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The present note is a free continuation of (1] and [2] and its purpose is to initiate the
study of simple paramedial groupoids—a small contribution to the task of describing
simple algebras satisfying strong linear indentities.

A reader is referred to [1] for notation and various prerequisities.!

1. BASIC PROPERTIES OF SIMPLE PARAMEDIAL GROUPOIDS

1.1 Theorem. Let G be a (non-trivial) simple paramedial groupoid. Then
exactly one of the following three cases takes place:

(1) og is an injective transformation of G.
(2) G is a finite unipotent medial quasigroup.
(3) G is zeropotent.

Proof. By {1, 2.1(iii)], r = ker(og) is a congruence of GG, and hence either
r=idgorr =G x G.

If » = idg, then og is injective, and hence we will assume that r = G X G. Then
G is unipotent, i.e., zz = e = yy for all 7,y € G. By [1, 2.9(1)], s = ker(L.R.) is a
congruence of G. Again, we have either s = idg or s = G x G.

First, let s = idg. Then L.R. = R.L. is an injective endomorphism of G and -
consequently both L. and R, are injective transformations of G. By [1, 2.9(i})], G
is a cancellative medial groupoid. However, it is proved in {3] that every simple
cancellative medial groupoid is a finite quasigroup.

Now, let s = G x G. Then e-ze = ¢ - ye for all 2,y € & and it follows that
e Te = e = ex - e. Further, by (1, 2.6(i)], ¢ = ker(L?) is a congruence of G. If

! ' While working on this paper, the first author was supported by the Basic Science Research
Institute Program, Ministry of Education, Korea 1966, No. BSRI-96-1433 and the second
one by the Grant Agency of the Czech Republic, Grant # 201/96/0312
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t = idg, then both L. and R. are injective and G is cancellative ([1, 2.6(ii), 2.9(ii)]).
But ¢ ze = e - ye implies £ = y for all z,y € G, which is a contradiction. Thus
t =G x G and we have ¢ -ex = e = ze - e for every z € G.

Put I = {a € G;ae = e = ea}. Clearly, e € ] andif a € I and z € G, then
e ar=zxe-ae=xe-e=¢€,0L €=er-ea=er-€=¢€,e-La=ae-Te=e-Te=¢e
and za e = ea-ex = e-ex = e, so that ax,za € I. We have proved that I is an
ideal of G. But then w = (I x I) Uidg is a congruence of G and if w = G x G, then
I = G and G is zeropotent. If w = idg, then I = {e}, e is an absorbing element of
G and G is again zeropotent {in fact, I = {e} is not possible). O

1.2 Lemma. Let G be a non-trivial finite idempotent medial groupoid and let f
be an antiautomorphism of G such that idg and G x G are the only congruences of
G which are invariant under f. Then exactly one of the following three cases takes
place:

(1) G is a quasigroup.
(2) G is a semilattice.
(3) G is a rectangular band.

Proof. First, let r denote the intersection of all cancellative congruences of G.
Then r is the smallest cancellative congruence of G and, if we define a relation
on G by (a,b) € ry iff (f(a), f(b)) € r1, we get a cancellative congruence ry, so that
r C ry. This shows that r is invariant under f.

If r = idg, then G is cancellative and, since G is finite, it is a quasigroup. Now, we
will assume that r = G x G, i.e., no proper homomorphic image of G is cancellative.

Let s be the smallest congruence of G such that the corresponding factor is a
semilattice. Again, define s; by (a,b) € s1 iff (f(a), f(b)) € s. It is easy to check
that s; is a congruence of G and (z,zx) € s1,(zy,yz) € 81 and (x - yz,2y - 2) € 53
for all z,y,z € G. Thus G/s; is a semilattice, s C s1, s is invariant under f and we
can assume that s = G x G.

