SIMPLE PARAMEDIAL GROUPOIDS

Jung R. Cho, Pusan, Jaroslav Ježek and Tomás Kepka, Praha

(Received September 27, 1996)

The present note is a free continuation of [1] and [2] and its purpose is to initiate the study of simple paramedial groupoids-a small contribution to the task of describing simple algebras satisfying strong linear indentities.

A reader is referred to [1] for notation and various prerequisities. ${ }^{1}$

1. Basic Properties of simple paramedial groupoids

1.1 Theorem. Let G be a (non-trivial) simple paramedial groupoid. Then exactly one of the following three cases takes place:
(1) o_{G} is an injective transformation of G.
(2) G is a finite unipotent medial quasigroup.
(3) G is zeropotent.

Proof. By $[1,2.1$ (iii) $], r=\operatorname{ker}\left(o_{G}\right)$ is a congruence of G, and hence either $r=\mathrm{id}_{G}$ or $r=G \times G$.

If $r=\mathrm{id}_{G}$, then o_{G} is injective, and hence we will assume that $r=G \times G$. Then G is unipotent, i.e., $x x=e=y y$ for all $x, y \in G$. By [1, 2.9(i)], $s=\operatorname{ker}\left(L_{e} R_{e}\right)$ is a congruence of G. Again, we have either $s=\mathrm{id}_{G}$ or $s=G \times G$.

First, let $s=\mathrm{id}_{G}$. Then $L_{e} R_{e}=R_{e} L_{e}$ is an injective endomorphism of G and . consequently both L_{e} and R_{e} are injective transformations of G. By [1, 2.9(ii)], G is a cancellative medial groupoid. However, it is proved in [3] that every simple cancellative medial groupoid is a finite quasigroup.

Now, let $s=G \times G$. Then $e \cdot x e=e \cdot y e$ for all $x, y \in G$ and it follows that $e \cdot x e=e=e x \cdot e$. Further, by $[1,2.6(\mathrm{i})], t=\operatorname{ker}\left(L_{e}^{2}\right)$ is a congruence of G. If

[^0]$t=\operatorname{id}_{G}$, then both L_{e} and R_{e} are injective and G is cancellative ([1, 2.6(ii), 2.9(ii)]). But $e \cdot x e=e \cdot y e$ implies $x=y$ for all $x, y \in G$, which is a contradiction. Thus $t=G \times G$ and we have $e \cdot e x=e=x e \cdot e$ for every $x \in G$.

Put $I=\{a \in G ; a e=e=e a\}$. Clearly, $e \in I$ and if $a \in I$ and $x \in G$, then $e \cdot a x=x e \cdot a e=x e \cdot e=e, a x \cdot e=e x \cdot e a=e x \cdot e=e, e \cdot x a=a e \cdot x e=e \cdot x e=e$ and $x a \cdot e=e a \cdot e x=e \cdot e x=e$, so that $a x, x a \in I$. We have proved that I is an ideal of G. But then $w=(I \times I) \cup \operatorname{id}_{G}$ is a congruence of G and if $w=G \times G$, then $I=G$ and G is zeropotent. If $w=\mathrm{id}_{G}$, then $I=\{e\}, e$ is an absorbing element of G and G is again zeropotent (in fact, $I=\{e\}$ is not possible).
1.2 Lemma. Let G be a non-trivial finite idempotent medial groupoid and let f be an antiautomorphism of G such that id_{G} and $G \times G$ are the only congruences of G which are invariant under f. Then exactly one of the following three cases takes place:
(1) G is a quasigroup.
(2) G is a semilattice.
(3) G is a rectangular band.

Proof. First, let r denote the intersection of all cancellative congruences of G. Then r is the smallest cancellative congruence of G and, if we define a relation r_{1} on G by $(a, b) \in r_{1}$ iff $(f(a), f(b)) \in r_{1}$, we get a cancellative congruence r_{1}, so that $r \subseteq r_{1}$. This shows that r is invariant under f.

If $r=\mathrm{id}_{G}$, then G is cancellative and, since G is finite, it is a quasigroup. Now, we will assume that $r=G \times G$, i.e., no proper homomorphic image of G is cancellative.

