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The present note is a free continuation of [1] and [2] and its purpose is to initiate the
study of simple paramedial groupoids—a small contribution to the task of describing
simple algebras satisfying strong linear indentities.

A reader is referred to [1] for notation and various prerequisities.1

1. BASIC PROPERTIES OF SIMPLE PARAMEDIAL GROUPOIDS

1.1 Theorem. Let G be a (non-trivial) simple paramedial groupoid. Then
exactly one of the following three cases takes place:

(1) Og is an injective transformation of G.
(2) G is a finite unipotent medial quasigroup.
(3) G is zeropotent.

P r o o f . By [1, 2.1(iii)], r = ker(oc) is a congruence of G, and hence either
r = idG or r — G x G.

If r — idG, then OG is injective, and hence we will assume that r — G x G. Then
G is unipotent, i.e., xx — e — yy for all x,y € G. By [1, 2.9(i)], s = ker:(LeRe) is a
congruence of G. Again, we have either s = idG or s = G x G.

First, let s = idG. Then LeRe = ReLe is an injective endomorphism of G and •
consequently both Le and Re are injective transformations of G. By [1, 2.9(ii)], G
is a cancellative medial groupoid. However, it is proved in [3] that every simple
cancellative medial groupoid is a finite quasigroup.

Now, let s = G x G. Then e • xe = e • ye for all x,y € G and it follows that
e • xe — e = ex • e. Further, by [1, 2.6(i)], t = ker(L2) is a congruence of G. If

1 While working on this paper, the first author was supported by the Basic Science Research
Institute Program, Ministry of Education, Korea 1966, No. BSRI-96-1433 and the second
one by the Grant Agency of the Czech Republic, Grant # 201/96/0312
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t = idG, then both Le and Re are injective and G is cancellative ([1, 2.6(ii), 2.9(ii)]).
But e • xe = e • ye implies x = y for all x,y € G, which is a contradiction. Thus
t = G x G and we have e • ex = e = xe • e for every x E G.

Put I = {a £ G; ae = e = ea}. Clearly, e £ I and if a 6 I and x 6 G, then
e • ax = xe • ae = xe • e = e, ax • e = ex • ea — ex • e = e, e • xa = ae • xe = e • xe = e
and xa • e = ea • ex = e • ex = e, so that ax, xa e I. We have proved that I is an
ideal of G. But then w = (I x I) U idG is a congruence of G and if w = G x G, then
I = G and G is zeropotent. If w = idG, then I = { e } , e is an absorbing element of
G and G is again zeropotent (in fact, I = {e} is not possible). ED

1.2 Lemma. Let G be a non-trivial finite idempotent medial groupoid and let f
be an antiautomorphism of G such that idG and G x G are the only congruences of
G which are invariant under f. Then exactly one of the following three cases takes
place:

(1) G is a quasigroup.
(2) G is a semilattice.
(3) G is a rectangular band.

P r o o f . First, let r denote the intersection of all cancellative congruences of G.
Then r is the smallest cancellative congruence of G and, if we define a relation r1
on G by (a,b) € r1 iff (f(a),f(b)) £ r1, we get a cancellative congruence r1, so that
r C r1. This shows that r is invariant under f.

If r = idG, then G is cancellative and, since G is finite, it is a quasigroup. Now, we
will assume that r = G x G, i.e., no proper homomorphic image of G is cancellative.

Let s be the smallest congruence of G such that the corresponding factor is a
semilattice. Again, define s1 by (a,b) e s1 iff (f(a),f(b)) S s. It is easy to check
that s1 is a congruence of G and (x,xx) 6 S1, ( x y , y x ) £ s1 and (a: • yz,xy • z) € s1
for all x,y, z e G. Thus G/SI is a semilattice, s C s1, s is invariant under f and we
can assume that s = G x G.

