LATTICES WITH LARGE MINIMAL EXTENSIONS

RALPH FREESE, JAROSLAV JEZEK, AND J. B. NATION

ABSTRACT. This paper characterizes those finite lattices which are a
maximal sublattice of an infinite lattice. There are 145 minimal lattices
with this property, and a finite lattice has an infinite minimal extension
if and only if it contains one of these 145 as a sublattice.

In [12], I. Rival showed that if L is a maximal sublattice of a distributive
lattice K with |K| > 2, then |[K| < (3/2)|L|. In [1] the authors took up
the question for more general varieties. In particular a 14 element lattice
was constructed which is a maximal sublattice of an infinite lattice. The
question of how small such a lattice could be was raised.

In this paper we will use the term big lattice to mean a finite lattice
which is a maximal sublattice in an infinite lattice, and small lattice for a
finite lattice which is not big. Our main result provides an algorithm for
determining whether a given finite lattice is big. This allows us to give many
interesting examples of both big and small lattices. We will show that Mj
is big but no smaller lattice is, answering the question mentioned above. On
the other hand, N3 is small.

Using this algorithm, we produce a complete list of all 145 minimal big
lattices. The minimal big lattices (up to dual isomorphism) are denoted by
G; for 1 < i < 81, and are drawn in the figures in Sections 13-18. A finite
lattice is big if and only if it contains some G; or G¢ as a sublattice.

1. THE PLAN

The outline of the paper, after the preliminaries, goes as follows. Section 3
proves that a superlattice of a big lattice is big. Section 4 proves that a linear
sum of small lattices is small. Section 5 gives some examples of small lattices.

Section 6 gives the main construction which will be used to show that a
lattice is big. This construction involves gluing a finitely presented lattice
FQ(z,y) to a finite lattice L, where Q(z,y) is a partial lattice depending
on L. If FQ(z, y) is infinite, then L will be big. There are eight minimal big
lattices which require different ad hoc constructions of an infinite minimal
extension: Gs, Gg, Gg, G, Gy, Gg, Gi3 and Gcf3.

Sections 7 and 8 prove the following result.

Theorem 1. A finite lattice L is big if and only if
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1. L contains a sublattice isomorphic to some minimal big lattice G; or
G‘ij with 1 <1 <19, or
2. L contains a sublattice K which is semidistributive, breadth 2, and big.

Sections 9 and 10 prove the following result.

Theorem 2. If L is a finite, semidistributive, breadth 2, big lattice, then
there exist elements p, k € L such that FQ(p, k) is infinite.

Since it is possible to decide whether a finitely presented lattice is infinite,
this gives us an algorithm for determining whether a finite lattice is big or
small, which is given in Section 11. In Section 12, we prove that every small
lattice has a largest minimal extension, which is formed by gluing FQ(p, k)
to L for an appropriate choice of p, k € L. Sections 13-18 refine the original
algorithm with a characterization of smallness by excluded sublattices.

Theorem 3. Let L be a finite, semidistributive, breadth 2 lattice and let p,
k be incomparable elements of L. Let S be the sublattice (pVEk)/pUk/(pAk)
of L.
1. If S satisfies conditions 1-4 of Theorem [60, then FQ(p, k) is finite.
2. If S fails conditions 1-4 of Theorem [60], then FQ(p, k) is infinite, and
L contains some minimal big lattice G; or sz with 20 < ¢ < 81.

Thus a finite lattice is big if and only if it contains some G; or G‘ij with
1 <4 < 81 as a sublattice, and our list of minimal big lattices is complete.

We conclude with some observations about big algebras in other varieties.
An example of a lattice which is big in the variety of modular lattices is given.

Computer algorithms play a major role in these results, in two distinct
ways. First of all, we need to decide when certain finitely presented lat-
tices are infinite. An algorithm for deciding this was given by V. Slavik
in [I3, [14], but it is not particularly efficient. For a lattice freely generated
by a join trivial (or meet trivial) partial lattice, we could apply the algo-
rithm of Jezek and Slavik [6]. In the general case, we found that the following
method worked well. There is a practical algorithm for determining whether
a join irreducible element in a finitely presented lattice is completely join
irreducible, due to Freese [4]. Clearly, if a lattice contains a join irreducible
element which is not completely join irreducible, then it must be infinite.
Moreover, Freese had already coded his algorithm. So, given a finitely pre-
sented lattice which we suspected of being infinite, it was a simple matter
to look for such an element.

This raises a natural question: Does every infinite finitely presented lat-
tice contain either a join irreducible element which is not completely join
irreducible, or a meet irreducible element which is not completely meet ir-
reducible? If, in addition, we could find bounds on the complexity of such
an element, then we would have a truly efficient algorithm for deciding the
finiteness of a finitely presented lattice.

Secondly, we needed to check that the lattices in our list of minimal
big lattices really were minimal, that none of them could be embedded in
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another. This is straightforward to program, and the program is clearly
more reliable than checking minimality by hand.

2. PRELIMINARIES

We write L < K to mean that L is isomorphic to a sublattice of K.
In practice, we actually suppress the embedding and regard L as a fixed
sublattice of K. We write L < K to mean that L is isomorphic to a maximal
sublattice of K.

If L is a finite lattice which is a sublattice of a lattice K, then for each
w € K with w < 1, define

w[L]:/\{aeL:aZw}.

Note that (uV v) = u® v ol and (u A )M < ull Aol Of course
w < wl, and w™ = w if and only if w € L. Similarly, for each w € K with
w > O, let

wyy = \{beL:b<w}

Then (u A v)g) = ug) A vy and (u Vo) > vy Vo), and wg) < w, and
wiy) = w if and only if w € L.
Recall that a lattice is join semidistributive if it satisfies

SDy aVb=aVe implies avVb=aV(bAc).

Meet semidistributivity is defined dually and denoted SD,. A lattice is
semidistributive if it satisfies both of these conditions.

We need to recall some basic facts about join semidistributive lattices.
The condition SDy, is equivalent to

w:\/ai:\/bj implies w:\/ai/\bj

for finite families a;, b;. Every element a of a finite join semidistributive
lattice L has a join representation a = \/ C' which is canonical, in the sense
that if @ = \/ D then C refines D (i.e., for every ¢ € C' there exists d € D
with ¢ < d). The canonical joinands of the largest element 1y, are join prime.
If an element p is join prime in a finite lattice L, then there is a (unique)
largest element z such that p £ . We denote this element by x(p), and
note that L is the disjoint union, L = 1/p U k(p)/0. (This agrees with
the more general definition of x(p) for a join irreducible element in a meet
semidistributive lattice.)

