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AND SEMIMODULE REPRESENTATIONS

Jaroslav Ježek and Tomáš Kepka

Abstract. Equational theories of some linear equations are studied. As a con-

sequence, semimodule representations of the corresponding algebras are obtained.

Examples are shown on medial and paramedial equations and some of their general-

izations.

0. Introduction

For the classification of finite simple objects in a variety V of (universal) alge-

bras, a crucial step may be to prove a representation theorem for V -algebras with-

out irreducible elements. Consider, for example, the variety of medial groupoids.

These are algebras with one binary, multiplicatively denoted operation satisfying

(xy)(zu) ≈ (xz)(yu). A complete classification of finite simple medial groupoids

was given in [4], and one of the crucial steps was to prove that for every medial

groupoid G without irreducible elements there exists a commutative semigroup

S(+) with two commuting automorphisms f, g such that G is a subset of S and

ab = f(a) + g(b) for all a, b ∈ G.

We hope that a similar classification can be obtained for finite simple objects in

some other varieties. The aim of this paper is to lay out equational and represen-

tational foundations for such results in a general setting. For varieties determined

by an equation similar to the medial law, we can usually start by reducing the

question to two special cases: that of simple finite zeropotent groupoids in the va-

riety, and that of simple finite quasigroups in the variety. These two cases are then
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handled separately: for the zeropotent case, the results of the present paper are

essential, while in the second case different methods, specific to quasigroups, must

be used. In papers [1], [2] and [3], the results of the present paper have been used

to obtain the description of finite simple paramedial groupoids (groupoids satisfy-

ing (xy)(zu) ≈ (uy)(zx)): the reduction to the two cases has been obtained, and

all (not only finite) simple zeropotent paramedial groupoids have been completely

described. (The quasigroup case has not yet been finished.)

Let V be a variety of algebras with one n-ary operation F , and let E denote

the corresponding equational theory. We will suppose that E is based on a set of

equations having the same variables at both sides and such that both sides are linear

terms, i.e., terms in which every variable occurs at most once. The occurrences of

variables in terms can be identified in a natural way with arbitrary words over

the n-letter alphabet. With every linear equational theory E we can associate

a congruence CE of the free monoid over the n-letter alphabet, the congruence

relating the two occurrences of any variable at both sides of any linear equation

from E. On the other hand, with every congruence α of the free monoid we can

associate a linear equational theory Eα, the largest equational theory such that

CEα
⊆ α. This correspondence between linear equational theories and congruences

of the free monoid is not one-to-one, but has some nice properties. It will be

discussed in Section 2. The variety of models of ECE
is called the essential core

of V . For example, the essential core of the variety of medial groupoids is the

proper subvariety generated by medial cancellation groupoids; at the same time, it

is just the variety generated by the medial groupoids having a representation in the

above sense.

In the more general case, V -algebras will be represented by commutative semi-

groups S(+) with an n-tuple of endomorphisms h1, . . . , hn satisfying equations

induced by the congruence α = CE . Such objects are called α-semimodules. In

Section 4 we prove that every α-semimodule, considered as an algebra with one

binary operation h1x1+ · · ·+hnxn, belongs to the essential core of V , and that free

algebras in the essential core can be represented by α-semimodules. Consequently,

the essential core of V is just the variety generated by the V -algebras having an α-

semimodule representation. In Section 3 we formulate conditions under which every

V -algebra without irreducible elements belongs to the essential core of V , and in
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Section 5 conditions under which all such algebras have an α-semimodule represen-

tation. We also formulate conditions under which the free monoid can be replaced

with the free group, and the endomorphisms of the representations are automor-

phisms. As an example, we show in Section 6 that all these conditions are satisfied

for the variety of paramedial groupoids (groupoids satisfying (xy)(zu) ≈ (uy)(zx)).

For the variety of medial groupoids, the conditions are also satisfied.

In the trivial case of the variety of all algebras (with one n-ary operation F ,

n ≥ 2) the conditions are also satisfied. It follows that for any algebra A(F ) there

exists a commutative semigroup S(+) and an n-tuple h1, . . . , hn of automorphisms

of S(+) such that A is a subset of S and F (a1, . . . , an) = h1(a1) + · · · + hnan for

all a1, . . . , an ∈ A. However, this result is not as deep as in the case of varieties

satisfying particular equations, and does not seem to have applications.

1. Linear equational theories

For the basics of universal algebra and equational logic, the reader is referred

to [7].

Let n ≥ 2 be an integer. Let us take one fixed operation symbol F of arity n.

Unless specified otherwise, all our algebras, terms, equational theories, etc., will

be of the signature consisting of this single operation symbol. The fundamental

operation of an algebra A will be denoted by FA. By a term we mean an element

of the absolutely free algebra over the infinite countable set X of variables. The

algebra of terms will be denoted by T . By a substitution we mean an endomorphism

of T . A substitution is called short if it maps the set X into itself.

We fix n different symbols F1, . . . , Fn and denote by M the free monoid over the

set {F1, . . . , Fn}; its elements are called words. The empty word is the unit of M ;

it will be denoted by ∅. A word f is said to be a subword of a word e if e = gfh

for some words g and h. Two words e and f are called comparable if either e is

a beginning of f or f is a beginning of e. In all other cases, the two words are

incomparable. The length of a word e is denoted by |e|.

The elements of M can be used to represent the nodes of the rooted n-ary tree,

corresponding to a given term t. For a given term t, we denote by O(t) the (finite)

subset of M consisting of the nodes of the tree of t, and for each e ∈ O(t) we

denote by t[e] the corresponding subterm of t. More precisely, we can define O(t)
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and t[e] (for e ∈ O(t)) by induction on the complexity of t as follows: If t ∈ X, then

O(t) = {∅}; t[∅] = t. If t = Ft1 . . . tn, then O(t) = {∅} ∪
⋃n

i=1{Fie : e ∈ O(ti)};

t[∅] = t and t[Fie] = ti[e].

The elements of O(t) are called occurrences in t. If e ∈ O(t) and t[e] = w, we

say that e is an occurrence of a subterm w in t. We denote by OX(t) the (finite) set

of occurrences of variables in t. The set of variables occurring in t will be denoted

by S(t) and called the support of t. A term t is called linear if every variable has

at most one occurrence in t. Two terms u and v are called similar if v = ϕ(u) for

an automorphism ϕ of T , i.e., if OX(u) = OX(v) and whenever e, f ∈ OX(u), then

u[e] = u[f ] if and only if v[e] = v[f ].