Now, since G is non-trivial and finite, at least one proper non-trivial factorgroupoid
H of G is simple. According to our assumptions, H is neither cancellative nor a
semilattice. Using the description of simple idempotent medial groupoids as given
in [3] we conclude that H is either an LZ-semigroup or an .RZ-semigroup. In both
cases, t =G x G, where t is the smallest congruence such that the corresponding
factor is a rectangular band. As usual, t is invariant under f, and therefore t = idG.
In other words, G is a rectangular band. D

1.3 Proposition. Let G be a (non-trivial) finite simple paramedial groupoid
such that OG is injective. Then exactly one of the following three cases takes place:

(1) G is a quasigroup.
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(2) G is commutative (and hence medial) and not cancellative.
(3) There exist a rectangular band G(*) and an antiautomorphism f of G(*) such

that xy = f(x) * f(y) (= f(y * x)) for all x, y € G.

P r o o f . Clearly, OG is a permutation and, by [1, 2.4], there exist an idempotent
medial groupoid G(*) and an antiautomorphism f of G(*) such that xy = f ( x } * f ( y )
for all x,y € G. Since G is simple, idG and G x G are the only congruences of G(*)
that are invariant under f. Now, we can apply 1.2.

If G(*) is a quasigroup, then G is also a quasigroup.
If G(*) is a semilattice, then G is commutative.
If G(*) is a rectangular band, then one may check easily that G is neither can-

cellative nor commutative. D

1.4 Lemma. Let G be a simple paramedial groupoid containing at most three
elements. Then G is medial.

P r o o f . Easy to check. D

1.5 Example. Consider the following four-element groupoid G1:

Then G1 is a simple zeropotent non-medial paramedial groupoid.

1.6 Example. Consider the following four-element groupoid G2:

Then G2 is a simple non-medial paramedial groupoid, G2 is not cancellative, oG2

is a permutation and Id(G2) = {0,3} is not a subgroupoid of G2.

1.7 Example. Consider the following four-element groupoid G3:

393



Then G3 is a simple non-medial paramedial quasigroup and Id(G3) = {0,3} is not
a subgroupoid of G3.

1.8 Example, Consider the following four-element groupoid G4:

Then G4 is a simple medial and paramedial groupoid (notice that G2 and G4 are
not isomorphic).

Let G be a (non-trivial) simple paramedial groupoid. We will say that G is

- of type (I) if G is cancellative;
- of type (II) if G is zeropotent;
- of type (III) if G is commutative but neither cancellative nor zeropotent;
- of type (IV) if there exist a rectangular band G(*) and an antiautomorphism

f of G(*) such that xy — f(x) * f(y) for all x, y £ G;
- of type (V) if G is of none of the above types.

Clearly, every simple paramedial groupoid is of just one of these five types. Fur-
ther, by 1.1 and 1.3, every simple paramedial groupoid of type (V) is infinite.

2. ANTIAUTOMORPHISMS OF RECTANGULAR BANDS

2.1. Let G be a rectangular band. Define two relations a and /3 on G by (a, b) £ a
iff a = ab and (c, d) G /? iff d = cd. Then both a and 0 are congruences of G,
G/a is an .RZ-semigroup, G//3 is an LZ-semigroup and a n 0 = idG. Moreover,
(a, ba) £ a and (b, ba) e /? for all a, b € G. Now, it is clear that the mapping
tp: G -4 G/a x G//3,tp(x) = ( x / a , x / 3 ) , is an isomorphism of G onto the cartesian
product G/a x G//3.

Let f be an antiautomorphism of G. Then (a, b) £ a iff (f(a), f(b)) £ f3, and hence
the mapping Q; G/a ->• G//3,g(x/a) = f(x)//3, is an antiisomorphism of G/a onto
G//3; in particular, card(G/a) = card(G//?). Similarly, <r: G//3 -> G/a,q(x/(3) -
f(a;)/a, is an antiisomorphism of G//3 onto'G/a. Setting g(u,u) = (<;(u),^('u)),
u £ G/a, v £ G//3, we get an antiautomorphism of G/a x G//3 and y>f = Q(p.

2.2. Let A and 5 be an RZ-semigroup and LZ-semigroup, resp., such that
card(A) = card(B) > 2. Put G — A x B and consider bijections Q: A -> B and
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?: B ->• A. Now, define f ( a , b ) = (<;(b),e(a)), a € A, b e B. Then f is an anti-
automorphism of G (by 2.1, every antiautomorphism is of this type), a = <;Q is a
permutation of A and r = £>? is a permutation of B.

Suppose that idG and G x G are the only congruences of G that are invariant
under f.