Now, since G is non-trivial and finite, at least one proper non-trivial factorgroupoid
H of G is simple. According to our assumptions, H is neither cancellative nor a
semilattice. Using the description of simple idempotent medial groupoids as given
in [3] we conclude that H is either an LZ-semigroup or an RZ-semigroup. In both
cases, t # G x G, where t is the smallest congruence such that the corresponding
factor is a rectangular band. As usual, ¢ is invariant under f, and therefore t = idg.
In other words, (@ is a rectangular band. O

1.3 Proposition. Let G be a (non-trivial) finite simple paramedial groupoid
such that og is injective. Then exactly one of the following three cases takes place:

(1) G is a quasigroup.
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(2) G is commutative (and hence medial) and not cancellative.
(3) There exist a rectangular band G(*) and an antiautomorphism f of G(x) such
that zy = f(z) * f(y) (= f(y*=)) for all z,y € G.

Proof. Clearly, og is a permutation and, by [1, 2.4], there exist an idempotent
medial groupoid G(*) and an antiautomorphism f of G(*) such that zy = f(z)* f(y)
for all z,y € G. Since G is simple, idg and G x G are the only congruences of G(x)
that are invariant under f. Now, we can apply 1.2.

If G(*) is a quasigroup, then G is also a quasigroup.

If G(*) is a semilattice, then G is commutative.

If G(x) is a rectangular band, then one may check easily that G is neither can-
cellative nor commutative. O

1.4 Lemma. Let G be a simple paramedial groupoid containing at most three
elements. Then G is medial.

Proof. Easy to check. 0

1.5 Example. Consider the following four-element groupoid G :

Then G, is a simple zeropotent non-medial paramedial groupoid.

1.6 Example. Consider the following four-element groupoid G:

Then G2 is a simple non-medial paramedial groupoid, G4 is not cancellative, og,
is a permutation and Id(G2) = {0, 3} is not a subgroupoid of G».

1.7 Example. Consider the following four-element groupoid G3:
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Then G3 is a simple non-medial paramedial quasigroup and Id(G3) = {0, 3} is not
a subgroupoid of G3.

1.8 Example. Consider the following four-element groupoid G4:

Then G4 is a simple medial and paramedial groupoid (notice that G and G4 are
not isomorphic).

Let G be a (non-trivial) simple paramedial groupoid. We will say that G is

- of type (I) if G is cancellative;

of type (II) if G is zeropotent;

of type (III) if G is commutative but neither cancellative nor zeropotent;

of type (IV) if there exist a rectangular band G(*) and an antiautomorphism
f of G(*) such that zy = f(z) * f(y) for all z,y € G;

~ of type (V) if G is of none of the above types.

Clearly, every simple paramedial groupoid is of just one of these five types. Fur-
ther, by 1.1 and 1.3, every simple paramedial groupoid of type (V) is infinite.

2. ANTIAUTOMORPHISMS OF RECTANGULAR BANDS

2.1. Let G be a rectangular band. Define two relations « and # on G by (a,b) € «
iff @ = ab and (c,d) € B iff d = ed. Then both « and § are congruences of G,
G/a is an RZ-semigroup, G/ is an LZ-semigroup and a N # = idg. Moreover,
(a,ba) € o and (b,ba) € B for all a,b € G. Now, it is clear that the mapping
0: G = GlaxG/B,o(z) = (z/a,z/B), is an isomorphism of G onto the cartesian
product G/a x G/p.

Let f be an antiautomorphisni of G. Then (a,b) € o iff (f(a), f(b)) € B, and hence
the mapping ¢: G/a = G/, o(z/a) = f(z)/B, is an antiisomorphism of G/a onto
G/B; in particular, card(G/a) = card(G/B). Similarly, ¢: G/8 — G/ao,¢(z/f) =
f(z)/a, is an antiisomorphism of G/ onto' G/a. Setting g(u,v) = (s(v), o(u)),
u € G/a, v € G/B, we get an antiautomorphism of G/a x G/ and ¢f = ge.

2.2. Let A and B be an RZ-semigroup and LZ-semigroup, resp., such that
card(A) = card(B) 2> 2. Put G = A x B and cousider bijections g: A — B and
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¢: B —» A. Now, define f(a,b) = (c(b), 0{a)), a € A, b € B. Then f is an anti-
automorphism of G (by 2.1, every antiautomorphism is of this type), ¢ = cp is a
permutation of A and 7 = g5 is a permutation of B.