Let t be a term and e, f be two incomparable words from O(t). We denote by

t(e,f) the (unique) term such that t(e,f)[e] = t[f ], t(e,f)[f ] = t[e] and t(e,f)[g] = t[g]

for all g ∈ OX(t) incomparable with both e and f . If e, f ∈ OX(t), then OX(t) =

OX(t(e,f)).

By an isosceles term of depth k we mean a term t such that |e| = k for any

e ∈ OX(t). Equivalently: A term t is an isosceles term of depth k if and only if

OX(t) is the set of all words of length k.

By an equation we mean an ordered pair 〈u, v〉 of terms; we will sometimes

write u ≈ v instead of 〈u, v〉. By an equational theory we mean a fully invariant

congruence of the term algebra.

An equation u ≈ v is called regular if S(u) = S(v). An equation u ≈ v is called

balanced if every variable has the same number of occurrences in u as in v. An

equation u ≈ v is called linear if it is regular and both u and v are linear terms.

While the set of regular equations, as well as the set of balanced equations, are

equational theories, the same is not true for linear equations. An equational theory

is called linear if it is based on a set of linear equations. Every linear equational

theory is balanced, and every balanced equational theory is regular.

1.1. Theorem. Let E be a linear equational theory. Then for any equation 〈u, v〉 ∈

E there exists a linear equation 〈u′, v′〉 ∈ E such that σ(u′) = u and σ(v′) = v for

a short substitution σ.

Proof. Denote by E′ the set of the equations 〈u, v〉 ∈ E for which such a linear

equation 〈u′, v′〉 exists. Let B be a base for E, consisting of linear equations.
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Clearly, B is contained in E′ and so it remains to prove that E′ is an equational

theory.

The reflexivity and symmetry of E′ are obvious. Let us prove the transitivity. Let

〈u, v〉 ∈ E′ and 〈v, w〉 ∈ E′. There exist linear equations 〈u′, v′〉 ∈ E, 〈v′′, w′′〉 ∈ E

and short substitutions σ1, σ2 with u = σ1(u
′), v = σ1(v

′) = σ2(v
′′) and w =

σ2(w
′′). Since the terms v′ and v′′ are linear and have a common short substitution

instance, they are similar. There exists an automorphism ϕ of T with v′′ = ϕ(v′).

Since σ1(v
′) = v = σ2ϕ(v

′), we have σ1(x) = σ2ϕ(x) for every x ∈ S(v′) = S(u′),

and hence u = σ1(u
′) = σ2ϕ(u

′). We get 〈u,w〉 ∈ E′, since 〈ϕ(u′), v′′〉 is a linear

equation belonging to E (because ϕ(u′) E ϕ(v′) = v′′ E w′′) and σ2 is a short

substitution with u = σ2ϕ(u
′) and w = σ2(w

′′).

It is easy to see that E′ is a congruence. So it remains to prove that 〈u, v〉 ∈ E′

implies 〈ϕ(u), ϕ(v)〉 ∈ E′ for any substitution ϕ. There exist a linear equation

〈u′, v′〉 ∈ E and a short substitution σ with u = σ(u′) and v = σ(v′). For every

x ∈ S(u′) = S(v′) take a linear term ψ(x) similar with ϕσ(x), in such a way that the

supports of the terms ψ(x) are pairwise disjoint for different variables x. Because

of this disjointness, there exists a short substitution κ such that κψ(x) = ϕσ(x) for

all x ∈ S(u′) = S(v′). Hence κψ(u′) = ϕσ(u′) = ϕ(u) and κψ(v′) = ϕ(v). Since

〈ψ(u′), ψ(v′)〉 is a linear equation belonging to E, we get 〈ϕ(u), ϕ(v)〉 ∈ E′. �

2. The correspondence

Let α be a congruence of M . We define a binary relation Eα on T as follows:

u Eα v if and only if there exists a bijection h of OX(u) onto OX(v) such that

u[e] = v[h(e)] and e α h(e) for all e ∈ OX(u). (Such a bijection h will be called

α-admissible for u, v.)

Let E be an equational theory. We define a binary relationCE onM by e CE f if

and only if there exists a linear equation 〈u, v〉 ∈ E such that e ∈ OX(u), f ∈ OX(v)

and u[e] = v[f ].

2.1. Theorem.

(1) If α is a congruence of M , then Eα is a linear equational theory.

(2) If E is a linear equational theory, then CE is a congruence of M .

(3) α1 ⊆ α2 implies Eα1
⊆ Eα2

for any pair of congruences α1, α2 of M .
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(4) E1 ⊆ E2 implies CE1
⊆ CE2

for any pair of linear equational theories

E1, E2.

(5) CEα
⊆ α for any congruence α of M .

(6) E ⊆ ECE
for any linear equational theory E.

Proof. (1) The relation Eα is an equivalence, since α is an equivalence. It is a

congruence of T , since α is a left congruence of M (i.e., e α f implies Fie α Fif

for any i ∈ {1, . . . , n}). Let u Eα v and let ϕ be a substitution. There exists an α-

admissible bijection h for u, v. If e ∈ OX(ϕ(u)), then e can be uniquely decomposed

into e = e1e2 where e1 ∈ OX(u); define g(e) = h(e1)e2. It is easy to see that g is a

bijection of OX(ϕ(u)) onto OX(ϕ(v)) and ϕ(u)[e] = ϕ(v)[g(e)]. We have e α g(e),

since e1 α h(e1) implies e1e2 α h(e1)e2. So, g is α-admissible for ϕ(u), ϕ(v) and Eα

is an equational theory.

Let 〈u, v〉 ∈ Eα and let h be an α-admissible bijection for u, v. Clearly, there is

a linear term u′ with OX(u′) = OX(u). There is a unique term v′ with OX(v′) =

OX(v) and v′[e] = u′[h−1(e)] for all e ∈ OX(v′). It is easy to check that 〈u′, v′〉 ∈

Eα, 〈u
′, v′〉 is a linear equation and 〈u, v〉 is a consequence of 〈u′, v′〉. This shows

that Eα is a linear equational theory.

(2) The reflexivity and symmetry of CE are clear. In order to prove transitivity,

let e CE f CE g. There are linear equations 〈u, v1〉 ∈ E and 〈v2, w〉 ∈ E with

e ∈ OX(u), f ∈ OX(v1) ∩ OX(v2), g ∈ OX(w), u[e] = v1[f ] and v2[f ] = w[g].

Clearly, there is a linear term v such that f ∈ OX(v), OX(v1) ⊆ O(v) and

OX(v2) ⊆ O(v). There are substitutions σ1 and σ2 with v = σ1(v1) = σ2(v2).