For a join irreducible element x in a finite lattice, let x, denote the unique
lower cover of x. Dually, if y is meet irreducible, then y* denotes its unique
upper cover.

Throughout we use L to denote the dual of L.
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3. EXTENSIONS OF BiG LATTICES

In this section we show that if A is a sublattice of L and A is big then L
is also. In proving this we make use of the Dedekind-Mac Neille completion,
which we quickly review. The details can be found in [2] and [3].

If S C P, welet S* and S¢ denote the sets of upper and lower bounds of
S, ie.,

St={xeP:x>sforalseS}
St={reP:x<sforallsecS}

Then S — S“ is a closure operator. The closed sets are called normal
ideals. They are hereditary and closed under arbitrary joins. One easily
checks that S = S¢ and thus the normal ideals are the sets of the form
St Normal filters are defined dually and the maps S — S* and S —
S¢ form a Galois connection between the normal ideals and the normal
filters. Because this is a closure system, the set of normal ideals forms
a complete lattice under set inclusion known as the normal or Dedekind-
Mac Neille completion. Moreover, the map = +— x/0 strongly embeds P
in this completion. This means that this map is one-to-one, preserves the
order relation and its negation, and also preserves arbitrary joins and meets
which exist in P. A normal ideal is called finitely generated if it has the
form S for some finite S.

Now suppose that A is a finite lattice which is a maximal sublattice of
an infinite lattice K. Note 0o = O and 14 = 1x. We also assume that
A is a sublattice of a finite lattice L. In addition we assume 0o = O, and
1A = 1y, but we will remove this assumption later. We assume L N K = A.

Let P = LUK be ordered by the transitive closure of the the union of the
order relations of L and K. It is easy to see that this union is acyclic and
thus the transitive closure makes P into an ordered set P. Since A is finite
and 1p € A, for each element z € P there is a least element zAl € A with
z < z[Al Of course z[a] is defined dually. Note that if z € L and y € K
then z <p y if and only if xlAl <k y if and only if x <y, YlA]- Moreover,
if z, y € L, then x vV y is the join of z and y in P, and dually. The same
holds for K. The next lemma follows easily from these facts.

Lemma 4. Ifbe L, ce K, and x > b, ¢ in P, then
z>bAlve ifre K
x> bV Al if x € L.
Consequently, {b,c}* ={z € P:2z>bA vcorz>bvcAl}

Now we want to consider finitely generated normal ideals and show that
they form a sublattice of the Dedekind-Mac Neille completion of P. First
note that if S is a finite subset of P then the normal closure of .S is normal
closure of {b,c}, where b=\/(SNL)and c=V(SNK).



LATTICES WITH LARGE MINIMAL EXTENSIONS 5

Corollary 5. The set of all finitely generated normal ideals of P is a sub-
lattice Q of the Dedekind-Mac Neille completion of P.

Proof. The join of two finitely generated normal ideals is finitely generated
(for arbitrary P). Let S and T be finite subsets of P. Now the Galois
connection between the normal ideals and normal filters implies S“NT™ =
(S*UT*)¢. Hence

Suﬁ N Tuﬁ _ (Sué N Tuﬁ)ué _ (Su U Tu)éué _ (Su U Tu)ﬁ.
By the lemma and the remarks above, S* and T", and hence S* UT", are
finitely generated normal filters and so by the dual of the lemma (S*UT™)*

is a finitely generated normal ideal. Since S™ AT = S“NT", this proves
the corollary. O

Notice that the lattice Q of this corollary naturally contains L and K as
sublattices and that it is generated by L U K.

Lemma 6. L is a maximal sublattice of Q.

Proof. Let I be an element of Q) not in L. As we pointed out earlier, there
exist b € L and ¢ € K such that I is the normal ideal generated by {b,c}.
Now the join of I and b[A! is the normal ideal generated by {bl4) b, ¢},
ie., {blA c}¥. Since blA v (Al > plAl v ¢ Lemma B implies {bA], ¢}
is the principal filter 1/(b) v ¢) and so {blA), c}*¢ is the principal ideal
(bIAT v €)/0. Of course blA v ¢ € K, but A v e ¢ A. For otherwise we
would have bV clA) < blAl v ¢, whence by the lemma {b,c}* = 1/(bV cA])
and I = {b,c}* = (bV c!A))/0 € L, a contradiction.

This shows that the sublattice N generated by L and I contains an ele-
ment of K — A. Since A C L and A is a maximal sublattice of K, N must
contain all of K. But since Q is generated by L U K, this shows N = @), as
desired. O

Theorem 7. If a finite lattice L has a big sublattice, it is also big.

Proof. Let A be a big sublattice of L. Since A is big it is a maximal
sublattice of an infinite lattice K. If the least and greatest elements of A
are the same as those of L, the result follows from Lemma

Note that the disjoint linear sum A + 1 is a maximal sublattice of K 41
and so big. Thus, for example, if 0o = O, but 1o < 1, we can use the
arguments as above with A replaced by A + 1, and similarly for the other
cases. U

4. LINEAR SUMS OF SMALL LATTICES

If Ly and L; are lattices such that Ly has a greatest element 1y,, and L;
has a least element Oy,,, then the (tight) linear sum Lo + L is the lattice
whose universe is Lo U Ly with Oy, and 1y, identified. The order on Lo+ L;
isgiven by x < yifz,y € Lyand x <yinL; (i =0o0r 1), and z < y
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whenever z € Ly and y € Ly. A lattice L is linearly decomposable if there
exists m € L such that L = m/0 U 1/m, so that L is isomorphic to the
linear sum m/0 + 1/m. A lattice L is linearly indecomposable if no such
element m exists.

The following result allows us to reduce our search for minimal big lattices
to linearly indecomposable lattices.

Theorem 8. If Ly and Ly are small lattices, then the linear sum Lo + L
1s also small.