Suppose that idg and G x G are the only congruences of G that are invariant
under f.

2.2.1 Lemma. Leta € A andn > 2 be such that the elements a,0(a),...,
o™ {a) are pair-wise different and 0™(a) = a. Then A = {a,0(a),..., 0™ 1(a)},
card(A) = n and o is an n-cycle,

Proof. Let C = {a,0(a),...,0" *a)} and D = p(C); we have C C A and
D C B. Moreover, put L = {(c%(a), 00%(a)); 0 < i,j < n} C G, K. = {(c, eoi(a));
0<i<n}CG,ceA-C,and Hy = {(6%(a),d);0<i<n} CG,de B-D.
Clearly, these subsets of G are pair-wise disjoint, card(L) 2 2 and r # idg, where
r =idg WL x L)UY(K: x K )U|J(Hg x Ha),c€ A—C,d € B-D. Since f(L) C L,
f(K.) C© Hy(ey and f(Hg) C K (q), the relation r remains invariant under f.

Let (u,v) € G. Then (u,v)K, = {(c,v)} and Hy(u,v) = {(u,d)}. If u € C, then
K. (u,v) C L and L(u,v) C L. Ifu ¢ C, then K.(u,v) C K, and L(u,v) C K.
If v € D, then (u,v)Hy C L and (u,v)L € L. If v ¢ D, then (u,v)Hy C H, and

(u,v)L C H,.
We have checked that r is a congruence of the rectangular band G. Now,r = GxG
and it follows that L = G and C = A, D = B. 0

2.2.2 Lemma. Leta,b€ A be such that a # b, 0(a) = a and o(b) = b. Then
A = {a,b}.

Proof. PutC ={ab}, D =o(C), L = {(a,e(a)), (a e(d)), (5 e(a)), (5, e(b))},
K. A{(c, o(a), (c,0(d))}, ¢ € C — A, Hy = {(a,d),(b,d)}, d € B~ D. Then these
sets are pair-wise disjoint and r = idg U(L x L) U J(K . x K.) U|J(Hs x Hy) is an
f-invariant congruence of G. Thusr =G x G, L =G and C = A. O

2.2.83 Lemma. Precisely one of the following two cases takes place:

(1) card(A) = card(B) =2, 0 =ids, 7 =idp,s=¢ ' and g =¢~'.
(2) card(A) = card(B) = n > 2 is finite and both o and T are n-cycles.

Proof. In view of 2.2.1 and 2.2.2, we can assume that card(A) is infinite and
that the elements a, 0(a), 0%(a), . . . are pair-wise different for some a € A. Proceeding
similarly as in the proof of 2.2.1, we can show that A = {a,0(a),0%(a),...}. Then
a ¢ o(A), a contradiction. O
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2.3. Letn 22, A=B ={1,2,...,n} and let G = A x B be the corresponding
rectangular band (see 2.2); we have (i, 7)(k,1) = (k, j). Further, choose the bijections
o and ¢ of A in such a way that ¢ = id4 and ¢(i) = (i + 1) (mod n) for every i € A.
Then ¢ = 7 = ¢ is an n-cycle. Finally, f(i,§) = ((j + 1) (mod n),%).

Now, let a,b,u,v € A, 1 € a < b € n, and let 7 denote the smallest congruence
of the rectangular band G such that r is invariant under f and r contains the pair
{{a,u), (b,v)). We have b = ¢°(a) for a unique s, 1 < s < n.

2.3.1 Lemma. ((c%(a),z),(c'(b),z)) € » and ((z,0%(a)), (z,0%(d))) € r for all
x,i € A.

Proof. First, (a,2) = (a,z)(a,u) and (b,z) = (a,z)(b,v)}, so that ((a,x),
(b,z)) € r. Further, (o(z), ) fa,z), (o(z ) b) = f(b,z), (0(a),0(z)) = flo(z),a),

(o(0),0(2)) = f(o(x),b), et
Forz € A, let H, = {(o () 1<i<n}and K, = {(z,0%(a)); 1 <i<n}. O

2.3.2 Lemma. If the numbers n and s are relatively prime, then r = G x G.

Proof. Denote by @& the addition modulo n on A, so that A(&®) becomes a
cyclic abelian group, where n plays the role of a neutral element.