Let s be the smallest congruence of G such that the corresponding factor is a semilattice. Again, define s_{1} by $(a, b) \in s_{1}$ iff $(f(a), f(b)) \in s$. It is easy to check that s_{1} is a congruence of G and $(x, x x) \in s_{1},(x y, y x) \in s_{1}$ and $(x \cdot y z, x y \cdot z) \in s_{1}$ for all $x, y, z \in G$. Thus G / s_{1} is a semilattice, $s \subseteq s_{1}, s$ is invariant under f and we can assume that $s=G \times G$.

Now, since G is non-trivial and finite, at least one proper non-trivial factorgroupoid H of G is simple. According to our assumptions, H is neither cancellative nor a semilattice. Using the description of simple idempotent medial groupoids as given in [3] we conclude that H is either an $L Z$-semigroup or an $R Z$-semigroup. In both cases, $t \neq G \times G$, where t is the smallest congruence such that the corresponding factor is a rectangular band. As usual, t is invariant under f, and therefore $t=\mathrm{id}_{G}$. In other words, G is a rectangular band.
1.3 Proposition. Let G be a (non-trivial) finite simple paramedial groupoid such that o_{G} is injective. Then exactly one of the following three cases takes place:
(1) G is a quasigroup.
(2) G is commutative (and hence medial) and not cancellative.
(3) There exist a rectangular band $G(*)$ and an antiautomorphism f of $G(*)$ such that $x y=f(x) * f(y)(=f(y * x))$ for all $x, y \in G$.

Proof. Clearly, o_{G} is a permutation and, by $[1,2.4]$, there exist an idempotent medial groupoid $G(*)$ and an antiautomorphism f of $G(*)$ such that $x y=f(x) * f(y)$ for all $x, y \in G$. Since G is simple, id_{G} and $G \times G$ are the only congruences of $G(*)$ that are invariant under f. Now, we can apply 1.2 .

If $G(*)$ is a quasigroup, then G is also a quasigroup.
If $G(*)$ is a semilattice, then G is commutative.
If $G(*)$ is a rectangular band, then one may check easily that G is neither cancellative nor commutative.
1.4 Lemma. Let G be a simple paramedial groupoid containing at most three elements. Then G is medial.

Proof. Easy to check.
1.5 Example. Consider the following four-element groupoid G_{1} :

$$
\begin{array}{l|llll}
& 0 & 1 & 2 & 3 \\
\hline 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 0 & 3 \\
3 & 0 & 2 & 0 & 0
\end{array}
$$

Then G_{1} is a simple zeropotent non-medial paramedial groupoid.
1.6 Example. Consider the following four-element groupoid G_{2} :

| | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 2 | 0 | 2 |
| 1 | 0 | 2 | 0 | 2 |
| 2 | 1 | 3 | 1 | 3 |
| 3 | 1 | 3 | 1 | 3 |

Then G_{2} is a simple non-medial paramedial groupoid, G_{2} is not cancellative, $o_{G_{2}}$ is a permutation and $\operatorname{Id}\left(G_{2}\right)=\{0,3\}$ is not a subgroupoid of G_{2}.
1.7 Example. Consider the following four-element groupoid G_{3} :

| | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 3 | 2 | 1 |
| 1 | 1 | 2 | 3 | 0 |
| 2 | 3 | 0 | 1 | 2 |
| 3 | 2 | 1 | 0 | 3 |

Then G_{3} is a simple non-medial paramedial quasigroup and $\operatorname{Id}\left(G_{3}\right)=\{0,3\}$ is not a subgroupoid of G_{3}.
1.8 Example. Consider the following four-element groupoid G_{4} :

| | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 2 | 0 | 2 | 0 |
| 1 | 2 | 0 | 2 | 0 |
| 2 | 3 | 1 | 3 | 1 |
| 3 | 3 | 1 | 3 | 1 |

Then G_{4} is a simple medial and paramedial groupoid (notice that G_{2} and G_{4} are not isomorphic).