We have 〈σ1(u), σ1(v1)〉 ∈ E and 〈σ2(v2), σ2(w)〉 ∈ E. Since σ1(v1) = σ2(v2), we

get 〈σ1(u), σ2(w)〉 ∈ E. Clearly, this is a linear equation. Since

σ1(u)[e] = σ1(u[e]) = σ1(v1[f ]) = v[f ] = σ2(v2[f ]) = σ2(w[g]) = σ2(w)[g],

we get e CE g. This shows that CE is an equivalence. It is a left congruence, since

E is a congruence; it is a right congruence, since E is fully invariant.

(3) and (4) are evident, and (5) is easy. Let us prove (6). Since E is a linear

equational theory, it is sufficient to show that every linear equation 〈u, v〉 ∈ E

belongs to ECE
. There is a unique bijection h of OX(u) onto OX(v) with u[e] =

v[h(e)] for all e ∈ OX(u). We have e CE h(e) for any e ∈ OX(u) by definition, and

hence 〈u, v〉 ∈ ECE
. �
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Let us call an equational theory E essential if E = Eα for a congruence α of M .

Of course, every essential equational theory is linear. Let us call a congruence α of

M essential if α = CE for a linear equational theory E.

2.2. Theorem. A linear equational theory E is essential if and only if it contains

any linear equation 〈u, v〉 such that for any e, f with u[e] = v[f ] there exists a linear

equation 〈u′, v′〉 ∈ E with u′[e] = v′[f ].

α 7→ Eα is an isomorphism of the complete lattice of essential congruences of

M onto the complete lattice of essential equational theories, and E 7→ CE is the

inverse isomorphism.

Proof. By (3), (5) and (6) of Theorem 2.1, ECE
= E if E = Eα for some α, i.e.,

if E is essential. Similarly, CEα
= α whenever α is essential. From this it follows

that the two mappings are mutually inverse, order preserving bijections between

the set of essential equational theories and the set of essential congruences. A linear

equational theory E is essential iff ECE
= E iff ECE

⊆ E iff every linear equation

from ECE
belongs to E, and this condition can be reformulated according to the

definitions. From this characterization it follows easily that the intersection of an

arbitrary collection of essential equational theories is again essential, so that the set

of essential equational theories is a complete lattice (with respect to inclusion). �

For a given linear equational theory E, the equational theory ECE
will be called

the essential closure of E. It is just the least essential equational theory contain-

ing E.

It is easy to see that for any pair e, f of words there exists a term t such that

e, f ∈ OX(t) and whenever e, f ∈ OX(t′) for some t′, then t′ is a substitution

instance of t; this term t is linear and is uniquely determined up to similarity. It

will be denoted by Je,f . (More precisely, we take one fixed term in the similarity

class of u and denote it by Je,f .) Let e, f be two incomparable words. Recall

that, according to the above definitions, J
(e,f)
e,f is the term obtained from Je,f by

transposing the variables at e and f .

2.3. Lemma. Let e, f be two incomparable words. Then for a congruence α of M ,

e α f if and only if 〈Je,f , J
(e,f)
e,f 〉 ∈ Eα.

Proof. It is easy. �
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A congruence α of M is said to be length preserving if e α f implies |e| = |f |.

2.4. Theorem. Every length preserving congruence of M is essential. More gen-

erally, if α is a congruence of M such that e, f are incomparable whenever e α f

and e 6= f , then α is essential.

Proof. It follows from Lemma 2.3. �

2.5. Theorem. Let E be a linear equational theory and B be a base for E consist-

ing of linear equations. Denote by α0 the set of the ordered pairs 〈e, f〉 such that

there is an equation 〈u, v〉 ∈ B with e ∈ OX(u), f ∈ OX(v) and u[e] = v[f ]. Then

CE is the congruence of M generated by α0.

Consequently, if E is a finitely based linear equational theory, then CE is a

finitely generated congruence of M .

Proof. Denote by α the congruence generated by α0. Clearly, α ⊆ CE . Let

〈e, f〉 ∈ CE , so that u[e] = v[f ] for some linear equation 〈u, v〉 ∈ E. There ex-

ists a derivation of 〈u, v〉 based on B, i.e., a finite sequence p0, . . . , pk of terms such

that u = p0, v = pk and every pi+1 is obtained from pi by replacing a subterm

pi[gi] = σi(ui) with σi(vi) for some gi ∈ OX(pi), some equation 〈ui, vi〉 ∈ B ∪B−1

and some substitution σi. Let us define a word ei ∈ OX(pi) by induction on i

as follows: e0 = e; ei+1 is the only word from OX(pi+1) with pi[ei] = pi+1[ei+1].

Clearly, ek = f . In order to prove 〈e, f〉 ∈ α, it is sufficient to prove 〈ei, ei+1〉 ∈ α

for all i = 0, . . . , k − 1. If ei is incomparable with gi, then ei+1 = ei. So,

let ei be comparable with gi. We have ei = girs for some r ∈ OX(ui) and

s ∈ OX(σi(ui[r])). Put x = ui[r] and y = σi(x)[s]. There is a unique word

r′ ∈ OX(vi) with vi[r
′] = x; we have 〈r, r′〉 ∈ α0 by definition. It is easy to see that

pi+1[gir
′s] = y = pi[girs] = pi[ei], and hence ei+1 = gir

′s. Since 〈r, r′〉 ∈ α, we get

〈girs, gir
′s〉 ∈ α, i.e., 〈ei, ei+1〉 ∈ α. �

An equational theory E is called cancellative if 〈Fu1 . . . un, Fv1 . . . vn〉 ∈ E and

i ∈ {1, . . . , n} imply 〈ui, vi〉 ∈ E whenever uj = vj for all j 6= i. A congruence α of

M is called left cancellative if ef α eg implies f α g.

2.6. Theorem. If α is a left cancellative congruence ofM , then Eα is cancellative.

If E is a cancellative linear equational theory, then CE is left cancellative.

Proof. It is easy. �
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The variety of models of Eα will be denoted by Vα. A variety is called linear

if the corresponding equational theory is linear. A variety is called essential if the

corresponding equational theory is essential. If V is a linear variety, then the largest

essential variety contained in V will be called the essential core of V ; it is the variety

of models of the essential closure of the equational theory of V .

It has been proved in [4] that the essential core of the variety of medial groupoids

is just the variety generated by medial cancellation groupoids. A similar result has

been proved for paramedial groupoids (these are groupoids satisfying (xy)(zu) ≈

(uy)(zx)) in [6]. We do not know, however, if the two results have an elegant

common generalization.