Now, let z € A and let L, denote the block of r such that (a,z) € L,. Put
C ={i € A; (¢6'(a),z) € Ly} Clearly, n € C and s € C (since (b,z) € r by 2.3.1)
and, if ¢ € C, then i @ s € C (again by 2.3.1). Consequently, D C C, where D is
the subgroup generated by s in A. But s and n are relatively prime, and so D = A
and C = A. We have proved that H, C L;. Since f(H;) = Ky(g), the set I, () is
contained in the block of r determined by (o(z ), a).

Let 2,y € A. Then z = ¢(a) and y = o*(a) for some j,k € A and we have
(y,z) € Hy N K. In particular, H, N I, is non-empty, which means that H, U I{,
is contained in a block of r. Now, it is clear that 7 = G x G. O

2.3.3 Lemma. The following conditions are equivalent:
(i) m is a prime number.
(ii) idg and Gx @G are the only f-invariant congruences of the rectangular band G.

Proof. (i) implies (ii). Let ¢ # ide be an f-invariant congruence of G. There
are a,b,u,v € A such that ((a,u),(b,v)) € t and either @ # b or u # v; we can
assume a # b, the other case being dual. Now, ¢ = G x G by the preceding lemmas.

(ii) implies (i). Suppose, on the contrary, that n is not prime and let 2 { m < n
be such that m divides n. Define a relation ¢ on G by ((2, 4), (k,1)) € ¢ iff m divides
both i—Fk and j—{. Then ¢ is an f-invariant congruence of G and ((n, 1), (m,1)) € ¢,
((n,1),(m,1)) ¢ ¢t. Thusidg ¢ ¢t ¢ G x G. O
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3. SIMPLE PARAMEDIAL GROUPOIDS OF TYPE (IV)

For every prime number p > 2, define a groupoid R, = {(i,7); 1 < ¢, < p},
(@ 5)(k, 1) = ((I + 1) (mod p),i). We have (i,7)(k,!) = f(3,5) * f(k,I), where Rp(x)
is the rectangular band from 2.3 and f is the antiautomorphism defined also in 2.3.
Now, id and R§,2) are the only f-invariant congruences of R, (2.3.3) and it follows
easily that R, is a simple paramedial groupoid of type (IV) (if r is a congruence
of Ry, then r is invariant under o = f and, since R, is finite, r is also invariant
under f_i; thus r is a congruence of R,(*)). Notice that the groupoid R, possesses
no idempotent elements, R, is anticommutative (i.e., zy = yz for z,y € R, only if
z = y) and that R, is antimedial (i.e., zu - vy = 2zv - uy only if v = v). Finally,
observe that R, contains no proper subgroupoid.

Put R, = {(4,7); 1 < 4,5 < 2} and define a multiplication on R} by (i,5)(k,1) =
({,%). Then Rj becomes a (four-element) simple paramedial groupoid of type (IV),
R}, corresponds to 2.2.3(i) and RL,=G, (see 1.6).

3.1 Theorem. (i) R} and R,, p running through prime numbers, are pair-wise
non-isomorphic simple paramedial groupoids of type (IV).

(ii) Every simple paramedial groupoid of type (IV) is finite and isomorphic to one
of the groupoids from (i).

Proof. (ii) Let G be a simple paramedial groupoid of type (IV). There exist a
rectangular band G(*) and an antiautomorphism f of G() such that zy = f{z)* f(y)
for all z,y € G. If r is an f-invariant congruence of G(*), then r is also a congruence
of the paramedial groupoid G (and so either » = idg or r = G x G). Now, we can
use the auxiliary results from the preceding section. ]

4. SIMPLE PARAMEDIAL GROUPOIDS OF TYPE (III)

Forn 2 1, let Y,, = {ag,0a1,...,a,} and let a multiplication be defined on ¥,
by a;a; = ap for ¢ # j, apag = ap and a;a; = ax, k¥ = (i + 1) (mod n) for i # 0.
Then Y, is a simple paramedial groupoid of type (III). Further, Y is a two-element
semilattice and, for n > 2, Y,, contains just one idempotent element, namely ag; in
both cases, ap is an absorbing element of Y,. Notice also that Y,,, except for the
above mentioned idempotents, possesses no proper subgroupoids.

