
RANDOM POSETS, LATTICES, AND LATTICE TERMS

Jaroslav Ježek and Václav Slav́ık

Abstract. Algorithms for generating random posets, random lattices and random
lattice terms are given.

An elaboration of a conjecture concerning finite lattices often depends, in its
initial phase, on the verification for a set of randomly chosen lattices.

In this paper we are going to present three algorithms: for generating a random
poset, or random lattice, with a given number of elements, and for generating a
random lattice term.

The algorithm for a random lattice can be also used for generating a random
join semilattice: a random join semilattice with N elements is nothing else than a
random lattice with N + 1 elements, from which we remove the least element.

We suppose that a (good) random number generator is given. For a positive
integer i, rnd(i) is a random number from {0, . . . , i− 1}.

For the notation the reader is referred to either [2] or [3].
The algorithm in Section 3 is based on ideas of J.-B. Nation.

1. Posets

Denote by N the number of elements of a random poset. Let L be a two-
dimensional array of size N ×N , which will hold the less-or-equal relation table of
the poset. We initialize L by setting L[i][j]=0 for i 6= j and L[i][i]=1 (i, j =
0, . . . , N − 1).

We will also need two (one-dimensional) arrays M and Q of size N .
The random poset will be given by its table L after executing the function

Work(i) for i = 0, . . . , N−1. This function calls the auxiliary function FindMax(i),
which finds the maximal elements of the current poset, chooses its random subset
and returns the number of elements of this subset.

For a positive integer i, denote by S(i) the least positive integer j such that
j2 ≥ i and j ≥ 2.

int FindMax(i){ int k=0; int j,s,a;

for(j=0;j<i;j++){
s=1; for(a=0;a<i;a++) if(a!=j&&L[j][a]) s=0;

if(s) {M[k]=j;k++;}}

1991 Mathematics Subject Classification. 06B25; 05-04.
While working on this paper both authors were partially supported by the Grant Agency of

Czech Republic, Grant No 201/96/0312. The first author was also partially supported by the

Grant Agency of Academy of Sciences of the Czech Republic, Grant No A1019508.

1

2 JAROSLAV JEŽEK AND VÁCLAV SLAVÍK

a=rnd(k+1); for(j=0;j<k;j++) Q[j]=0;

for(s=0;s<a;s++){j=rnd(k); if(Q[j])s--; else Q[j]=1;}
return k;}

void Work(i){ int j,l,w,s,q,u;

q=S(N-i);

if(i==0) u=0; else if(!rnd(q)) u=FindMax(i);

for(j=0;j<u;j++) if(Q[j]) L[M[j]][i]=1;

w=1; while(w){w=0;
for(j=0;j<i;j++) if(L[j][i]) for(s=0;s<i;s++)

if(L[s][j]&&!L[s][i]){w=1; L[s][i]=1;}}}

2. Lattices

The idea of generating a random lattice is similar to that of random poset, but
a little more complicated.

Again, the number of elements will be denoted by N . Instead of the less-or-equal
relation, we need the join table, which will be held in a two-dimensional array J of
size N ×N . The table is initialized by setting J [i][i] = i and J [i][j] = −1 for i 6= j

(meaning that the joins are not yet defined).
The lattice is generated from below. Assume that its order ideal of k elements

has been constructed. From the set of maximal elements of the order ideal we select
a random subset S (if k = N − 1, S must be the set of all maximal elements). We
then add a new element a, covering all the elements of S. (This may force some
maximal elements outside S to be also covered by a.) For i, j with i < a, j < a

and J [i][j] not yet defined, we set J [i][j] = a.
The FindMax(i) function is almost the same as for posets. The Work(i) function

is different.

int FindMax(i){ int k=0; int j,s,a;

for(j=0;j<i;j++){
s=1; for(a=0;a<i;a++) if(a!=j&&J[a][j]==a) s=0;

if(s){M[k]=j; k++;}}
a=rnd(k);a++; for(j=0;j<k;j++)Q[j]=0;

for(s=0;s<a;s++){ j=rnd(k);if(Q[j])s--;else Q[j]=1;}
return k;}

void Work(i){ int j,l,w,s,q,u;

if(i==N-1){for(j=0;j<N;j++) for(l=0;l<N;l++)

if(J[j][l]==-1) J[j][l]=N-1; return;}
q=S(N-i);

if(i==1){u=1; M[0]=0; Q[0]=1;}
else if(!rnd(q)) u=FindMax(i);

for(j=0;j<u;j++) if(Q[j]){J[M[j]][i]=i; J[i][M[j]]=i;}
w=1; while(w){w=0;
for(j=0;j<i;j++)if(J[j][i]==i)for(s=0;s<i;s++)