Let G be a (non-trivial) simple paramedial groupoid. We will say that G is

- of type (I) if G is cancellative;
- of type (II) if G is zeropotent;
- of type (III) if G is commutative but neither cancellative nor zeropotent;
- of type (IV) if there exist a rectangular band $G(*)$ and an antiautomorphism f of $G(*)$ such that $x y=f(x) * f(y)$ for all $x, y \in G$;
- of type (V) if G is of none of the above types.

Clearly, every simple paramedial groupoid is of just one of these five types. Further, by 1.1 and 1.3 , every simple paramedial groupoid of type (V) is infinite.

2. Antiautomorphisms of rectangular bands

2.1. Let G be a rectangular band. Define two relations α and β on G by $(a, b) \in \alpha$ iff $a=a b$ and $(c, d) \in \beta$ iff $d=c d$. Then both α and β are congruences of G, G / α is an $R Z$-semigroup, G / β is an $L Z$-semigroup and $\alpha \cap \beta=\mathrm{id}_{G}$. Moreover, $(a, b a) \in \alpha$ and $(b, b a) \in \beta$ for all $a, b \in G$. Now, it is clear that the mapping $\varphi: G \rightarrow G / \alpha \times G / \beta, \varphi(x)=(x / \alpha, x / \beta)$, is an isomorphism of G onto the cartesian product $G / \alpha \times G / \beta$.

Let f be an antiautomorphism of G. Then $(a, b) \in \alpha$ iff $(f(a), f(b)) \in \beta$, and hence the mapping $\varrho: G / \alpha \rightarrow G / \beta, \varrho(x / \alpha)=f(x) / \beta$, is an antiisomorphism of G / α onto G / β; in particular, $\operatorname{card}(G / \alpha)=\operatorname{card}(G / \beta)$. Similarly, $\varsigma: G / \beta \rightarrow G / \alpha, \varsigma(x / \beta)=$ $f(x) / \alpha$, is an antiisomorphism of G / β onto G / α. Setting $g(u, v)=(\varsigma(v), \varrho(u))$, $u \in G / \alpha, v \in G / \beta$, we get an antiautomorphism of $G / \alpha \times G / \beta$ and $\varphi f=g \varphi$.
2.2. Let A and B be an $R Z$-semigroup and $L Z$-semigroup, resp., such that $\operatorname{card}(A)=\operatorname{card}(B) \geqslant 2$. Put $G=A \times B$ and consider bijections $\varrho: A \rightarrow B$ and
$\varsigma: B \rightarrow A$. Now, define $f(a, b)=(\varsigma(b), \varrho(a)), a \in A, b \in B$. Then f is an antiautomorphism of G (by 2.1, every antiautomorphism is of this type), $\sigma=\varsigma \varrho$ is a permutation of A and $\tau=\varrho \varsigma$ is a permutation of B.

Suppose that id_{G} and $G \times G$ are the only congruences of G that are invariant under f.
2.2.1 Lemma. Let $a \in A$ and $n \geqslant 2$ be such that the elements $a, \sigma(a), \ldots$, $\sigma^{n-1}(a)$ are pair-wise different and $\sigma^{n}(a)=a$. Then $A=\left\{a, \sigma(a), \ldots, \sigma^{n-1}(a)\right\}$, $\operatorname{card}(A)=n$ and σ is an n-cycle.

Proof. Let $C=\left\{a, \sigma(a), \ldots, \sigma^{n-1}(a)\right\}$ and $D=\varrho(C)$; we have $C \subseteq A$ and $D \subseteq B$. Moreover, put $L=\left\{\left(\sigma^{i}(a), \varrho \sigma^{j}(a)\right) ; 0 \leqslant i, j<n\right\} \subseteq G, K_{c}=\left\{\left(c, \varrho \sigma^{i}(a)\right) ;\right.$ $0 \leqslant i<n\} \subseteq G, c \in A-C$, and $H_{d}=\left\{\left(\sigma^{i}(a), d\right) ; 0 \leqslant i<n\right\} \subseteq G, d \in B-D$. Clearly, these subsets of G are pair-wise disjoint, $\operatorname{card}(L) \geqslant 2$ and $r \neq \mathrm{id}_{G}$, where $r=\operatorname{id}_{G} \cup(L \times L) \cup \bigcup\left(K_{c} \times K_{c}\right) \cup \bigcup\left(H_{d} \times H_{d}\right), c \in A-C, d \in B-D$. Since $f(L) \subseteq L$, $f\left(K_{c}\right) \subseteq H_{\varrho(c)}$ and $f\left(H_{d}\right) \subseteq K_{\varsigma(d)}$, the relation r remains invariant under f.

