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Abstract

The aim of this paper is to prove that there is no finite basis for
the equations satisfied by tournaments. This solves a problem posed
in Müller, Nešetřil and Pelant [10].

1 Introduction

By a tournament we mean a directed graph with loops, such that for any two
distinct vertices a and b exactly one of the two cases, either a → b or b → a,
takes place.

For any tournament T we can define multiplication on T by setting
ab = ba = a whenever a → b. With respect to this multiplication, T be-
comes a groupoid (a universal algebra with one binary operation). More-
over, T is uniquely determined by this multiplication. It is easy to see that
the class of groupoids obtained from tournaments in this natural way is just
the class of commutative groupoids satisfying ab ∈ {a, b} for all a and b.
(One could equivalently say: commutative groupoids, every subset of which
is a subgroupoid.) Because of the one-to-one correspondence, we will identify
tournaments with their corresponding groupoids. So, a tournament is a com-
mutative groupoid satisfying ab ∈ {a, b} for all a and b. For a tournament T ,
we have a → b if and only if ab = a.
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A complete bibliography on algebraic representations of tournaments
would include the papers [2], [3], [4], [5], [6], [9] and [10].

One can easily check that tournaments satisfy, for example, the following
equations:

(1) xx = x
(2) xy = yx
(3) x(xy) = xy
(4) x((xy)(xz)) = (xy)(xz)
(5) ((xy)z)y = ((xz)y)z
(6) ((xy)(xz))((xy)(yz)) = (xy)z

(On the other hand, the associative law is not satisfied.) It is natural to ask
whether a list of equations like this one is complete, in the sense that any
equation satisfied in all tournaments would be derivable. Our main result,
Theorem 3, states that not only the six-item list is not complete, but there
is no finite complete list of equations for tournaments at all. That question
has been first formulated in Müller, Nešetřil and Pelant [10].

2 Universal algebraic background

For the basics of universal algebra, the reader is referred to either [8] or [1].
We are going to recall here only a few facts that are essential for the proof
of our main result.

A variety is a class of (general) algebras of the same similarity type that
can be defined by a set of equations. A variety is called finitely based if there
is a finite set B of equations satisfied in V , such that every equation satisfied
in V is a (logical) consequence of B. An arbitrary class of algebras (such
as the class of tournaments) is called finitely based if it generates a finitely
based variety.

A variety is said to be locally finite if any finitely generated algebra in
V is finite. A variety is locally finite if and only if its free algebras on n
generators, for any positive integer n, are all finite.

For a variety V and a positive integer n, we denote by V n the variety of
algebras determined by the equations in at most n variables that are satisfied
in V . In this way we obtain a chain of varieties for any given variety V :

V 1 ⊇ V 2 ⊇ V 3 ⊇ · · · ⊇ V.
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It is not difficult to see that an algebra belongs to V n if and only if all its
subalgebras generated by at most n elements belong to V .

One can easily prove that a locally finite variety V of algebras of a finite
similarity type is finitely based if and only if V = V n for at least one positive
integer n.

In order to be able to apply this characterization to the variety of grou-
poids generated by tournaments, we need to know that the variety is locally
finite. This will follow from the following observation.

Lemma 1 Let K be a class of finite algebras of a finite similarity type, closed
under forming of subalgebras. The variety V generated by K is locally finite
if and only if for every positive integer n there are, up to isomorphism, only
finitely many n-generated algebras in K.

Proof. If V is locally finite, then (for any n) the free n-generated algebra
in V is finite, so it has (up to isomorphism) only finitely many homomorphic
images; these include all the n-generated algebras in V .

In order to prove the converse, denote by Fn the algebra of terms over a
set of n variables, and by E the set of all the ordered pairs (t, s) of elements of
Fn that represent an equation t = s satisfied in V . Then E is a congruence of
Fn and Fn/E is the free n-generated algebra in V . An equation in n variables
belongs to E if and only if it is satisfied in all algebras in K, but we only need
to check the at most n-generated ones. If the set S of the n-generated algebras
in K is finite (it is sufficient to consider just the nonisomorphic ones), then
E has only finitely many blocks, since every block is uniquely determined
by a function, assigning to any algebra A ∈ S and any interpretation of the
n variables in A an element of A; consequently, the free algebra Fn/E is
finite. �

The variety generated by tournaments will be denoted by T.

Corrollary 2 (Crvenković and Marković [2]) The variety T is locally
finite. �

Because of the lack of associativity, we need to distinguish between ex-
pressions like (xy)z and x(yz). In order to avoid using too many parentheses,
let us make the following convention: if parentheses are missing, they are al-
ways assumed to be grouped to the left. So, for example, xy(z(uv)t) stands
for (xy)((z(uv))t).
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3 The variety T is not finitely based

Theorem 3 For every n ≥ 3 there exists a groupoid Mn with n+2 elements
such that Mn belongs to Tn but not to Tn+1. Consequently, the variety T
(the variety generated by tournaments) is not finitely based.

Proof. Put Mn = {a, b0, . . . , bn} and define commutative and idempotent
multiplication on Mn by

ab1 = b0,
abi = bi for i ≤ n− 1 and i 6= 1,
abn = a,
bibi+1 = bi for i < n− 1,
bnbn−1 = bn,
bibj = bmax(i,j) for |i− j| ≥ 2 and i, j < n,
bnbi = bi for i < n− 1;

the multiplication in the other cases is given by commutativity and idempo-
tency (see also Fig. 1).