As it is easy to see, every finitely based linear (or, more generally, balanced)

equational theory E is decidable. The essential closure of E is a linear equational

theory which is not, however, finitely based in many cases. For example, the es-

sential closure of the equational theory of medial groupoids is not finitely based.

This has been proved in [4]; more strongly, Pollák and Szendrei [8] prove that the

essential closure has an infinite, independent base. In spite of this fact, the essential

closures are decidable equational theories in many cases:

2.7. Theorem. Let E be a finitely based linear equational theory such that CE is

a length preserving congruence of M . Then the essential closure of E is a decidable

equational theory.

Proof. By 2.5, CE is a finitely generated congruence. It is easy to see that every

finitely generated, length preserving congruence of M is decidable and, by the

definition of Eα, the equational theory Eα is decidable whenever α is a decidable

congruence. �

On the other hand, we do not know if the class of finite models of the essential

closure of a finitely based linear equational theory is always recursive. We do not

know it even in very simple particular cases. The following open problem can be

pointed out: Is the class of finite groupoids from the essential core of the variety of

medial groupoids recursive?

3. Algebras without irreducible elements

An element a of an algebra A (of signature {F}) is called irreducible if there is
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no n-tuple b1, . . . , bn with a = FA(b1, . . . , bn).

Let e, f be a pair of words with |e| = |f | and e 6= f . A linear equation 〈u, v〉 is

said to be (e, f)-separating if e, f ∈ OX(u) = OX(v), u[e] = v[f ], u[f ] = v[e] and

u[g] = v[g] for all g ∈ OX(u)− {e, f}. We call an equation 〈u, v〉 separating if it is

(e, f)-separating for some e, f .

A linear equational theory E is said to be separable if CE is a length preserving

congruence ofM and for any 〈e, f〉 ∈ CE with e 6= f there exists an (e, f)-separating

equation 〈u, v〉 ∈ E. A linear variety is said to be separable if its equational theory

is separable.

3.1. Theorem. Let V be a separable linear variety. Then every algebra from V

without irreducible elements belongs to the essential core of V .

Proof. Denote by E the equational theory of V and by E′ the essential closure of E

(so that E′ is the equational theory of the essential core of V ). Let A ∈ V be an

algebra without irreducible elements. We need to prove that every linear equation

〈u, v〉 ∈ E′ is satisfied in A.

Let 〈e, f〉 ∈ CE and put k = |e| = |f |. For every term t with e, f ∈ OX(t)

denote by t′ the term such that OX(t′) = OX(t), t′[e] = t[f ], t′[f ] = t[e] and

t′[g] = t[g] for all g ∈ OX(t)− {e, f}. Let us call a term t admissible if it is linear,

e, f ∈ OX(t) and 〈t, t′〉 is satisfied in A. Since E is separable, there exists at least

one admissible term. An application of a suitable substitution provides us with

an admissible term t such that |g| ≥ k for all g ∈ OX(t). Suppose that there is

a word g ∈ OX(t) of length at least k, such that t[g] = F (x1, . . . , xn) for some

(pairwise distinct) variables x1, . . . , xn. Of course, g is incomparable with both e

and f . Denote by w the term obtained from t by replacing the subterm at g with

a variable not belonging to t. Since A is an algebra without irreducible elements

and 〈t, t′〉 is satisfied in A, it is easy to see that also 〈w,w′〉 is satisfied in A; hence

w is also admissible. In this way we can replace any admissible, non-isosceles term

t such that |g| ≥ k for all g ∈ OX(t), with a new term w which is closer to an

isosceles term of depth k and satisfies the same condition. Consequently, there

exists an isosceles admissible term of depth k.

Let t be an isosceles term of depth k. For every permutation p of OX(t) denote

by tp the term with OX(tp) = OX(t) and tp[e] = t[p(e)] for all e ∈ OX(t). Denote
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by P the group of the permutations p for which 〈t, tp〉 is satisfied in A. We have

seen that every transposition (e, f) with 〈e, f〉 ∈ CE belongs to P . Now every

permutation p with the property 〈e, p(e)〉 ∈ CE for all words e of length k can be

expressed as the product of such transpositions, and consequently belongs to P .

This shows that the algebra A satisfies any linear equation 〈p, q〉 ∈ E′ such that

p is an isosceles term. If 〈u, v〉 is any linear equation from E′, then for a suitable

substitution σ, the term σ(u) is a linear isosceles term. The equation 〈σ(u), σ(v)〉

is satisfied in A. Since A is an algebra without irreducible elements, it follows that

〈u, v〉 is satisfied in A. �

Given an equational theory E, we denote by C0
E the set of the ordered pairs

〈e, f〉 of words such that |e| = |f | and 〈t, t(e,f)〉 ∈ E for any linear isosceles term t

of depth |e|.

3.2. Lemma. Let E be a linear equational theory. Then C0
E is a left congruence

of M and C0
E ⊆ CE. If C0

E = CE, then E is separable.

Proof. It is easy. �

3.3. Theorem. Let E be a linear equational theory such that the following condi-

tions are satisfied:

(1) CE is a cancellative, length preserving congruence;

(2) if 〈FieFk, FjfFl〉 ∈ CE where i 6= j, then either 〈FieFk, FjfFl〉 ∈ C0
E or

〈eFk, g〉 ∈ CE for some g incomparable with e or 〈fFl, g〉 ∈ CE for some g

incomparable with f ;

(3) if 〈FieFk, FjfFl〉 ∈ CE where i 6= j, then either 〈FieFk, FjfFl〉 ∈ C0
E or

〈eFk, gFl〉 ∈ CE for some g or 〈fFl, gFk〉 ∈ CE for some g.

Then E is separable.

Proof. By 3.2 it is enough to prove CE ⊆ C0
E . Let us prove by induction on |e|

that 〈e, f〉 ∈ CE implies 〈e, f〉 ∈ C0
E . If |e| ≤ 1, it is clear. Let e = Fie0Fk and

f = Fjf0Fl.

If i = j, then 〈e0Fk, f0Fl〉 ∈ CE by left cancellation, so that 〈e0Fk, f0Fl〉 ∈ C0
E

by the induction assumption and hence 〈e, f〉 = 〈Fie0Fk, Fif0Fl〉 ∈ C0
E .