Let $(u, v) \in G$. Then $(u, v) K_{c}=\{(c, v)\}$ and $H_{d}(u, v)=\{(u, d)\}$. If $u \in C$, then $K_{c}(u, v) \subseteq L$ and $L(u, v) \subseteq L$. If $u \notin C$, then $K_{c}(u, v) \subseteq K_{u}$ and $L(u, v) \subseteq K_{u}$. If $v \in D$, then $(u, v) H_{d} \subseteq L$ and $(u, v) L \subseteq L$. If $v \notin D$, then $(u, v) H_{d} \subseteq H_{v}$ and $(u, v) L \subseteq H_{v}$.

We have checked that r is a congruence of the rectangular band G. Now, $r=G \times G$ and it follows that $L=G$ and $C=A, D=B$.
2.2.2 Lemma. Let $a, b \in A$ be such that $a \neq b, \sigma(a)=a$ and $\sigma(b)=b$. Then $A=\{a, b\}$.

Proof. Put $C=\{a, b\}, D=\varrho(C), L=\{(a, \varrho(a)),(a, \varrho(b)),(b, \varrho(a)),(b, \varrho(b))\}$, $K_{c}\left\{(c, \varrho(a),(c, \varrho(b))\}, c \in C-A, H_{d}=\{(a, d),(b, d)\}, d \in B-D\right.$. Then these sets are pair-wise disjoint and $r=\mathrm{id}_{G} \cup(L \times L) \cup \bigcup\left(K_{c} \times K_{c}\right) \cup \bigcup\left(H_{d} \times H_{d}\right)$ is an f-invariant congruence of G. Thus $r=G \times G, L=G$ and $C=A$.
2.2.3 Lemma. Precisely one of the following two cases takes place:
(1) $\operatorname{card}(A)=\operatorname{card}(B)=2, \sigma=\operatorname{id}_{A}, \tau=\operatorname{id}_{B}, \varsigma=\varrho^{-1}$ and $\varrho=\varsigma^{-1}$.
(2) $\operatorname{card}(A)=\operatorname{card}(B)=n \geqslant 2$ is finite and both σ and τ are n-cycles.

Proof. In view of 2.2 .1 and 2.2.2, we can assume that $\operatorname{card}(A)$ is infinite and that the elements $a, \sigma(a), \sigma^{2}(a), \ldots$ are pair-wise different for some $a \in A$. Proceeding similarly as in the proof of 2.2 .1 , we can show that $A=\left\{a, \sigma(a), \sigma^{2}(a), \ldots\right\}$. Then $a \notin \sigma(A)$, a contradiction.
2.3. Let $n \geqslant 2, A=B=\{1,2, \ldots, n\}$ and let $G=A \times B$ be the corresponding rectangular band (see 2.2); we have $(i, j)(k, l)=(k, j)$. Further, choose the bijections ϱ and ς of A in such a way that $\varrho=\operatorname{id}_{A}$ and $\varsigma(i)=(i+1)(\bmod n)$ for every $i \in A$. Then $\sigma=\tau=\varsigma$ is an n-cycle. Finally, $f(i, j)=((j+1)(\bmod n), i)$.

Now, let $a, b, u, v \in A, 1 \leqslant a<b \leqslant n$, and let r denote the smallest congruence of the rectangular band G such that r is invariant under f and r contains the pair $((a, u),(b, v))$. We have $b=\sigma^{s}(a)$ for a unique $s, 1 \leqslant s<n$.
2.3.1 Lemma. $\quad\left(\left(\sigma^{i}(a), x\right),\left(\sigma^{i}(b), x\right)\right) \in r$ and $\left(\left(x, \sigma^{i}(a)\right),\left(x, \sigma^{i}(b)\right)\right) \in r$ for all $x, i \in A$.