Proof. Assume L = Ly + L; < K, where Ly and L are both small. If there
exists p € K — L with pp) € Ly or plt e Ly, then K = Sg(L U {p}) is finite
because Ly and L; are small. Thus we may assume that for all p € K — L we
have plM € L; — {01, } and pr) € Lo — {11, }. Choose p € K — L such that
p[L}/p[L} has minimal length in L. If z € Ly and = £ pL), then pVz € L
because (p V ) = plt v 2z = pll and (p v z)L) > pr VT > pr; thus in
fact p Vv z = pL. Tt follows then that for any u € L,

_)p if u < pr)s
pVu= L] .
pM v ifu £ ppyy.
Dually, pAwu € L for all uw € L. Thus L U {p} is a sublattice of K, whence
LuU{p} = K, and K is finite. O
5. SMALL LATTICES

In this section we give some examples of lattices that have a finite bound
on the size of their minimal extensions. We begin with an obvious but useful
lemma.

Lemma 9. Let S be a set of intervals of a lattice L such that if a/b and
c/d are in S then each of aV ¢/bV d and a Ac/bAd is a subinterval of some
member of S. Then the union of these intervals is a sublattice of L.

The lattice D;. Let D be the lattice diagrammed and labelled in Figure[Il.

FiGure 1. Dy

Theorem 10. If D is a mazimal sublattice of a lattice L, then |L| < 15.
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Strictly speaking, this result is superfluous, for it follows from the more
general case considered in the proof of Theorem [31l. However, the argument
is instructive.

As we prove various parts of the theorem, we will be able to make pro-
gressively stronger assumptions. To begin with, assume that

(1) L is a lattice containing D1 as a sublattice.

Lemma 11. Dy Ud/aUb/0Ue/c is a sublattice of L.

Proof. This follows from Lemma [ by letting S be the four intervals d/a,
b/0, e/c, and 1/1. O

Now we make the stronger assumption that
(2) D, is a mazimal sublattice of L.

Notice this implies that the sublattice generated by D and any x ¢ D is
L.

Lemma 12. If z € b/0 then 1/x U {0, a,c} is a sublattice of L.

Proof. Clearly this set is closed under joins. Suppose y > z in L. By the
previous lemma and our stronger assumption, L = Dy Ud/aUb/0Ue/c. If
y € e/c then a Ay = 0 since a A e = 0. All other cases are either symmetric
or easier. U

Corollary 13. The interval b/0 in L has at most 3 elements.

Proof. If 0 < x,y < b then Lemma [[2] implies both z < y and y < . U
Lemma 14. If 0 < x < b in L, then L is isomorphic to one of the lattices
in Figure

Proof. If xtVa = d and xV ¢ = e then L is the lattice on the left in Figure 2
If xVa < dthen (zVa)Ab=x by Corollary [I3 and it follows that L must
be the second or third lattice depending on whether x V ¢ = e or not. U

FIGURE 2.

Lemma 15. If a < x < d in L, then L is isomorphic to the lattice of
Figure Bl or to one of the lattices diagrammed in Figure Bl
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FIGURE 3.

Proof. If x Ab > 0 then Lemma [4limplies L is one of the lattices of Figure
and x A b =0 implies L is the lattice of Figure Bl O

These lemmas show that we may assume
(3) a<d,0=<b, andc<e.

We now consider the case that L has an element p satisfying 0 < p < a.
Lemma 16. If 0<p<a in L, then L=d/pU1/(pVc)U{0,b,c,e}.

Proof. Let S =d/pU1/pVcU{0,b,c,e} and let © € d/p. Then ¢V x and
eVzarein 1/pVe, and bV x € d/p. It follows that S is closed under joins.
Since dAe=0b,e ANz €b/0={0,b}. Ify€1/pVectheneAy € e/c={c,e}.
Also chy=cand bAy € {0,b}. Clearly x Ay € d/p. It follows that S is
closed under meets and so is a sublattice. Since it properly contains Dy, it
must be L. O

As before, this lemma implies a/0 can have at most 3 elements:
Corollary 17. If 0 < p < a then a/0 ={0,p,a}.
Again assuming 0 < p < a, let
S = {p,(p\/b) AN(pVe),dAN(pVe),pVe,
pVbbV(dA(pVe),dA(pVe),pVel;
see Figure Hl

The elements of S need not be distinct in L but, as the next lemma shows,
they do form a sublattice.

Lemma 18. If 0 < p < a, then S is a sublattice of L which is isomorphic
to a homomorphic image of the lattice of Figure Hl.

Proof. Tt is easy to verify that the order relationships of Figure E hold.
Clearly (pVb)V(pVe)=pVe,and [dA(pVe)A(pVe)=dA(pVec). From
this it follows that all the joins and meets of Figure Blare correct. O

Lemma 19. If 0 <p<a then L=D;US.
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pVe
bV (dA(pVec)) pVe

pVb dA(pVe)

(pvb)A(pVe)

FIGURE 4. S

Proof. Let x € S. Arguments as in Lemma [[6] show that e A z, ¢ A x, and
bAx are all in {0,b,c,e}. It is easy to see that d Az € D; U S and a A x
is either p or a by Corollary 7} The remainder of the proof follows easily
from Lemma [16. O

Clearly this implies |L| < 15. The case when the elements of S are distinct
from each other and from the elements of Dq is diagrammed in Figure [l

FI1GURE 5. The largest minimal extension of Dy

Consequently we may now make the further assumption
(4) 0<aand 0<cinL.

Arguments that are now standard show that if any of the intervals d/b,
e/b, 1/d, or 1/e are not prime then L is isomorphic to one of the lattices of
Figure

Thus we may assume every prime interval of Dy is prime in L. If any
interval of length two of Dy contains an element of L — D, then L must be
isomorphic to one of the lattices of Figure [1.

If 1, # 1p, then L is clearly D; with a new greatest element attached.
Similarly we may assume Op, = Op,. The last possibility is that L contains
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FIGURE 6.

FIGURE 7.

an element whose join with all elements of D is 1 and whose meet is 0. Of
course |L| = |D1| + 1 in this case. This completes the proof of Theorem

The eight element Boolean algebra. This lattice, which is diagrammed
in Figure 8 is also small. One can make a proof similar to that of Theo-
rem [0, but we do something different for variety.

FIGURE 8. Bjs

Theorem 20. If B3 is a mazimal sublattice of a lattice L, then |L| < 14.