2.2.1 Lemma. Let a € A and n > 2 be such that the elements a,cr(a),...,
(Tn-1(a) are pair-wise different and an(o) = a. Then A = {a,<7(a), . . . )<rn-1(a)},
card(,4) = n and a is an n-cycle.

P r o o f . Let C = {o,a(o),... ,<rn-l(o)} and D = e(C); we have CCA and
DCS. Moreover, put L = {(^(a^cr^a)); 0 < i,j < n} C G,Kc = {(c.po^a));
0 < i < n} C G, c e A - C, and #d = {(<7'(a),d); 0 ^ i < n} C G, d 6 B - D.
Clearly, these subsets of G are pair-wise disjoint, card(L) ^ 2 and r ^ idG, where
r = idGU(LxL)u\J(KcxKc)\J\J(HdxHd), c€A-C,d<=B-D. Since f(L) C L,
f(•Kc) ^ He(c) and f(Hd) C K(d), the relation r remains invariant under f.

Let (u,v) b G. Then (u,u)Krc = {(c,t;)} and Hd(u,v) = {(u,d)}. IfutC, then
Kc(u,v) C L and L(u,v) C L. If w ^ C, then JCc(u,i;) C Ku and L(u, u) C Ku.
IfveD, then (u,v)Hd C L and (u,u)L C L. If v $ D, then (u,v)#d C Hv and
(u,w)LC^.

We have checked that r is a congruence of the rectangular band G. Now, r — G x G
and it follows that I = G and C = A, D = B. D

2.2.2 Lemma. Let a, b € A be such that a ^ b, a(a) — a and a(b) = b. Then
A = {atb}.

P r o o f . Put G = {a,b}, D = Q(C), L = {(a,e(o)), (0,0(b)), (b,<?(a)), (b,ff(b))},
^c{(c,p(a),(c,^(b))}, c e G - A, tfd = {(a,d),(&,d)}, d 6 B - D. Then these
sets are pair-wise disjoint and r = ida U(Z- x L) U U(A"C x A'c) U U(^ x Hd) is an
f-invariant congruence of G. Thus r = G x G , L = G and C = A. D

2.2.3 Lemma. Precisely one of the foJJowing two cases takes place:

(1) card(A) = card(S) = 2, cr = id^, r = ids, ? = ^i"1 and ^ = ?-1.
(2) card(yl) = card(B) = n ^ 2 is finite and both a and T are n-cycles.

Proof . In view of 2.2.1 and 2.2.2, we can assume that card(j4) is infinite and
that the elements a, <r(a), <r2 (a ) , . . . are pair-wise different for some a € A. Proceeding
similarly as in the proof of 2.2.1, we can show that A = {a,cr(a),<T2(a),...}. Then
a ^ 0(A), a contradiction. D
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2.3. Let n > 2, A — B = {1,2,... ,n} and let G = A x B be the corresponding
rectangular band (see 2.2); we have ( i , j ) ( k , l) = ( k , j ) . Further, choose the bijections
Q and c of A in such a way that Q = id A and <;(i) — (i + 1) (mod 71) for every i £ A.
Then cr = r = c is an n-cycle. Finally, f ( i , j) — ((j + 1) (mod n),i).

Now, let a, b, u, v b A, 1 < a < b < n, and let r denote the smallest congruence
of the rectangular band G such that r is invariant under f and r contains the pair
((a, u), (b,v)). We have b = crs(a) for a unique s, 1 < s < n.

2.3.1 Lemma, ((a*(a),x), (0*(b),x)) b r and ((.r.tr^a)), (zX(&))) € r for aW
a;, i e A

P r o o f . First, (a,x) — (a,x)(a,u) and ( b , x ) = (a,x)(b,v), so that ((a, .T),
(b,0;)) £ r. Further, (<r(z),a) = f ( a , x ) , (cr(x),b) = f ( b , x ) , (o(a),<r(x)) = f ( a ( x ) , a ) ,
(<7(b),a(s))=f(o-(o;) ,b) ,etc .

For a; € 4, let #x = {(<rl'(a), a:); 1 < i ^ n} and A'.T = { ( x , a^a)) -l^i^n}. D

2.3.2 Lemma. If the numbers n and s are relatively prime, then r = G x G.

P r o o f . Denote by ® the addition modulo n on A, so that A((8) becomes a
cyclic abelian group, where n plays the role of a neutral element.