Proof. First, $(a, x)=(a, x)(a, u)$ and $(b, x)=(a, x)(b, v)$, so that $((a, x)$, $(b, x)) \in r$. Further, $(\sigma(x), a)=f(a, x),(\sigma(x), b)=f(b, x),(\sigma(a), \sigma(x))=f(\sigma(x), a)$, $(\sigma(b), \sigma(x))=f(\sigma(x), b)$, etc.

For $x \in A$, let $H_{x}=\left\{\left(\sigma^{i}(a), x\right) ; 1 \leqslant i \leqslant n\right\}$ and $K_{x}=\left\{\left(x, \sigma^{i}(a)\right) ; 1 \leqslant i \leqslant n\right\}$.
2.3.2 Lemma. If the numbers n and s are relatively prime, then $r=G \times G$.

Proof. Denote by \oplus the addition modulo n on A, so that $A(\oplus)$ becomes a cyclic abelian group, where n plays the role of a neutral element.

Now, let $x \in A$ and let L_{x} denote the block of r such that $(a, x) \in L_{x}$. Put $C=\left\{i \in A ;\left(\sigma^{i}(a), x\right) \in L_{x}\right\}$. Clearly, $n \in C$ and $s \in C$ (since $(b, x) \in r$ by 2.3.1) and, if $i \in C$, then $i \oplus s \in C$ (again by 2.3.1). Consequently, $D \subseteq C$, where D is the subgroup generated by s in A. But s and n are relatively prime, and so $D=A$ and $C=A$. We have proved that $H_{x} \subseteq L_{x}$. Since $f\left(H_{x}\right)=K_{\sigma(x)}$, the set $K_{\sigma(x)}$ is contained in the block of r determined by $(\sigma(x), a)$.

Let $x, y \in A$. Then $x=\sigma^{j}(a)$ and $y=\sigma^{k}(a)$ for some $j, k \in A$ and we have $(y, x) \in H_{x} \cap K_{y}$. In particular, $H_{x} \cap K_{y}$ is non-empty, which means that $H_{x} \cup K_{y}$ is contained in a block of r. Now, it is clear that $r=G \times G$.
2.3.3 Lemma. The following conditions are equivalent:
(i) n is a prime number.
(ii) id_{G} and $G \times G$ are the only f-invariant congruences of the rectangular band G.

Proof. (i) implies (ii). Let $t \neq \mathrm{id}_{G}$ be an f-invariant congruence of G. There are $a, b, u, v \in A$ such that $((a, u),(b, v)) \in t$ and either $a \neq b$ or $u \neq v$; we can assume $a \neq b$, the other case being dual. Now, $t=G \times G$ by the preceding lemmas.
(ii) implies (i). Suppose, on the contrary, that n is not prime and let $2 \leqslant m<n$ be such that m divides n. Define a relation t on G by $((i, j),(k, l)) \in t$ iff m divides both $i-k$ and $j-l$. Then t is an f-invariant congruence of G and $((n, 1),(m, 1)) \in t$, $((n, 1),(m, 1)) \notin t$. Thus $\mathrm{id}_{G} \notin t \notin G \times G$.