Lemma 21. Let K be a finite lattice and let ¢ be a join prime element in
K. Let ¢ denote the lower cover of ¢ in K. If K is a marimal sublattice
of L, then either c = ¢t in L or there is a unique element p in L — K such
that ¢t <p <ec.
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Proof. Suppose ¢; < p < cin L. Let x(c) = \/{z € K :  # ¢}. Since c is
join prime, k(c) # c. Since L = Sg(K U{p}), we can prove inductively that
for all x € L, either x > p or < k(c). This implies that if ¢; < ¢ < ¢ then
p < q. By symmetry ¢ < p. ]

This lemma implies that if Bg is a maximal sublattice of L then each
atom can contain at most one element not in B3. So suppose 0 < p < b
in L. The lattice F freely generated by Bs and such a p is diagrammed in
Figure[@ This can be verified with the results of [4].

<

0 a’ A(p Vb))
o cV(bA(pVvd))

dA(PVY)) T
aV(bA(pVvb)) Q

aV (bA(pVe)) o cV (bA(pVa))

FI1GURE 9. The free lattice generated by B3 and p, 0 < p <.

Now L is F/6 for some congruence 6 on F and of course 6 restricted to
the interval b/0 must have three blocks with 0, b and p in distinct blocks.
This implies that 0 is in a block by itself. Of course each block is a convex
sublattice of b/0. It turns out there are only 5 possibilities. These generate
5 congruences, denoted g to 04. The p-block of each of these congruences
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is:

p/0o = {p}

p/i={z:p<x<bA(pVa)}
p/le={z:p<x<bA(pVc)}
p/s={z:p<z<bA(pVV)}
p/Oy={z:p<z<bA(PVV)}

The key to seeing that these are the only possibilities is that if p/# contains
both bA(pVa) and bA(pVe), it contains all elements x with p < z < bA(pVY'),
which is easily verified; see Figure

The lattices ¥/0;, i = 0, 2, 3, and 4, are given in Figure (Since
F/0, = F /05 only one is drawn.) Bg is a maximal sublattice of each of
these lattices. (Actually, using Lemma [, one can show that this must be
the case.) So our lattice L must be one of these lattices or a homomorphic
image of one of them that separates B3 U{p}. Only the last of these lattices,
i.e., F/04, has any such homomorphic image. In that lattice p V ¢ can be
collapsed to its upper cover, p V a can be collapsed to its upper cover, and
of course both can be collapsed.

PPYE

Ficure 10. F/6; for i =0, 2, 3, and 4.

Thus we have shown that if 0 < p < b in L then |[L| < 14. So by
symmetry and duality we may assume that a, b, and ¢ each cover 0 in L
and each coatom of Bj is covered by 1 in L. If a < p < a V b then all these
coverings imply L = B3 U {p} and so we may assume every covering of Bg
is a covering of L. Now using arguments similar to those for D we can
show that if 0 < p < aV b, then L is M3 x 2 or L — B3 only has p. Thus
we may assume that all intervals of length 2 of B3 intersect L trivially. So
if 0 < p < 1 then it is the only element of L — Bs. Finally if either the
least element of B3 is not the least element of L or the dual situation holds,
|L| = 9. This completes the proof of Theorem

Small distributive lattices. Let n denote the n element chain. Clearly
n is small for any n. Likewise, 2 X n is a small lattice for any n < 5. The
largest minimal extension of 2 x 5 is shown in Figure [l

Theorem 22. Let n denote the n element chain.
1. If n is a mazimal sublattice of L, then |L| =n + 1.
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2. If 2 x 2 is a maximal sublattice of L, then |L| <6.
3. If 2 x 3 is a mazimal sublattice of L, then |L| < 10.
4. If 2 x 4 is a mazimal sublattice of L, then |L| < 16.
5. If 2 x5 is a maximal sublattice of L, then |L| < 28.

FIGURE 11. The largest minimal extension of 2 x 5.

These bounds are a consequence of Theorem [49. Moreover, our later
analysis will prove the following result.

Theorem 23. A finite modular lattice D is small if and only if D is dis-
tributive and contains neither 2 x 6 (= Gsy), nor Gs, nor its dual as a
sublattice.

More small lattices (of width 2). Let Ny; be the lattice whose order is
the union of two chains 0 < a; < - - <agp <land 0 < b <--- < b <1,
with no other elements or relations. Thus N5 is a pentagon, and Naj3 is
the lattice in Figure Using arguments like those in the proof that Dy is
small (and Lemma [21]), one can show that some of these lattices are small.
See Figures [[3l and T4

Theorem 24. Let Ny; be as defined above.

1. If Nyg is a mazimal sublattice of L, then |L| < 2k + 4.
2. If Nog is a mazimal sublattice of L, then |L| < 12.
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FIGURE 12. Nag3

3. If Na3 is a mazimal sublattice of L, then |L| < 18.
4. If Nay is a mazimal sublattice of L, then |L| < 30.

Again, these bounds are a consequence of Theorem However, as we
will see in a later section, if k = 2 and [ > 5, or if both k£ and [ are at least
3, then Ny; is big.

FIGURE 13. The largest minimal extension of N3.

6. BiG LATTICES

It is often useful, when L is a maximal sublattice of K, to think of K as a
gluing of L and the ordered set F = K — L. The following technical lemma
gives sufficient conditions for reversing this process to construct big lattices.

Lemma 25. Let L be a finite lattice and F an ordered set. Leta, f: F — L
be maps satisfying the following conditions.

1. Forall we F, f(w) < aw).

2. For all u,veF, a(u) £ B(v).

3. For all u, v € F, u<wv implies 3(u)
4. For all u, v € F, u < v implies o(u)

B(v).
a(v).

<
<
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FIGURE 14. The largest minimal extension of Noy.

5. If u, v € F have a lower bound in F, then u A v exists in F and
B(u A v) = B(u) A Bv).

6. If u, v € F have an upper bound in F, then u V v exists in F and
afu Vo) =alu)Va(v).

7. Forue F,z € Lput Vyp ={v e F :u<wv, <)} If Ve #10,
then Vi, contains a least element vy and a(vy) < a(u) V x.

8 Forue F,x e Lput Wy, ={we F:u>w, > a(w)}. If Wy, # 0,
then Wy, contains a greatest element wy and B(w1) > B(u) A z.

Define an order on the disjoint union LUF by, for z, y € L and u, v € F,
r<yiffv<yink,
u<viffulvinF,
x <wviffx <pW) inL,
u <y iff a(u) <y in L.
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Then LUF is a lattice.