Let i 6= j. Consider first the case k = l. By right cancellation, 〈Fie0, Fjf0〉 ∈ CE ;

by induction, 〈Fie0, Fjf0〉 ∈ C0
E . By (2), without loss of generality 〈e0Fk, g〉 ∈ CE
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for some g incomparable with e0. By induction, 〈e0Fk, g〉 ∈ C0
E . Consequently,

〈e, Fig〉 ∈ C0
E . Let t be an isosceles term of depth |e|. Put

t′ = t(e,Fig)(Fie0,Fjf0)(e,Fig)(Fie0,Fjf0)(e,Fig),

so that 〈t, t′〉 ∈ E by the definition of C0
E . It is easy to check that t′ = t(e,f).

Consequently, 〈t, t(e,f)〉 ∈ E and 〈e, f〉 ∈ C0
E .

Now let k 6= l. By (3), without loss of generality 〈e0Fk, gFl〉 ∈ CE for some g.

By induction, 〈e0Fk, gFl〉 ∈ C0
E . Consequently, 〈Fie0Fk, FigFl〉 ∈ C0

E . Since

〈Fjf0Fl, FigFl〉 ∈ CE , it follows from the previous step of the proof that the ordered

pair 〈Fjf0Fl, FigFl〉 belongs to C0
E . We get 〈e, f〉 ∈ C0

E by transitivity. �

3.4. Corollary. Let E be a linear equational theory having a base B such that

every equation from B is (e, f)-separating for some e, f and the following conditions

are satisfied:

(1) CE is a cancellative, length preserving congruence;

(2) if 〈FieFk, FjfFl〉 ∈ CE − (B ∪B−1) where i 6= j, then either 〈eFk, g〉 ∈ CE

for some g incomparable with e or 〈fFl, g〉 ∈ CE for some g incomparable

with f ;

(3) if 〈FieFk, FjfFl〉 ∈ CE−(B∪B−1) where i 6= j, then either 〈eFk, gFl〉 ∈ CE

for some g or 〈fFl, gFk〉 ∈ CE for some g.

Then E is separable. �

4. Free algebras

Let α be a congruence of M . By an α-semimodule we mean a universal algebra

of the signature {+, 0, F1, . . . , Fn} where + is a binary operation symbol, 0 is a

constant, Fi are considered as unary operation symbols and the following identities

are satisfied:

(x+ y) + z ≈ x+ (y + z),

x+ y ≈ y + x,

x+ 0 ≈ x,

Fi(x+ y) ≈ Fix+ Fiy (i = 1, . . . , n),

Fi0 ≈ 0 (i = 1, . . . , n),

ex ≈ fx for any 〈e, f〉 ∈ α.



LINEAR EQUATIONAL THEORIES AND SEMIMODULE REPRESENTATIONS 13

Clearly, the class of α-semimodules is a variety. It is easy to see that the infinite

collection of identities ex ≈ fx can be equivalently replaced by {ex ≈ fx : 〈e, f〉 ∈

K} for any generating subset K of α. Consequently, the variety of α-semimodules

is finitely based whenever α is a finitely generated congruence of M .

Let S be an α-semimodule. We can define an n-ary operation FS on S by

FS(a1, . . . , an) = F1a1 + · · ·+ Fnan.

In this way, every α-semimodule becomes an algebra (of signature {F}).

4.1. Theorem. Let α be a congruence of M and S be an α-semimodule.

(1) For a homomorphism ϕ of the term algebra T (of signature {F}) into S

and for a term t,

ϕ(t) =
∑

e∈OX(t)

eϕ(t[e]).

(2) The algebra S, considered as an algebra of signature {F}, belongs to Vα.

Proof. (1) is easy by induction on the complexity of t. In order to prove (2), let

ϕ be a homomorphism of T into S and let 〈u, v〉 ∈ Eα. There is a bijection h of

OX(u) onto OX(v) such that u[e] = v[h(e)] and e α h(e) for all e ∈ OX(u). It

follows easily from (1) that h(u) = h(v). �

Let Y be a nonempty set. The free α-semimodule over Y will be denoted by Hα
Y .

Clearly, its elements can be expressed in the form
∑r

i=1 eiyi where r ≥ 0, yi ∈ Y

and ei ∈ M ; we have
∑r

i=1 eiyi =
∑s

j=1 fjzj if and only if r = s and there is a

permutation h of {1, . . . , r} such that yi = zh(i) and ei α fh(i) for all i.

The {F}-subalgebra of Hα
Y generated by Y will be denoted by Gα

Y .

4.2. Theorem. Let α be a congruence of M and Y be a nonempty set. Then

Gα
Y is the free algebra in the variety Vα over Y . An element e1y1 + . . . ekyk of

Hα
Y belongs to Gα

Y if and only if k > 0 and there exist pairwise incomparable words

f1 α e1, . . . , fk α ek such that whenever fi = ef for some words e and f , where f is

nonempty, then for every j ∈ {1, . . . , n} there exists an i′ with fi′ = eFjg for some

word g.

Proof. Consider first the case Y = X. Denote by ϕ the homomorphism of T

onto Gα
X extending the identity on X. For two terms u and v we have ϕ(u) =
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∑
e∈OX(u) eu[e] and ϕ(v) =

∑
f∈OX(v) fv[f ], so ϕ(u) = ϕ(v) if and only if there is

a bijection h of OX(u) onto OX(v) such that u[e] = v[h(e)] and e α h(e) for all

e ∈ OX(u), i.e., if and only if 〈u, v〉 ∈ Eα. Hence G
α
X is isomorphic to the factor of

T by Eα, which is a free algebra in the variety Vα.

The general case follows easily. If Y is finite, then Gα
Y is isomorphic to a subal-

gebra of Gα
X generated by a finite subset of X, which is necessarily free in Vα. If

Y is infinite, then every subalgebra of Gα
Y generated by a countable subset of Y is

free in Vα; it follows that G
α
Y is free itself.

The characterization of the elements ofGα
Y follows from a similar characterization

of the sets of words that are of the form OX(t) for a term t. �

4.3. Example. Let n = 2 and α be the congruence of M generated by the pairs

〈F1F1, F2F2〉 and 〈F1F2, F2F1〉. Then α is a cancellative and length preserving

congruence (we have e α f if and only if |e| = |f | and the numbers of occurrences

of F1 in e and in f are of the same parity). We have F1x + F1(F1y + F2z) =

F1x+F2F2y+F2F1z ∈ Gα
Y , while F1x+F1y /∈ Gα

Y . This shows that u+ e(F1y1 +

. . . Fnyn) ∈ Gα
Y does not necessarily imply u+ ex ∈ Gα

Y .