3. Simple paramedial groupoids of type (IV)

For every prime number $p \geqslant 2$, define a groupoid $R_{p}=\{(i, j) ; 1 \leqslant i, j \leqslant p\}$, $(i, j)(k, l)=((l+1)(\bmod p), i)$. We have $(i, j)(k, l)=f(i, j) * f(k, l)$, where $R_{p}(*)$ is the rectangular band from 2.3 and f is the antiautomorphism defined also in 2.3. Now, id and $R_{p}^{(2)}$ are the only f-invariant congruences of $R_{p} *$ (2.3.3) and it follows easily that R_{p} is a simple paramedial groupoid of type (IV) (if r is a congruence of R_{p}, then r is invariant under $o=f$ and, since R_{p} is finite, r is also invariant under f_{-1}; thus r is a congruence of $\left.R_{p}(*)\right)$. Notice that the groupoid R_{p} possesses no idempotent elements, R_{p} is anticommutative (i.e., $x y=y x$ for $x, y \in R_{p}$ only if $x=y$) and that R_{p} is antimedial (i.e., $x u \cdot v y=x v \cdot u y$ only if $u=v$). Finally, observe that R_{p} contains no proper subgroupoid.
Put $R_{2}^{\prime}=\{(i, j) ; 1 \leqslant i, j \leqslant 2\}$ and define a multiplication on R_{2}^{\prime} by $(i, j)(k, l)=$ (l, i). Then R_{2}^{\prime} becomes a (four-element) simple paramedial groupoid of type (IV), R_{2}^{\prime} corresponds to 2.2.3(i) and $R_{2}^{\prime} \cong G_{2}$ (see 1.6).
3.1 Theorem. (i) R_{2}^{\prime} and R_{p}, p running through prime numbers, are pair-wise non-isomorphic simple paramedial groupoids of type (IV).
(ii) Every simple paramedial groupoid of type (IV) is finite and isomorphic to one of the groupoids from (i).

Proof. (ii) Let G be a simple paramedial groupoid of type (IV). There exist a rectangular band $G(*)$ and an antiautomorphism f of $G(*)$ such that $x y=f(x) * f(y)$ for all $x, y \in G$. If r is an f-invariant congruence of $G(*)$, then r is also a congruence of the paramedial groupoid G (and so either $r=\operatorname{id}_{G}$ or $r=G \times G$). Now, we can use the auxiliary results from the preceding section.

4. Simple paramedial groupoids of type (III)

For $n \geqslant 1$, let $Y_{n}=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ and let a multiplication be defined on Y_{n} by $a_{i} a_{j}=a_{0}$ for $i \neq j, a_{0} a_{0}=a_{0}$ and $a_{i} a_{i}=a_{k}, k=(i+1)(\bmod n)$ for $i \neq 0$. Then Y_{n} is a simple paramedial groupoid of type (III). Further, Y_{2} is a two-element semilattice and, for $n \geqslant 2, Y_{n}$ contains just one idempotent element, namely a_{0}; in both cases, a_{0} is an absorbing element of Y_{n}. Notice also that Y_{n}, except for the above mentioned idempotents, possesses no proper subgroupoids.
4.1 Theorem. (i) The groupoids $Y_{n}, n \geqslant 1$ are pair-wise non-isomorphic simple paramedial groupoids of type (III).
(ii) Every simple paramedial groupoid of type (III) is finite and isomorphic to one of the groupoids from (i).

Proof. Every commutative paramedial groupoid is medial and our result follows from the classification of simple commutative medial groupoids given in [3].

5. Simple paramedial groupoids of type (II)-Linear representations

5.1 Proposition. Let G be a simple paramedial groupoid of type (II) (and $0=a a, a \in G)$. Then there exist a commutative semigroup $S(+)$ and automorphisms f, g of $S(+)$ such that the following conditions are satisfied:
(i) $G \subseteq S$ and $a b=f(a)+g(b)$ for all $a, b \in G$.
(ii) 0 is an absorbing element of $S(+)$ and $f(x)+g(x)=0$ for every $x \in S$.
(iii) $f^{2}=g^{2}$.
(iv) $S(+)$ is either zeropotent or idempotent.
(v) The algebra $S\left(+, f, g, f^{-1}, g^{-1}\right)$ is simple and generated by G.