The proof is straightforward. Conditions 1-4 ensure that < is a partial
order; condition 2 can be weakened but holds as written in our applications.
Note that condition 2 makes F a convex subset of LUF. Conditions 5
and 6 ensure that finite meets and joins defined in F remain so in LUF.
Conditions 7 and 8 ensure that uV x and u A x, respectively, are defined for
u € F, z € L. For example, for y € L we have y > u and y > z if and only
if y > a(u) Vz; on the other hand, for v € F' we have v > v and v > x if and
only if v € V,,; if and only if v > vg. Condition 7 says that a(u) Vz > a(vp)
when V,,, is nonempty, so that «V x = vy in LUF.

It is useful to record the operations of LUF. For =, y € L and u, v € F,

1. & Ay is the same as in L,

2. u A v is the same as in F if v and v have a lower bound in F, and is

B(u) A B(v) otherwise,

3. uAzis f(u) Az if Wy, is empty, and is wy (= \/ Wyz) otherwise.
Joins are dual. Thus L is a sublattice of LUF, and the order is such that
a(u) = ul¥ and B(u) = uyy) for each u € F.

The construction. Next we present a general argument which can be used
to show that many lattices are big. If P is a finite partial lattice, let FL(P)
denote the finitely presented lattice generated by P.

Theorem 26. Let L be a finite lattice and let x, y be incomparable elements
of L. Let A= (zVy)/xz and B = y/(zAy). Define a partial lattice Qr(z,y)
as follows. The elements of QL(x,y) are

{¢.: c€ AU B}
with ¢z = qzny and qy = qrpvy. The relations are
da N Qo = Qapar  for a,d’ € A,
@V ay =gy for bt € B,
@ < qq ifbe B, ae A, b<a.

Then there are maps «, (3 : FL(QL(z,y)) — L such that LUFL(Qy(z,vy))
1s a minimal extension of L. In particular, if the finitely presented lattice
FL(QL(x,y)) is infinite, then L is big.

Whenever the context is clear, we will write FQ(z,y) for FL(QL(z,v)).
Figures [[5l and [[6lillustrate this construction. In each case the figure on the
right is the diagram of the ordered set associated with Qp,(x,y). The defined
joins and meets are listed to the right. For example, in Gog, a A b = x so,
in QuL(z,Y), ¢Ga N @ = ¢z = qury = 0. We claim in both cases the finitely
presented lattice FL(Qq(z,y)) is infinite. How do we decide if a finitely
presented lattice is infinite? Of course we need to do this for all 145 of our
minimal big lattices. For a join trivial finite presented lattice we can use
the method of [6]. But for lattices such as Go and Ggo we use a different
method. We first enter the partial lattice Qr(x,y) into our lattice program
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for finitely presented lattice and close it under joins, then meets, then joins,
etc. If this stops then of course the finitely presented lattice is finite. For the
case L = Gy the partial lattice has 8 elements, its join closure 11 elements.
The meet closure of that has 13 elements, etc. The sequence begins 8, 11,
13, 16, 21, 27, 36, 85, 1646, .... While this strongly suggest the lattice is
infinite, it does not prove it.

However, our program can test if a join irreducible element of a finitely
presented lattice is completely join irreducible, i.e., if it has a lower cover,
using the algorithm of [4]. The algorithm shows that g is join irreducible
but not completely join irreducible, proving that FL(Qq,(z,y)) is infinite for
L = Gos.

For L = Gog the growth sequence is 8, 12, 31, 229, .... In this case g, is
join irreducible but not completely join irreducible[]

Ga Ny =10
eV qq=1

QL(ZU,ZJ)

FIGURE 15.

FIGURE 16.

!There are some interesting related questions. First, if a finitely presented lattice has
the property that every join irreduible element is completely join irreducible and dually, is
it finite?

‘We have also observed that the growth rate of the sequence of join and meet closures of
a finitely presented lattice appears to be one of three types. Either it stops (and the lattice
is finite), it grows linearly, or it grows exponentially. (An example of linear growth is G
which has a sequence 7, 9, 12, 15, 18, 21, 24, 27, 30, 33, ....) This raises the question: is
this tricotomy valid?
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Proof. First note that Q(z,y) is a partial lattice. For AU B is a sublattice
of L, and we have a model Q of Q(z,y) sitting inside of L, with universe

~

Q = (A U B) —{x,y} and its inherited order. (We can think of either
removing z and y, or identifying them with x Ay and z V y respectively.) Q
is a lattice, and there is a natural homomorphism h : FQ(x,y) — Q with
h(gz) = x Ny, h(qy) =« Vy, and h(q;) =t otherwise.

We use Lemma 25 to glue FQ(z,y) into L. We begin by defining maps

ap: Q(z,y) — A and fy : Q(z,y) — B as follows:
ap(qq) = a for a € A,
ap(gp) = Vb forbe B,
Bo(qa) =yAa forac A,
ﬂo(qb):b for b € B.

Note that ag and 3y are well-defined on the identified elements ¢, = guny
and g, = ¢pvy. Check that ag and [y preserve the relations defining Q(z, y),
and thus they can be extended to homomorphisms « : FQ(z,y) — A and
8:FQ(z,y) — B.

Next we verify that o and [ satisfy the conditions of Lemma P5] The
first six conditions are immediate, using the fact that a and § are homo-
morphisms. Condition 7 requires a lemma.

Lemma 27. For v € FQ(z,y) and t € L with t <y, we have t < ((v) if
and only if g,y < v, where z =x N y.

Proof. If qoyi < v, then t < 2Vt = F(g.v) < B(v).

The converse is proved by induction on the complexity of v. If v = ¢,
where a € A, then t < 3(q,) = y A a implies z V¢ < y A a, whence g,y <
Gyra < qq- The case v = g, with b € B is similar. If v = v; Avy and t <
B(vi Avg) = B(v1) AB(v2), then 2Vt < [(v1), B(v2). By induction g,y < vy,
vy whence ¢yt < v1 A vy. Finally, suppose t < B(vy V vg) = B(v1) V B(v2).
Then 2Vt < B(v1) V B(v2), 80 @zvi < Q01 )vB(ve) = B(v1) V d(vs)- However,
by induction with ¢t = 3(v;) we have gg,,) < vi, whence q,v¢ < v Vvy. 0O

For condition 7, suppose that V,; is nonempty. Then v € V,; if and only
if u <wand g,y < v, so that vg = uV ¢,y¢ is the least element of V,,;. Then
a(vg) =a(u) VoV zVit=alu)Vt, as desired. Condition 8 is dual.