If α is a length preserving congruence of M , then it makes sense to define the

depth of an element ey ∈ Hα
Y , for any e ∈M and y ∈ Y , to be the length of e. For an

arbitrary element u of Hα
Y , the minimal depth of u is (defined to be) the minimum

of the depths of its summands and the maximal depth of u is the maximum of the

depths of its summands. We denote by ∂(u) the maximal and by ∂′(u) the minimal

depth of u.

4.4. Lemma. Let α be a length preserving congruence of M and Y be a nonempty

set. Let m ≥ 0 and u ∈ Gα
Y be an element of minimal depth m + 1. If u can be

expressed as u = w+ eF1y1 + · · ·+ eFnyn, where e is of length m and yi ∈ Y , then

w + ey ∈ Gα
Y for any y ∈ Y .

Proof. Since u ∈ Gα
Y , there exists a linear term t and a homomorphism ϕ of T into

Gα
Y such that ϕ maps X into Y and u = ϕ(t). There are words e1, . . . , en ∈ OX(t)

with ei α eFi and yi = ϕ(t[ei]). Put xi = t[ei]. Every occurrence of a variable in

t is of length at least m+ 1. From this it follows that every word of length m+ 1

belongs to O(t). In particular, eF1, . . . , eFn are elements of O(t). Denote by t′

the (linear) term obtained from t by replacing, for any i ∈ {1, . . . , n}, the subterm
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at eFi with the variable xi, and the variable xi with the subterm at eFi. Using

the definition of Eα it is easy to see that 〈t, t′〉 ∈ Eα, so that ϕ(t′) = ϕ(t) = u.

Denote by t′′ the term obtained from t′ by replacing the subterm Fx1 . . . xn at e

with a new variable x. Clearly, w + ey = ψ(t′′) where ψ is the homomorphism of

T into Gα
Y with ψ(x) = y and ψ(z) = ϕ(z) for any z ∈ X − {x}. Consequently,

w + ey ∈ Gα
Y . �

4.5. Lemma. Let α be a length preserving congruence of M and Y be a nonempty

set. Let w ∈ Hα
Y , u ∈ Gα

Y and e ∈ M be such that w + eu ∈ Gα
Y and ∂(eu) ≤

∂′(w + eu). Then w + ey ∈ Gα
Y for any y ∈ Y .

Proof. By induction on the number of summands of u. If u ∈ Y , it is clear.

Otherwise, we can write u = F1u1 + · · · + Fnun where ui ∈ Gα
Y . Hence w +

eu = w + eF1u1 + · · · + eFnun. Applying the induction assumption n times, we

obtain w + eF1y1 + · · · + eFnyn ∈ Gα
Y (where yi ∈ Y ). By 4.4, it follows that

w + ey ∈ Gα
Y . �

5. Semimodule representations

Let α be a length preserving congruence of M and let A ∈ Vα be an algebra

without irreducible elements. Put H = Hα
A and G = Gα

A (where A is considered as

a set only). Denote by ϕ the homomorphism of G onto the algebra A extending the

identity on A. Let us define a binary relation R on H as follows: 〈u, v〉 ∈ R if and

only if u = w + ea and v = w + eF1a1 + · · · + eFnan for some w ∈ H, e ∈ M and

a = FA(a1, . . . , an) ∈ A. Define a binary relation R′ on H by 〈u, v〉 ∈ R′ if and only

if there is a finite sequence u1, . . . , uk of elements of H such that u = u0, v = uk and

〈ui−1, ui〉 ∈ R ∪R−1 for all i. Clearly, R′ is a congruence of the α-semimodule H;

it is the congruence generated by R.

For every a ∈ A let us fix one n-tuple 〈q1(a), . . . , qn(a)〉 with a = FA(q1(a), . . . ,

qn(a)). For every a ∈ A and every e ∈M define an element pe(a) of A by induction

on the length of e as follows: if e = ∅, then pe(a) = a; if e = fFi, then pe(a) =

qipf (a). For every a ∈ A and every nonnegative integer k put

C(k, a) =
∑

e∈Lk

epe(a),

where Lk denotes the set of the words of length k. For every element u = e1a1 +
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· · ·+ ekak ∈ H and every integer m ≥ ∂(u) put

D(m,u) = e1C(m− |e1|, a1) + · · ·+ ekC(m− |ek|, ak).

5.1. Lemma. The following are true:

(1) C(k, a) ∈ G and ϕ(C(k, a)) = a for any a ∈ A. We have ∂(C(k, a)) =

∂′(C(k, a)) = k.

(2) If u ∈ G and m ≥ ∂(u), then D(m,u) ∈ G and ϕ(D(m,u)) = ϕ(u). We

have ∂(D(m,u)) = ∂′(D(m,u)) = m.

(3) If u, v ∈ H and m ≥ ∂(u+ v), then D(m,u+ v) = D(m,u) +D(m, v).

(4) If u ∈ H, e ∈M and m ≥ ∂(eu), then D(m, eu) = eD(m− |e|, u).

(5) Let 〈u, v〉 ∈ R. If u ∈ G, then v ∈ G and ϕ(u) = ϕ(v).

(6) Let 〈u, v〉 ∈ R and m be an integer such that m ≥ ∂(u) and m ≥ ∂(v). If

one of the elements D(m,u) and D(m, v) belongs to G, then both belong to

G and ϕ(D(m,u)) = ϕ(D(m, v)).

(7) Let a, b be two elements of A such that 〈a, b〉 ∈ R′. Then a = b.

Proof. The first five assertions are easy to prove. Let us remark, however, that

(according to Example 4.3), 〈u, v〉 ∈ R and v ∈ G do not necessarily imply u ∈ G.

Let us prove (6). We have u = w + ea and v = w + eF1a1 + · · · + eFnan for

some w ∈ H, e ∈ M and a = FA(a1, . . . , an) ∈ A. Hence D(m,u) = D(m,w) +

eD(m− |e|, a) and D(m, v) = D(m,w) + eD(m− |e|, F1a1 + · · ·+ Fnan). If either

of these two elements belongs to G, then Lemma 4.5 can be applied to show that

D(m,w) + ea ∈ G. We have 〈D(m,w) + ea,D(m,w) + eF1a1 + · · ·+ eFnan〉 ∈ R,

so that D(m,w) + eF1a1 + · · ·+ eFnan ∈ G and ϕ(D(m,w) + ea) = ϕ(D(m,w) +

eF1a1+· · ·+eFnan) by (5). We have D(m,u) = D(m,D(m,w)+ea) and D(m, v) =

D(m,D(m,w)+eF1a1+ · · ·+eFnan), so both these elements belong to G and have

the same images under ϕ according to (2).