Define terms t1, s1, t2, s2, . . . , tn, sn in n + 1 variables x, y1, . . . , yn as fol-
lows:

t1 = y1 and s1 = xy1;
ti = si−1yi and si = ti−1yi for 2 ≤ i ≤ n− 1;
tn = tn−1yn−3yntn−1 and sn = sn−1yn−3yntn−1 if n ≥ 4,

while t3 = t2s1y3t2 and s3 = s2s1y3t2 if n = 3.

4



Finally, put t = s1tnsntn(xtn) and s = t(s1tn).
We are going to prove that the equation t = s is satisfied in any tourna-

ment. There will be no confusion if we do not distinguish between a term
and its value in a tournament under an interpretation. We distinguish two
cases:

If s1 = x, then
t = xtnsntn(xtn)

and
s = xtnsntn(xtn)(xtn) = xtnsntn(xtn) = t.

The other case is s1 = y1. Then we have t1 = s1, t2 = s2, . . . , tn = sn.
Consequently,

t = y1tn(xtn) and s = y1tn(xtn)(y1tn); (∗)

clearly, these two values are equal. (In these arguments we have repeatedly
used equation (3) from the list in Introduction.)

So, t = s in every tournament under any interpretation.
This means that the equation t = s is satisfied in T. On the other hand,

we are going to show that the equation is not satisfied in the groupoid Mn.
Consider the interpretation x 7→ a, yi 7→ bi. By induction on i = 1, . . . , n we
can see that ti 7→ bi and si 7→ bi−1. So, t 7→ a and s 7→ b0. Since a 6= b0, the
equation t = s is not satisfied in Mn.

We have proved that the groupoid Mn does not belong to T. Since it
is generated by n + 1 elements, it follows that it does not belong to Tn+1.
In order to prove that it belongs to Tn, it is sufficient to show that every
subgroupoid of Mn generated by at most n elements belongs to T.

If we remove either a or b1 from Mn, we obtain a subtournament. If we
remove b0, we must remove either a or b1 in order to obtain a subgroupoid.
So, it is sufficient to prove that, for any i = 2, . . . , n, Mn − {bi} is a sub-
groupoid belonging to T. One can easily check that there are two congru-
ences C1 and C2 of Mn−{bi} with trivial intersection, such that both factors
(Mn − {bi})/C1 and (Mn − {bi})/C2 are tournaments: C1 is the congruence
generated by (a, b0) and C2 is the congruence generated by (b1, b0). (It is
easy to see that {a, b0} and {bi−1, . . . , b0} are the only non-singleton blocks
of C1 and C2, respectively.) Consequently, Mn − {bi} is a subdirect product
of two tournaments (its factor groupoids by C1 and C2) and hence belongs
to T. �
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4 Generalization to directed graphs

The one-to-one correspondence between tournaments and commutative grou-
poids satisfying ab ∈ {a, b} can be naturally extended to a one-to-one corre-
spondence between arbitrary directed graphs with loops (i.e., reflexive binary
relations) and arbitrary groupoids satisfying ab ∈ {a, b} for all a and b: we
set ab = a if a → b, and ab = b in the other case. These groupoids are called
quasitrivial in some papers, e.g., in [7]. Here we will call them digraphs and
identify them with directed graphs with loops. Digraphs are precisely the
groupoids such that every subset is a subgroupoid. For two elements of a
digraph, a → b if and only if ab = a.

The variety generated by digraphs will be denoted by D. This variety is
again locally finite, according to Lemma 1. The proof of Theorem 3 works,
with the same algebras Mn, even for this non-commutative case. There are
only two changes to be made:

First of all, replace the definition of s1 with s1 = xy1x. The second change
is that the equality of t and s in (∗) is not as clear as in the commutative
case. But it is again true. It follows from the fact that if s1 = y1, then
xy1 = y1x = y1 and the implication

xy = yx = y =⇒ (yz)(xz)(yz) = (yz)(xz)

is true in any digraph, which can be easily verified.
So, we know that also digraphs have no finite basis for their equations.

In fact, we have proved more:

Theorem 4 Let V be any variety contained in D and containing T. Then
V is not finitely based. �

5 Quasiequations

In the proof of Theorem 3 we have shown that every n-generated subalgebra
of Mn is a subdirect product of tournaments. We have concluded that Mn ∈
Tn. But there is more in it: it follows that Mn satisfies not only all the at
most n-variable equations, but also all the at most n-variable quasiequations
that are satisfied in all tournaments. Since Mn /∈ Tn+1, the algebras Mn

do not satisfy all the at most n-variable quasiequations that are satisfied in
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all tournaments. Consequently, the quasiequations of tournaments are not
finitely based.

The same argument can be applied in the non-commutative case. We
have proved:

Theorem 5 The quasivariety generated by tournaments is not finitely based.
Moreover, there is no finitely based quasivariety containing the quasivariety
generated by tournaments and contained in the quasivariety generated by di-
graphs. �

We were not able to determine, however, whether the quasivariety gen-
erated by tournaments is properly contained in the variety generated by
tournaments. It may be that the two classes of groupoids are the same.
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