4.1 Theorem. (i) The groupoidsY,, n 2 1 are pair-wise non-isomorphic simple
paramedial groupoids of type (III).
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(ii) Every simple paramedial groupoid of type (II) is finite and isomorphic to one
of the groupoids from (i}.

Proof. Everycommutative paramedial groupoid is medial and our result follows
from the classification of simple commutative medial groupoids given in [3]. O

5. SIMPLE PARAMEDIAL GROUPOIDS OF TYPE (II)-—LINEAR REPRESENTATIONS

5.1 Proposition. Let G be a simple paramedial groupoid of type (II) (and
0 = aa, a € G). Then there exist a commutative semigroup S(+) and automorphisms
f, g of S(+) such that the following conditions are satisfied:

(i) GC S and ab= f(a) + g(b) for all a,b € G.

(ii) O is an absorbing element of S(+) and f(z) + g(x) = 0 for every x € S.

(iii) f? = g2

(iv) S(+) is either zeropotent or idempotent.

(v) The algebra S(+, f,g, f~*,97!) is simple and generated by G.

Proof. By [4], there exist a commutative semigroup S(+) and automorphisms
f, g of S(+) such that the conditions (i), (ii) and (iii) are satisfied; obviously, we
can assume that the algebra S = S(+, f, g, f~*,g!) is generated by G. Moreover
(considering the factor S /s, where s is a congruence of S maximal with respect
to s N (G x G) = idg), we can assume that r N (G x G) # idg for every non-
identical congruence r of S. Now, if r is such a congruence and ¢t = r N (G x G),
then ¢ is a congruence of G, t # idg, and hence t = G x G C r. Consequently,
GCA={zeS;(0z) €r}and A =25, since A4 is evidently a subalgebra of S.
Thus r = S x S and we have proved (v). Now, it remains to show (iv); to that
purpose, we can assume that S(4) is not zeropotent.

The endomorphism z — 2z of S is not constant, and so it is an injective endo-
morphism of S. Using an obvious and standard construction, we embed S into a
(simple) algebra S; = Sy (+, f1,91, fi 1, g7*) such that 2 — 2z is an automorphism
of Sy. Now, proceeding similarly as in [5], we can show that S;(+) is idempotent. O

5.2 Remark. Let G be a simple paramedial groupoid of type (II). Proceeding
similarly as in the proof of 5.1, we can show that there exist a commutative semigroup
S(+) and endomorphisms f, g of S(+) such that the conditions (i}, (ii), (iii) and
(iv) from 5.1 are satisfied and, moreover, the following is true:

(v') The algebra § = S(+, f, g) is simple and generated by G.
Now, f2(= ¢?) is an endomorphism of S, and hence either ker(f?) = G x G or
ker(f?) = idg. In the former case, we must have card(G) = 2, and so ker(f?) = idg,
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provided that card(G) > 3. However, then f and g are injective endomorphisms of
S(+).

6. SIMPLE PARAMEDIAL GROUPOIDS OF TYPE (I)—LINEAR REPRESENTATIONS

First, recall that a non-trivial cancellative groupoid G is called c-simple if idg
and G x G are the only cancellative congruences of G. Further, let A be the group
given by two generators «, 8 and one relation o? = 2, and let R = ZA be the
corresponding group-ring over the ring Z of integers.

6.1 Proposition. The following conditions are equivalent for a quasigroup Q:
(1) Q is a c-simple paramedial quasigroup.
(i) There exist a simple R-module structure Q(+,rz; r € R) defined on Q and
an element w € Q such that ab=aa + b+ w for all a,b € Q.

Proof. The result is an easy consequence of (1, 6.2]. O

6.2 Proposition. Let G be a c-simple paramedial cancellative groupoid. Then
the g-envelope of G (see [2,5.3]) is a c-simple paramedial quasigroup.

Proof. See[l1,4.11] and (2, 5.1,5.3]. a
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