In order to prove (7), let 〈a, b〉 ∈ R′ and a, b ∈ A. There exists a finite se-

quence u0, . . . , uk of elements of H such that a = u0, b = uk and 〈ui−1, ui〉 ∈

R ∪ R−1 for all i. There exists an integer m with m ≥ ∂(ui) for all i. We have

D(m, a) ∈ G and ϕ(D(m, a)) = a by (2). Similarly, ϕ(D(m, b)) = b. By (6) we get

ϕ(D(m,u0)) = ϕ(D(m,u1)) = · · · = ϕ(D(m,uk)) (and all these elements belong

to G). In particular, a = ϕ(D(m, a)) = ϕ(D(m, b)) = b. �
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5.2. Theorem. Let α be a length preserving congruence of M . Then for every

algebra A ∈ Vα without irreducible elements there exists an α-semimodule S =

S(+, 0, h1, . . . , hn) such that A is a subset of S and FA(a1, . . . , an) = h1a1 + · · ·+

hnan for all a1, . . . , an ∈ A.

Proof. According to 5.1(7), the mapping a 7→ a/R′ of A into H/R′ is injective. It

follows from the definition of R′ that the mapping is a homomorphism of A onto the

subalgebra G/R′ of H/R′ (with respect to the signature {F}). So, an isomorphic

copy of H/R′ serves the purpose. �

5.3. Theorem. Let α be a length preserving, left cancellative congruence of M

satisfying the following condition:

(∗) If a word e and an integer i ∈ {1, . . . , n} are such that for any j ∈ {1, . . . , n}

there exists a word fj with Fifj α eFj, then there exists a word g such that

Fig α e.

Then for every algebra A ∈ Vα without irreducible elements there exists an α-

semimodule S = S(+, 0, h1, . . . , hn) such that h1, . . . , hn are injective endomor-

phisms of S(+, 0), A is a subset of S and FA(a1, . . . , an) = h1a1 + · · · + hnan for

all a1, . . . , an ∈ A.

Proof. With respect to the proof of Theorem 5.2, it is sufficient to show that

〈Fiu, Fiv〉 ∈ R′ implies 〈u, v〉 ∈ R′ for any i ∈ {1, . . . , n}.

Let us prove first that if p, q, p′ are three elements of H such that 〈p, q〉 ∈

R ∪ R−1 and p = Fip
′, then there exists an element q′ with 〈p′, q′〉 ∈ R ∪ R−1

and q = Fiq
′. In the case 〈p, q〉 ∈ R it is evident, so let 〈q, p〉 ∈ R. We have

q = w + ea and p = w + eF1a1 + · · · + eFnan for some w ∈ H, e ∈ M and

a = FA(a1, . . . , an) ∈ A. Since p = Fip
′, we have w = Fiw

′ for some w′ ∈ H,

eFjaj = Fifjaj for some words fj (j = 1, . . . , n), and p′ = w′ + f1a1 + · · ·+ fnan.

Hence eFj α Fifj for all j. By (∗) there exists a word g such that Fig α e. Since α

is left cancellative, FigFj α eFj α Fifj implies gFj α fj . Put q′ = w′ + ga. Then

〈q′, p′〉 = 〈w′+ga, w′+gF1a1+· · ·+gFnan〉 ∈ R and Fiq
′ = Fiw

′+Figa = w+ea = q.

If 〈Fiu, Fiv〉 ∈ R′, then there is a finite sequence u0, . . . , uk with Fiu = u0,

Fiv = uk and 〈uj−1, uj〉 ∈ R∪R−1 for all j. According to the previous observation,

there are elements u′0, . . . , u
′
k such that u′0 = u, uj = Fiu

′
j for all j and 〈u′j−1, u

′
j〉 ∈
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R ∪ R−1 for all j. Now Fiu
′
k = Fiv implies u′k = v; this follows from the left

cancellation property of α. We get 〈u, v〉 ∈ R′. �

We denote by M̂ the free group over {F1, . . . , Fn}. The free monoid M is a

submonoid of M̂ . For a congruence α of M , denote by α̂ the congruence of M̂

generated by α. We say that α̂ extends α if α = α̂ ∩ (M × M). Clearly, if α̂

extends α, then α is a cancellative congruence of M .

By an α̂-semimodule we mean a universal algebra of the signature {+, 0, F1, . . . ,

Fn, F
−1
1 , . . . , F−1

n }, satisfying all the identities for α-semimodules and, moreover,

FiF
−1
i x ≈ F−1

i Fix ≈ x

for i = 1, . . . , n. Clearly, the class of α̂-semimodules is a variety; it is finitely based

whenever α is a finitely generated congruence.

Similarly as in the case of α-semimodules, every α̂-semimodule can be considered

as an algebra of signature {F} with respect to the operation 〈a1, . . . , an〉 7→ F1a1+

· · ·+ Fnan. The algebra again belongs to Vα.

The free α̂-semimodule over a nonempty set Y is the set of formal expressions
∑r

i=1 eiyi where r ≥ 0, yi ∈ Y and ei ∈ M̂ ; we have
∑r

i=1 eiyi =
∑s

j=1 fjzj if and

only if r = s and there is a permutation h of {1, . . . , r} such that yi = zh(i) and

ei α̂ fh(i) for all i. If α̂ is an extension of α, then the {F}-subalgebra generated by

Y is isomorphic with Gα
Y and can be identified with Gα

Y .

5.4. Theorem. Let α be a length preserving congruence of M such that α̂ ex-

tends α and the following condition is satisfied:

(∗̂) If e ∈ M̂ is such that for any i ∈ {1, . . . , n} there exists a word ei ∈M with

〈eFi, ei〉 ∈ α̂, then there exists a word f ∈M such that 〈e, f〉 ∈ α̂.

Then for every algebra A ∈ Vα without irreducible elements there exists an α̂-

semimodule S = S(+, 0, h1, . . . , hn, h
−1
1 , . . . , h−1

n ) such that A is a subset of S and

FA(a1, . . . , an) = h1a1 + · · ·+ hnan for all a1, . . . , an ∈ A.

Proof. Denote by Ĥ the free α̂-semimodule over the set A, so that H is the subset

of Ĥ consisting of the elements
∑
eiai such that for every i there is a word fi ∈M

with 〈ei, fi〉 ∈ M . Let us define a binary relation Q on Ĥ as follows: 〈u, v〉 ∈ Q

if and only if u = w + ea and v = w + eF1a1 + · · · + eFnan for some w ∈ Ĥ,
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e ∈ M̂ and a = FA(a1, . . . , an) ∈ A. Define Q′ by 〈u, v〉 ∈ Q′ if and only if there

is a finite sequence u1, . . . , uk of elements of Ĥ such that u = u0, v = uk and

〈ui−1, ui〉 ∈ Q ∪Q−1 for all i. Clearly, Q′ is the congruence of Ĥ generated by R′.