It remains to show that L is maximal in LUFQ(z,y). First note that for
any u € FQ(z,y), * Au = ¢, and hence ¢, € Sg(L U {u}). On the other
hand, for b € B we have g, V b = q,. This includes g,y = ¢y, and for a € A
we have ¢y A a = g,. (These calculations all use Lemma [27] and its dual:
a(u) < a implies u < ¢, and S(v) > b implies v > ¢.) Thus Q(z,y) C
Sg(LU{g:}) C Sg(LU{u}), and it follows that Sg(L U{u}) = LUFQ(x,y)
for any u € FQ(z,y), so L is a maximal sublattice. O

The construction of the preceding theorem is illustrated in Figures [I1]
and [I4l In each of these cases FQ(x,y) is finite and the construction gives
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the largest minimal extension. If, however, we take L = N33 and let = be
an atom and y = k(x) a coatom, then Q(z,y) is order isomorphic to Nao
with no nontrivial meets or joins defined. Then FQ(x,y) is isomorphic to
FL(2 + 2) with a new 0 and 1, which is infinite. Thus N33 is big. Likewise,
if L = Nojs, then Q(z,y) is order isomorphic to Ny4, and FQ(z,y) is again
infinite, so Noj is big.

Now we can show that all the lattices in our list of minimal big lattices
are indeed big.

Theorem 28. All the lattices G; with 1 < i < 81 are big.

Proof. There are five types of minimal big lattices (eight lattices counting
duals) which require special constructions to show that they are a maximal
sublattice of an infinite lattice.

The lattices Gi3 and Gg are drawn in Figure 7. Infinite minimal exten-
sions of these two lattices are given in Figure I8

Gis Gy
FIGURE 17.

Another ad hoc variation of the construction shows that the The lattices
M3 = G5 and Gg in Figure [[9 are big. Infinite lattices with M3 and Gg
(respectively) as maximal sublattices are given in Figures 20land BT1

The last special construction, illustrated in Figure P2] shows that the
lattice Gy is big.

Now we turn to applications of the general construction of Theorem
We can show that G, G2 and G3 are big as follows. For G and Go, let z
be the middle atom (as the lattice is drawn in the figures); for Gg let x be the
atom on the left. In each case, let y = k(z), which will be a coatom. Let b be
the meet of the other two coatoms. Applying the algorithms in Freese [4],
we find that ¢ is join irreducible, but not completely join irreducible, in
FQ(z,y). Hence, in these three cases, FQ(x,y) is infinite and G; is big.
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FIGURE 18. Minimal extensions of G13 and Gg.

M3 = G5 G6
FIGURE 19.

Likewise, in the drawing of Gz let = be the atom on the left, y = k(z),
and let b be the left upper cover of z. Again we find that ¢ is join irreducible,
but not completely join irreducible, in FQ(x,y), whence G is big.

For all the rest, there is a natural choice of x and y such that L =
(xVy)/x Uy/(x Ay) and Q(z,y) is either join trivial or meet trivial. (A
partial lattice is join trivial if its presentation contains no proper joins.) In
the figures, = is drawn as the atom on the left, and y = x(x) is the coatom
on the right. In each case, Q(x,y) or its dual fails the conditions of Jezek
and Slavik [6] for the finitely presented lattice generated by a join trivial
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FIGURE 20. An infinite minimal extension of Ms.

FIGURE 21. An infinite minimal extension of Gg.

partial lattice to be finite, which are given as Lemma [61] below. Note that
the lattices Ggg, Ggg, Grs, Grg, Ggg, and Gg; are actually planar even
though our diagrams are not. We use these diagrams so that the choice of
x and y are the left atom and right coatom, respectively. U
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FIGURE 22. G and an infinite minimal extension.

For later reference, we need one more fact.

Lemma 29. If Q(z,y) is as in Theorem B8], then the finitely presented
lattice FQ(x,y) satisfies Whitman’s condition (W).

Proof. Let Qa4 = {qqa:a € A} and Qp = {q» : b € B}. We show that, for s;,
tj € FQ(z,y) and g € Q(z,y),

1. A\'s; < qimplies A s; = g, or s; < ¢ for some i or ¢ € Q 4,

2. \/t; > q implies \/ t; = g, or t; > ¢ for some j or ¢ € @p.

Since g4 < @p holds only if @ = « or b = y, it follows from the solution to
the word problem for finitely presented lattices that (W) holds in FQ(z,y).
(See e.g. [5], Chapter XI, Section 9.)

Recall that for s € FQ(z,y) and ¢ € Q(z,y), s < ¢ is defined inductively.
The relations with s a generator are given, and \/s; < ¢ holds if s; < ¢ for
all j. The relation A s; < g holds if and only if ¢ € Fil(sy,...,s,) where
Fil(s1,...,sm) is the order filter of Q(z,y) defined by

1. Fo ={p € Q(z,y) : s; < p for some i},
2. Fyr1={peQx,y): NZ < p for some Z C Fy},
3. Fil(s1, .-, 8m) = Upso Fr-

Suppose ¢ € Fil(s1,...,sy) and g, € Fil(s1,...,sy,). If ¢ € Fy, then s; < g
for some i. If ¢ € Fy 1 — F}, then A\ Z < ¢ for some proper meet of elements
Z C Fy. The only proper meets defined in Q(z,y) are for subsets of Q4.
Thus Z C Q 4, and since A Z # q,, we conclude g € Q4. O
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7. REDUCTION TO BREADTH 2

Recall that the breadth of a finite lattice L, denoted br(L), is the largest
number n such that L contains an n-element join irredundant set. Two basic
facts about breadth are these.

1. If X is an n-element join irredundant set, then the set X of elements
T = \/(X — {z}) is an n-element meet irredundant set.

2. If br(L) > 3, then L contains a sublattice isomorphic to the eight-
element Boolean algebra Bs.

We will show that every finite, linearly indecomposable lattice of breadth 3
or more, except Bg itself, is big.

Theorem 30. If L is a finite, linearly indecomposable lattice with br(L) >
3, then either L = Bs or L contains a sublattice isomorphic to one of the
big lattices G; with 1 < i < 8 or their duals.