if(J[s][j]==j&&J[s][i]!=i){w=1;J[s][i]=i;J[i][s]=i;}
for(j=0;j<i;j++)if(J[j][i]==i)for(l=0;l<i;l++)if(J[l][i]==i){

s=J[j][l];if(s!=-1&&J[s][i]!=i){w=1;J[s][i]=i;J[i][s]=i;}}}

RANDOM POSETS, LATTICES, AND LATTICE TERMS 3

for(j=0;j<i;j++)if(J[j][i]==i)for(l=0;l<i;l++)

if(J[l][i]==i&&J[j][l]==-1){J[j][l]=i;J[l][j]=i;}}

3. Lattice terms

The idea of generating a random lattice term (which should be given in its
canonical form) in n variables x1, . . . , xn is the following. We first generate a
random lattice with a set of n generators g1, . . . , gn. Then we seek for an element
g standing as far from the generators as possible, and obtain a term t(x1, . . . , xn)
with g = t(g1, . . . , gn) as a result.

The previously described algorithm for producing a random lattice cannot be
used for this purpose, since it does not allow any control over the generators of
the lattice. However, one can see easily that it is sufficient for the present purpose
to generate a random bounded (in the sense of, e.g., [1] and [2]) lattice instead of
a random general lattice. As it is well known (and proved in A. Day [1]), finite
bounded lattices are precisely those lattices that can be obtained from the one-
element lattice in finitely many steps by doubling the intervals. So, it is easy
to generate an infinite random sequence of finite bounded lattices L0, L1, . . . of
increasing sizes: L0 is the one-element lattice, and Li+1 is obtained from Li by
doubling its random interval.

One can set g1 = · · · = gn = 0 in L0, and and if the lattice Li is generated by
n elements, again denoted by g1, . . . , gn, one can restrict the random selection of
an interval in Li in such a way that the lattice Li+1, resulting by doubling this
interval, is again n-generated, and its n generators g1, . . . , gn can be obtained from
those of Li, taking only one appropriate element each time when a generator has
been doubled. We will not give the details of the algorithm here, since it is rather
technically complicated but the idea is simple.

Since the cardinalities satisfy |Li| < |Li+1| ≤ 2|Li| for all i, one can find in the
sequence a random bounded lattice L with N ≤ |L| < 2N , for any given N . Let J
and M be two two-dimensional arrays of sizes 2N × 2N , holding the join and meet
tables of such a random bounded lattice. We will suppose, for example, that n = 3
(the number of generators of the lattice.) The three generators of L will be denoted
by g1, g2, g3 (so that 0 ≤ g1, g2, g3 < 2N with respect to encoding lattice elements
by nonnegative integers). The function ProduceTerm(), listed below, produces a
random term in three variables x, y, z based on this lattice. The function wr(i) is
auxiliary; it serves to print the term. We also need four auxiliary arrays A,B,C,D
of sizes 2N .

void wr(i){
if(i==0) printf("x");

else if(i==1) printf("y");

else if(i==2) printf("z");

else{if(B[i]>2)printf("("); wr(B[i]); if(B[i]>2) printf(")");

if(D[i]==1) printf("."); else printf("+");

if(C[i]>2) printf("("); wr(C[i]); if(C[i]>2) printf(")");}}

void ProduceTerm(){ int i,j,k,l,c,d,u,m,p;

A[0]=g1; A[1]=g2; A[2]=g3; p=1;

k=3; while(p){m=k; p=0;

4 JAROSLAV JEŽEK AND VÁCLAV SLAVÍK

for(i=0;i<m;i++) for(j=0;j<m;j++){
u=J[A[i]][A[j]];

c=0; for(l=0;l<k;l++) if(u==A[l]) c=1;

if(!c){p=1; A[k]=u; B[k]=i; C[k]=j; D[k]=2; k++;}}
for(i=0;i<m;i++) for(j=0;j<m;j++){

u=M[A[i]][A[j]];

d=0; for(l=0;l<k;l++) if(u==A[l]) d=1;

if(!d){p=1; A[k]=u; B[k]=i; C[k]=j; D[k]=1; k++;}}}
wr(k-1);}

The random term obtained in this way is given in its canonical form.

References

1. A. Day, Splitting lattices generate all lattices, Algebra Universalis 7 (1977), 163–170.
2. R. Freese, J. Ježek and J.B. Nation, Free Lattices, Mathematical Surveys and Monographs

42, American Mathematical Society, Providence, RI 1995.
3. G. Grätzer, General Lattice Theory, Academic Press, New York 1978.

MFF UK, Sokolovská 83, 186 00 Praha 8

Czech Agricultural University, Kamýcká 129, 165 21 Praha 6