Let 〈u, v〉 = 〈w + ea, w + eF1a1 + · · · + eFnan〉 ∈ Q. We are going to prove

that if one of the elements u and v belongs to H, then they both belong to H and

〈u, v〉 ∈ R. If u ∈ H, then w ∈ H and ea = e′a for some e′ ∈ M , so everything

is clear. Let v ∈ H. Then w ∈ H and for any i ∈ {1, . . . , n} there exists a word

ei ∈ M with 〈eFi, ei〉 ∈ α̂. By (∗̂) we get ea = fa for some f ∈ M . Consequently,

u = w + ea ∈ H.

It follows that if 〈u, v〉 ∈ Q′ and at least one of the elements u and v belongs

to H, then they both belong to H and 〈u, v〉 ∈ R′. In particular, if a, b ∈ A and

〈a, b〉 ∈ H ′, then 〈a, b〉 ∈ R′ and a = b by 5.1(7). This means that the mapping

a 7→ a/Q′ of A into Ĥ/Q′ is injective and the proof can be finished in the same

way as the proof of Theorem 5.2. �

For the purpose of applications, we also need to extend (slightly) the results on

semimodule representations for algebras containing a zero element. An element o

of an algebra A is said to be a zero element if FA(a1, . . . , an) = o whenever ai = o

for at least one i ∈ {1, . . . , n}.

5.5. Theorem. Let E be a linear equational theory having a base B such that

every equation from B is (e, f)-separating for some e, f and the congruence α = CE

satisfies conditions (1), (2) and (3) of Theorem 3.4. Then for every model A of E

without irreducible elements there exists an α-semimodule S(+, 0, h1, . . . , hn) such

that A is a subset of S, FA(a1, . . . , an) = h1a1 + · · ·+ hnan for all a1, . . . , an ∈ A,

and the following are true:

(1) if the algebra A contains a zero element o, then u+o = o and h1(o) = · · · =

hn(o) = o for all u ∈ S;

(2) if α̂ extends α and (∗̂) is satisfied, then h1, . . . , hn are automorphisms

of S(+).

Proof. We only need to consider the case when A contains a zero element o.

For every element a ∈ A we have fixed one n-tuple 〈q1(a), . . . , qn(a)〉 with a =

FA(q1(a), . . . , qn(a)); now we should require that q1(o) = · · · = qn(o) = o. Then

pe(o) = o for all e ∈M .
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Denote by I the set of all elements u =
∑
eiai ∈ H such that ai = o for at least

one i. Clearly, I is an ideal of H(+). Define a binary relation R′
o on H as follows:

〈u, v〉 ∈ R′
o if and only if either 〈u, v〉 ∈ R′ or there are elements u′, v′ ∈ I with

〈u, u′〉 ∈ R′ and 〈v, v′〉 ∈ R′. Clearly, R′ is a congruence of the α-semimodule H.

It is easy to see that if u ∈ I ∩G, then ϕ(D(m,u)) = o for all m ≥ ∂(u). Using this

observation together with 5.1(6), one can prove that if a ∈ A−{o} and 〈a, u〉 ∈ R′,

then u /∈ I. Consequently, if a, b are two elements of A such that 〈a, b〉 ∈ R′
o, then

a = b. So, an isomorphic copy of H/R′
o is a desired α-semimodule.

If α̂ extends α and (∗̂) is satisfied, the α̂-semimodule can be similarly constructed

as an isomorphic copy of Ĥ/Q′
o, where Q

′
o is the congruence defined by 〈u, v〉 ∈ Q′

o

if and only if either 〈u, v〉 ∈ Q′ or 〈u, u′〉, 〈v, v′〉 ∈ Q′ for some u′, v′ belonging to

the ideal of the elements of Ĥ containing o. �

6. Paramedial groupoids

In this section let n = 2. Let us denote by V the variety of paramedial groupoids

and by E their equational theory. Put α = CE , so that α is the congruence of the

free monoid M generated by 〈F1F1, F2F2〉, and α̂ is the congruence of the free

group M̂ generated by 〈F1F1, F2F2〉. It is easy to see that α is a length preserving

congruence of M and α̂ extends α.

For e = F ε1
i1
. . . F εk

ik
∈ M̂ put |e| = ε1 + · · · + εk. It is not difficult to see that

〈e, f〉 ∈ α̂ if and only if |e| = |f | and both e and f can be reduced, by deleting

all occurrences of F ε1
i F ε2

i for any i ∈ {1, 2} and ε1, ε2 ∈ {1,−1} (in any order),

to two words of the form F ε1
i1
. . . F εk

ik
that can differ in the ε’s only. Based on this

characterization of α̂, one can prove easily that all the conditions of Theorem 5.5

are satisfied. We obtain

6.1. Theorem. Every paramedial groupoid without irreducible elements belongs to

the essential core of the variety of paramedial groupoids. For a paramedial groupoid

A without irreducible elements there exist a commutative semigroup S(+) and two

automorphisms f, g of S(+) such that ff = gg, A ⊆ S, ab = f(a) + g(b) for all

a, b ∈ A, and u+ o = u for all u ∈ S if o is a zero element of A. �

A groupoid A is called zeropotent if it contains a zero element o and aa = o for

all a ∈ A.
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6.2. Corollary. For every zeropotent paramedial groupoid A without irreducible

elements, with zero element o, there exist a commutative semigroup S(+) and two

automorphisms f, g of S(+) such that ff = gg, A ⊆ S, ab = f(a) + g(b) for all

a, b ∈ A, and u+ o = o = f(u) + g(u) for all u ∈ S.

Proof. Let S, f, g be as in 6.1. Denote by S′ the set of the elements u ∈ S such

that f(u) + g(u) = o. We have A ⊆ S′, since A is zeropotent. The subset S′ is

a subsemigroup of S(+), since if u and v are two elements of S′, then f(u + v) +

g(u+v) = f(u)+f(v)+g(u)+g(v) = o+o = o. Also, the subset is closed under f :

if u ∈ S′, then ff(u) + gf(u) = ggu + gf(u) = g(gu + fu) = g(o) = o. Similarly,

S′ is closed under g. �
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4. J. Ježek and T. Kepka, Medial groupoids, Rozpravy ČSAV, Řada mat. a př́ır. věd 93/2 (1983),
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