Proof. Assume that L is finite and linearly indecomposable, and that br(L) >
3. Then L contains a sublattice B = {z,a,b,¢,d, e, f,u} isomorphic to Bs as
in Figure 23l Moreover, we can choose this sublattice so that every proper
subinterval of u/z has breadth at most 2. To prove the theorem, we will
assume that these eight elements are a proper sublattice of L, and show that
L contains a sublattice isomorphic to one of G1—Gs.

FIiGURE 23.

Case 1. Suppose there exists p € L — B with b > p > z.

(i) If pVa=dand pVec= f, then BU{p} is a sublattice of L isomorphic
to Gl.

(ii) If pVa = d and pVe < f (or vice versa), then pVb = pVaVe = dVe = .
Thus BU {p,p V ¢} is a sublattice of L isomorphic to Ga.

(iii) If pva < d and pVe < f and pVe = u, then {a, b, d, f,u, z,p, pVa, pVc}
is a sublattice of L isomorphic to Gs.

(ivyIfpVa<dand pVe < fand pVe < u, then pVe =pVaVec
irredundantly, contrary to the assumption that p V e/z has breadth at most
two.



24 RALPH FREESE, JAROSLAV JEZEK, AND J. B. NATION

So we may assume that b > z. Symmetrically and dually, we have a > z,
c=z,u>-d,u>e, and u > f.

Case 2. Suppose there exists p € L — B with d > p > a. Then, using the
above coverings, we get {a,b,d,e,u,z,p} = G7 < L.

Thus we may assume that d > a. Symmetrically d > b, e > a, e > c,
f>=band f > c. Thus B is a covering sublattice of L.

Case 3. Suppose these exists t € L — B with t < a and ¢ || z. Then,
using a > z, we have that BU {t,t A z} = Gz < L.

So we may assume that for all t € L — B, ¢t # a implies t Aa < z, and
symmetrically and dually.

Case 4. Suppose there exists t € L — B with ¢t < d and t £ 2.

(i) If d > t > z, then using the coverings we have {t,a,b,d,z} = M3 =
G; <L.

(ii) If d > t # z, then we may assume that z V¢ = d, for otherwise
d > zVt > z, which reduces to Case 4(i). (Note that z V¢ # a, b or ¢ by
Case 3.) Since aAt < zand bAt < z, we have a At = z At = bAt. Together
with z V t = d this implies {t,a,b,d, 2,2 At} = GI < L.

Thus we may assume that for all t € L — B, either t > dor t Ad < z,
and symmetrically for e and f. Dually, for all t € L — B, either ¢ < a or
tVa > u, and symmetrically.

Because L is linearly indecomposable and B < L, there exists an element
v € L — B such that v £ z and v # u. If v < a, then Case 3 yields
v = v Aa < z a contradiction. Hence by Case 4 we have v V a > u.
Symmetrically, v Vb >wuwand vVe>u. ThusvVa=vVb=vVc=vVu,
and dually vAd=vAe=vA f=0vAz

If 2 < v < u, then {v,a, f,u,z} is a sublattice of L isomorphic to M3 =
Gs.

If z < v £ u, then we may assume that uAv = z, for otherwise z < uAv <
u, which is the previous situation. But if u Av = z, then {v,a, f,u,z,uV v}
is a sublattice of L isomorphic to the dual of Gg.

The case z £ v < u is dual.

If z £ v and v £ u, then we may assume that vV z > u, or else we have
z <wvVz £ u, aprevious situation. Likewise, we may assume that vAu < z.
But then B U {v,v V u,v A z} is a sublattice of L isomorphic to Gy. O

8. REDUCTION TO SEMIDISTRIBUTIVE LATTICES

In this section we will show how to decide whether a finite, linearly inde-
composable, breadth 2 lattice which fails the meet semidistributive law SD A
is small. Dual considerations apply to those lattices which fail to be join
semidistributive. Thus when we have finished this section it will remain to
consider only linearly indecomposable, breadth 2, semidistributive lattices.

Theorem 31. If L is a finite, linearly indecomposable lattice with br(L) =
2, and L does not satisfy SD, then L is big unless L contains a sublattice
{a,b,e,d, f,u,z} isomorphic to D1 (as labelled in Figure 23]) such that
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1.L=D; U 1/d U 1/f (soz=0),
2. L —{a} and L — {c} are small lattices satisfying SDn,
3. a and c are join prime,
4. FQ(a,k(a)) and FQ(c,k(c)) are finite.
If L satisfies conditions 1-4, then it is small.

Proof. Assume first that L is finite, linearly indecomposable, breadth 2, and
fails SDA. We want to show that if L does not satisfy (1)—(4), then it is big.

A finite lattice which fails SD, contains one of Gs, Gg, Gg, G, or Dy
as a sublattice [7], cf. [9], p. 207. Since the first four of these lattices are
big, if L contains one of them then it is big. Thus we can assume that L
contains a sublattice {a, b, c,d, f,u, z} isomorphic to D;. Moreover, we can
choose this sublattice so that every proper subinterval of u/z satisfies SD,.

Claim 1. If b 3 2, then L is big. For suppose there exists p € L — Dy
with b > p > z.

(i)IfpVa=dand pVc=f, then D; U{p} 2 Gg <L.

(ii) f pVa=dand pVe < f, then Dy U{p,pVc} = Gy < L. The case
pVa<dandpVc= fis symmetric.

(iii) f pVa < dand pVe < f, then {p,pVa,b,pVe,d, f,u} is a sublattice
of L isomorphic to Dy, which violates the minimality of the interval u/z.

So we may assume that b > z.

Claim 2. If d  a, then L is big. For suppose d > p > a. As b > z, we
get b A p =0, and hence D; U {p} = G1; < L.

Thus we may assume that d > a, and symmetrically f > c.

Claim 3. If a # z, then L is big. For suppose a >=p > z. If ¢V p < u,
then we claim that ¢V p # f. For if f < ¢V p < u, then we can apply SD
in the interval ¢V p/z, using b >~ z, as follows:

z=bAc=>bApimplies z=0bA (cVp)

whereas b < f < ¢V p, a contradiction. We conclude that either ¢V p = u
orcVp# f.
(i) Suppose bVp < dand cVp # f. If (bVp)A(cVp)=p, then using
SD, in the interval u/p we get
p=(bVp)A(cVp)=(bVp)Aa
=0bVp)AN(aVeVvp)=(bVp) Au=>bVp
a contradiction. Thus p < (bVp)A(cVp) <bVp. Using d > a = p and
b >~ z, we see that {d,a,bV p,(bV p)A(cVp),p,b,z} is a sublattice of L
isomorphic to Gr.
(ii) Suppose bV p =d and ¢V p # f. Using SD, in the interval d/z, we
see that
z=bANa=bA[dA(cVDp)]
=bA(aV(dA(cVp)))
whence, as d > a, we have dA(cVp) < a and thus dA (cVp) = aA(cVp) = p.
It follows that {u,cV p,d,a,p,b, z} is a sublattice of L isomorphic to Gy.
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(iii) If bVp < d and ¢V p = u, then {u,d, f,a,p,bVp,b,c, z} is a sublattice
of L isomorphic to Gqs.

