\left((v \cdot a u)\left(c b \cdot R_{w}^{-1}(x) y\right)\right)=\left(\left(c b \cdot R_{w}^{-1}(x) y\right)(a \cdot w c)\right)((v \cdot a u) a)=$ $\left(\left(w c \cdot R_{w}^{-1}(x) y\right)(a \cdot c b)\right)((v \cdot a u) a)=\left(\left(y c \cdot R_{w}^{-1}(x) w\right)(a \cdot c b)\right)((v \cdot a u) a)=((y c \cdot x)(a \cdot$ $c b))((v \cdot a u) a)$. Quite similarly, $w(\beta w \cdot w)=((y c \cdot v)(a \cdot c b))((x \cdot a u) a)$. However, the last term can be written as $(a(a \cdot c b))((x \cdot a u)(y c \cdot v))=(a(a \cdot c b))((v \cdot a u)(y c \cdot x))=$ $((y c \cdot x)(a \cdot c b))((v \cdot a u) a)$. We have thus shown that $w(\alpha w \cdot w)=w(\beta w \cdot w)$. Since $w \in C(G)$, it follows that $\alpha=\beta$.

Now, it is clear that $G(+)$ is paramedial. According to $1.2, G(+)$ is a commutative semigroup. We have $x y=x w+w y$ for all $x, y \in G$. In particular, $w w \cdot w+w \cdot a a=w w \cdot a a=a w \cdot a w=w w=0(a$ is such that $a w=w)$, and so $p=w w \cdot w$ is an invertible element of $G(+)$. Similarly, $q=w \cdot w w$ is also invertible, and hence $e=p+q=w w \cdot w+w \cdot w w=w w \cdot w w=00$ is invertible.

Now, define two permutations f and g of G by $f(x)=x w-p$ and $g(x)=$ $w x-q$. Then $f(x+y)=(x+y) w-p=\left(R_{w}^{-1}(x) L_{w}^{-1}(y)\right) w+w \cdot w w-q-p=$ $\left(R_{w}^{-1}(x) L_{w}^{-1}(y)\right)(w w)-q-p=\left(w L_{w}^{-1}(y)\right)\left(w R_{w}^{-1}(x)\right)-q-p=y\left(w R_{w}^{-1}(x)\right)-$ $q-p=y w+w\left(w\left(R_{w}^{-1}(x)\right)-q-p=y w+w w \cdot w+w\left(w R_{w}^{-1}(x)\right)-q-2 p=\right.$ $y w+(w w)\left(w R_{w}^{-1}(x)\right)-q-2 p=y w+\left(R_{w}^{-1}(x) w\right)(w w)-q-2 p=y w+x \cdot w w-q-2 p=$ $y w+x w+w \cdot w w-q-2 p=y w-p+x w-p=f(x)+f(y)$. We have shown that f is an automorphism of $G(+)$ and, similarly, the same is true for g. Further, we have $x y=$ $x w+w y=x w-p+w y-q+e=f(x)+g(y)+e$ for all $x, y \in G$ and it remains to check that $f^{2}=g^{2}$. But $f^{2}(x)+f(e)+g(e)+e=f(f(x)+g(0)+e)+g(f(0)+g(0)+e)+e=$ $f(x 0)+g(00)+e=x 0 \cdot 00=00 \cdot 0 x=g^{2}(x)+f(e)+g(e)+e$. The element $f(e)+g(e)+e$ is invertible in $G(+)$ and we get $f^{2}(x)=g^{2}(x)$ for every $x \in G$.
6.2 Corollary. Let Q be a paramedial quasigroup. Then Q possesses an exact pm-linear representation $Q(+, f, g, e)$ such that $Q(+)$ is an abelian group and both f and g are automorphisms of $Q(+)$.

Reference

[1] J.Ježek and T.Kepka, Medial groupoids, Rozpravy ČSAV 93/2 (1983).
Pusan National University, Kumjung, Pusan 609-735, Republic of Korea
Charles University, Sokolovská 83, 18600 Praha 8, Czech Republic

[^0]: ${ }^{1}$ While working on this paper, the first author was supported by Korea Science Foundation and the last two authors were partially supported by the Grant Agency of the Czech Republic, Grant No 201/96/0312