Now, let x 6 A and let Lx denote the block of r such that (a, x) 6 Lx. Put
C = {i € A; (o-*(a),a:) 6 Lx}. Clearly, n 6 C and s £ C1 (since (b,0;) e r by 2.3.1)
and, if i & C, then i ® s G C (again by 2.3.1). Consequently, D C C, where .D is
the subgroup generated by s in A. But s and n are relatively prime, and so D — A
and C — A. We have proved that Hx C Lx. Since f ( H x ) — Ka(x)i the set /^(x) is
contained in the block of?' determined by (a(x),a).

Let x,y 6 A. Then a; = ^(a) and y = ak(a) for some j , fc 6 A and we have
(j/,a;) £ Hxr\ Ky. In particular, Hx n Ky is non-empty, which means that Hx U Ky
is contained in a block of r. Now, it is clear that r = G x G. D

2.3.3 Lemma. Tie following conditions are equivalent:

(i) n is a prime number.
(ii) idG and GxG are the only f-invariant congruences of the rectangular band G.

P r o o f , (i) implies (ii). Let t ^ idG be an f-invariant congruence of G. There
are a,b,u,v e A such that ( ( a , u ) , ( b , v ) ) € t and either a ^ b or u ^ v; we can
assume a ^ b, the other case being dual. Now, t = G x G by the preceding lemmas.

(ii) implies (i). Suppose, on the contrary, that n is not prime and let 2 < m < n
be such that m divides n. Define a relation t on G by ( ( i , j ) , (k,l)) £ t iff m divides
both i — k and j -l. Then t is an f-invariant congruence of G and ((n, 1), (m, 1)) 6 t,
((n, 1), (m, 1)) g t. Thus idG <£t$G xG. D
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3. SIMPLE PARAMEDIAL GROUPOIDS OF TYPE (IV)

For every prime number p > 2, define a groupoid Rp = {(i,j); 1 < i,j < p},
(i,j) - ((l + 1) (mod p ) , i ) . We have (t, j)(k,l) = f(i,j) * f(k,l), where Rp(*)
is the rectangular band from 2.3 and f is the antiautomorphism defined also in 2.3.
Now, id and R(2) are the only f-invariant congruences of Rp* (2.3.3) and it follows
easily that Rp is a simple paramedial groupoid of type (IV) (if r is a congruence
of Rp, then r is invariant under o = f and, since Rp is finite, r is also invariant
under f-1; thus r is a congruence of Rp(*)). Notice that the groupoid Rp possesses
no idempotent elements, Rp is anticommutative (i.e., xy = yx for x,y € Rp only if
x — y) and that Rp is antimedial (i.e., xu • vy = xv • uy only if u — v). Finally,
observe that Rp contains no proper subgroupoid.

Put R'2 = { ( i , j); 1 < i,j < 2} and define a multiplication on R2 by ( i , j ) ( k , l ) =
(l,i). Then R'2 becomes a (four-element) simple paramedial groupoid of type (IV),
R'2 corresponds to 2.2.3(i) and R1=G2 (see 1.6).

3.1 Theorem, (i) R1 and Rp,p running through prime numbers, are pair-wise
non-isomorphic simple paramedial groupoids of type (IV).

(ii) Every simple paramedial groupoid of type (IV) is finite and isomorphic to one
of the groupoids from (i).

P r o o f , (ii) Let G be a simple paramedial groupoid of type (IV). There exist a
rectangular band G(*) and an antiautomorphism f of G(*) such that xy = f(x)*f(y)
for all x, y e G. If r is an f-invariant congruence of G(*), then r is also a congruence
of the paramedial groupoid G (and so either r = idG or r = G x G). Now, we can
use the auxiliary results from the preceding section. D

4. SIMPLE PARAMEDIAL GROUPOIDS OF TYPE (III)

For n > 1, let Yn = {a0, a1.. .,an} and let a multiplication be defined on Yn

by ajOj = OQ for i ^ j> a0ao = a0 and aiai = ak, k = (i + 1) (mod n) for i ^ 0.
Then Yn is a simple paramedial groupoid of type (III). Further, Y2 is a two-element
semilattice and, for n > 2, Yn contains just one idempotent element, namely a0; in
both cases, a0 is an absorbing element of Yn. Notice also that Yn, except for the
above mentioned idempotents, possesses no proper subgroupoids.