Proof. By [4], there exist a commutative semigroup $S(+)$ and automorphisms f, g of $S(+)$ such that the conditions (i), (ii) and (iii) are satisfied; obviously, we can assume that the algebra $\widetilde{S}=S\left(+, f, g, f^{-1}, g^{-1}\right)$ is generated by G. Moreover (considering the factor \tilde{S} / s, where s is a congruence of \tilde{S} maximal with respect to $\left.s \cap(G \times G)=\mathrm{id}_{G}\right)$, we can assume that $r \cap(G \times G) \neq \mathrm{id}_{G}$ for every nonidentical congruence r of \widetilde{S}. Now, if r is such a congruence and $t=r \cap(G \times G)$, then t is a congruence of $G, t \neq \mathrm{id}_{G}$, and hence $t=G \times G \subseteq r$. Consequently, $G \subseteq A=\{x \in S ;(0, x) \in r\}$ and $A=S$, since A is evidently a subalgebra of \widetilde{S}. Thus $r=S \times S$ and we have proved (v). Now, it remains to show (iv); to that purpose, we can assume that $S(+)$ is not zeropotent.
The endomorphism $x \rightarrow 2 x$ of \widetilde{S} is not constant, and so it is an injective endomorphism of \widetilde{S}. Using an obvious and standard construction, we embed \widetilde{S} into a (simple) algebra $\widetilde{S}_{1}=S_{1}\left(+, f_{1}, g_{1}, f_{1}^{-1}, g_{1}^{-1}\right)$ such that $x \rightarrow 2 x$ is an automorphism of \widetilde{S}_{1}. Now, proceeding similarly as in [5], we can show that $S_{1}(+)$ is idempotent.
5.2 Remark. Let G be a simple paramedial groupoid of type (II). Proceeding similarly as in the proof of 5.1 , we can show that there exist a commutative semigroup $S(+)$ and endomorphisms f, g of $S(+)$ such that the conditions (i), (ii), (iii) and (iv) from 5.1 are satisfied and, moreover, the following is true:
(v^{\prime}) The algebra $\widehat{S}=S(+, f, g)$ is simple and generated by G.
Now, $f^{2}\left(=g^{2}\right)$ is an endomorphism of \widehat{S}, and hence either $\operatorname{ker}\left(f^{2}\right)=G \times G$ or $\operatorname{ker}\left(f^{2}\right)=\mathrm{id}_{G}$. In the former case, we must have $\operatorname{card}(G)=2$, and so $\operatorname{ker}\left(f^{2}\right)=\operatorname{id}_{G}$,
provided that $\operatorname{card}(G) \geqslant 3$. However, then f and g are injective endomorphisms of $S(+)$.

6. Simple paramedial groupoids of type (I)—Linear representations

First, recall that a non-trivial cancellative groupoid G is called c-simple if id_{G} and $G \times G$ are the only cancellative congruences of G. Further, let A be the group given by two generators α, β and one relation $\alpha^{2}=\beta^{2}$, and let $R=Z A$ be the corresponding group-ring over the ring Z of integers.
6.1 Proposition. The following conditions are equivalent for a quasigroup Q :
(i) Q is a c-simple paramedial quasigroup.
(ii) There exist a simple R-module structure $Q(+, r x ; r \in R)$ defined on Q and an element $w \in Q$ such that $a b=\alpha a+\beta b+w$ for all $a, b \in Q$.

Proof. The result is an easy consequence of [1, 6.2].
6.2 Proposition. Let G be a c-simple paramedial cancellative groupoid. Then the q-envelope of G (see $[2,5.3]$) is a c-simple paramedial quasigroup.

Proof. See $[1,4.11]$ and $[2,5.1,5.3]$.

References

[1] J. R. Cho, J. Ježek and T. Kepka: Paramedial groupoids. (Preprint).
[2] J. Ježek and T. Kepka: Equational theory of paramedial groupoids. (Preprint).
[3] J. Ježek and T. Kepka: Medial groupoids. Rozpravy C'SAV 93/2 (1983).
[4] J. Ježek and T. Kepka: Linear equational theories and semimodule representations. (Preprint).
[5] J. Ježek and T. Kepka: Simple semimodules over commutative semirings. Acta Sci. Math. Szeged 46 (1983), 17-27.

Authors' addresses: Jung R. Cho, Pusan National University, Kumjung, Pusan 609-735, Republic of Korea; Jaroslav Ježek and Tomáš Kepka, Charles University, Sokolovská 83, 18600 Praha 8, C'zech Republic.

[^0]: ${ }^{1}$ While working on this paper, the first author was supported by the Basic Science Research Institute Program, Ministry of Education, Korea 1966, No. BSRI-96-1433 and the second one by the Grant Agency of the Czech Republic, Grant \# 201/96/0312