4.1 Theorem, (i) The groupoids Yn, n >1 are pair-wise non-isomorphic simple
paramedial groupoids of type (III).
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(ii) Every simple paramedial groupoid of type (III) is finite and isomorphic to one
of the groupoids from (i).

P r o o f . Every commutative paramedial groupoid is medial and our result follows
from the classification of simple commutative medial groupoids given in [3]. D

5. SIMPLE PARAMEDIAL GROUPOIDS OF TYPE (II)—LINEAR REPRESENTATIONS

5.1 Proposition. Let G be a simple paramedial groupoid of type (II) (and
0 = aa, a e G). Then there exist a commutative semigroup S(+) and automorphisms
f, g of S(+) such that the following conditions are satisfied:

(i) G C S and ab - f(a) + g(b) for all a, b € G.
(ii) 0 is an absorbing element of S(+) and f(x) + g(x) = 0 for every x £ S.

(iii) f = g2

(iv) S(+) is either zeropotent or idempotent.
(v) The algebra S(+, f, g, f-l, g-l) is simple and generated by G.

P r o o f . By [4], there exist a commutative semigroup S(+) and automorphisms
f, g of S(+) such that the conditions (i), (ii) and (iii) are satisfied; obviously, we
can assume that the algebra S = S(+,f,g,f-1,g-1) is generated by G. Moreover
(considering the factor Sfs, where s is a congruence of S maximal with respect
to s n (G x G) = idG), we can assume that r n (G x G) ^ idG for every non-
identical congruence r of S. Now, if r is such a congruence and t = r n (G x G),
then i is a congruence of G, t ^ idG, and hence t = G x G C r. Consequently,
G C A = {x G S; (0, a:) 6 r} and A = S, since A is evidently a subalgebra of S.
Thus r = 5 x 5 and we have proved (v). Now, it remains to show (iv); to that
purpose, we can assume that S(+) is not zeropotent.

The endomorphism x -> 2x of S is not constant, and so it is an injective endo-
morphism of S. Using an obvious and standard construction, we embed 5 into a
(simple) algebra Si = Si(+,fi,gi,f{-1,g^1) such that x —> 2x is an automorphism
of Si. Now, proceeding similarly as in [5], we can show that Si (+) is idempotent. D

5.2 Remark. Let G be a simple paramedial groupoid of type (II). Proceeding
similarly as in the proof of 5.1, we can show that there exist a commutative semigroup
S(+) and endomorphisms f, g of S(+) such that the conditions (i), (ii), (iii) and
(iv) from 5.1 are satisfied and, moreover, the following is true:

(v') The algebra S = S(+, f, g) is simple and generated by G.
Now, f2(= g2) is an endomorphism of S, and hence either ker(f2) — G x G or

ker(f2) = idG. In the former case, we must have carcl(G) = 2, and so ker(f2) = idG,
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provided that card(G) ^ 3. However, then f and g are injective endomorphisms of
5(+).

6. SIMPLE PARAMEDIAL GROUPOIDS OF TYPE (I)—LINEAR REPRESENTATIONS

First, recall that a non-trivial cancellative groupoid G is called c-simple if idc
and G x G are the only cancellative congruences of G. Further, let A be the group
given by two generators a, f3 and one relation o2 = /32, and let R — ZA be the
corresponding group-ring over the ring Z of integers.

6.1 Proposition. The following conditions are equivalent for a quasigroup Q:

(i) Q is a c-simple paramedial quasigroup.
(ii) There exist a simple R-module structure Q(+,rx; r € R) denned on Q and

an element w £ Q such that ab = aa + 0b + w for all a, b E Q.

P r o o f . The result is an easy consequence of [1, 6.2]. D

6.2 Proposition. Let G be a c-simple paramedial cancellative groupoid. Then
the q-envelope of G (see [2,5.3]J is a c-simple paramedial quasigroup.

P r o o f . See [1, 4.11] and [2, 5.1,5.3]. D
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