(iv) Finally, if bV p=d and ¢V p = u, then D; U{p} = G1; <L.

We conclude that L is big unless a > z, and symmetrically ¢ > z.

Claim 4. If d # b, then L is big. For suppose d > p > b. Then pV f < u,
for otherwise {u,d,a,p, f,b,z} is a sublattice of L isomorphic to G7. But
then Dy U {p,pV f} is a sublattice isomorphic to Gig.

We conclude that d > b, and symmetrically f = b. Thus most of the
covers in Dy are covers in L, except we may not have u > f or u > d.

Claim 5. If there exists ¢ € L — D; such that ¢ < a and ¢ || 2, then
Dy U{t,t Az} = Gg < L. The same conclusion holds if ¢ < c and t || z.

If there exists t € L — D; such that t < band ¢ || z, then Dy U {t,t Az} =
Gi3 < L.

We conclude that t # a implies t A a < z, and similarly for b and c.

Claim 6. Suppose there exists ¢t € L — Dy with ¢t < d and t £ z.

(i) If t > z then {t,a,b,d, z} is a sublattice of L isomorphic to M3 = Gs.

(ii) If ¢ || 2z, then we may assume that ¢V z = d, or else revert to part (i).
By Claim 5 we have a At = z At = bAt. Thus {¢t,a,b,d,z,z Nt} is a
sublattice of L isomorphic to Gg.

Sofort € L— Dy, t < dimplies t < z. Symmetrically, ¢t < f implies t < z.

Claim 7. Now suppose there exists ¢ € L — Dy with ¢t < w and ¢ £ z. We
want to show that ¢t > d or t > f, so assume that both of these fail.

(i) If t > b, then, using SD, in the interval u/b and the covering relations,
we obtain

b=dAt=fAt=(dVf)At=urt=t

a contradiction.

Thus we may assume that bVt > d or f, say the former. It follows that
fVvt=u.

(ii) If t > a, then z = ¢Ab = cAt, whence either bVt = w or cA(bVE) = z.
In the former case {u,t,d,t Ad,c,z} = G < L, while in the latter case
{u,bVv t,t,d,t Nd,b,c,z} = Gy < L.

Thus we may assume that a V¢ >d (asaVt > f implies a Vit =u > d.

Symmetrically, t > ¢ implies {u,t, f,t A f,a,z} is a sublattice isomorphic
to Gg, so we may assume that ¢Vt > f and hence ¢V t = .

(iii) If ¢ > z and ¢t # a, b or ¢, then by Claim 6 we may assume that
dANt=z=fAt. But then z=aAt=aAb<aA(bVt), whence bVt = u.
This makes {¢,a, f,u,z} = M3 = G5 < L.

(iv) If t # 2, then either bV ¢t = u and {t,a, f,u,2,t A2} 2 Gd <L, or
bVt<wuand {tAzbd f,t,bVvtu} =2Gr; <L.

Thus in each case L is big, so we can assume that for t € L — Dy, t < u
impliest >dort> fort<z.

Now we want to show that if there is an element ¢ € L — Dy with ¢ # d,
t # fand t £ z, then L is big. Together with linear indecomposability,
this implies that if L is small then condition (1) of the theorem holds. So
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assume that ¢ is such an element, and note that by Claim 7 we have either
uANteDjorunt < z.

As br(L) = 2, we may assume that tVu =tVaVe=tVec say. Thus
t ;7_4 C.

(i) Suppose uAt = a. If tVd > u, then {¢,a, z,d,c,u,tVu} is a sublattice
of L isomorphic to G7. If tVd # wand uA(tVd) = d, then D U {t,tVd,tVu}
is a sublattice of L isomorphic to Gi4. But if t Vd #? uw and u A (¢ V d) > d,
then D U {t,tVd,uA(tVd),tVu}isasublattice of L isomorphic to Gis.

(ii) Suppose uAt = b. If tVd = tVu, then {b,d, f,u,t,tVu} is a sublattice
of L isomorphic to the dual of G¢. If t V.d < ¢tV u, then {z,b,c,u A (tV
d), fyu,t,t vV d,t V u} is a sublattice of L isomorphic to Gg, regardless of
whether or not u A (t vV d) =d.

(iii) Suppose u At = z. We can assume that a V¢ > d, or else we revert
to (i). Likewise bVt > d or f, and in the latter case bVt =uVt=dVt also
holds, because f > cand ¢Vt > u. So, regardless of whether dVt < uVtor
dVt=uVt,then {z,t,a,b,d,dVt} is a sublattice of L isomorphic to the
dual of Gg.

(iv) Suppose u At < z. By (iii) we can assume that z V¢ > d. If
dVit <uVtand uA(dVit) =d, then Dy U {z At t,dVtuVit}isa
sublattice of L isomorphic to Gis. If dVt <uVtand uA (dVt) > d, then
Dy —{a} U {zAt,t,dVt,uN(dVt),uVt}is asublattice of L isomorphic
to Gd. Finally, dVt=wuVtyields Dy U{zAt,t,uVt} = Gy; <L.

We conclude from this argument that L is big unless L = D; U 1/d U
1/f U z/0. Since L is linearly indecomposable, we must have z = 0, and
this proves condition (1) of the theorem.

The sublattices L — {a} and L — {¢} are small if L is. They are linearly
indecomposable, and neither can they contain a sublattice isomorphic to D;
with z = 0. Hence if L is small, then they must satisfy SD,. This proves
(2).

Let us show that a is join prime if L is small. Suppose say that a < xVy
properly. Because L = D; U 1/d U 1/f, we must have z, y > f. As
xVy>aV f=u, wecan calculate

b=dANx=dNy<dA(zVy)=d.

Thus one of the five minimal lattices witnessing the failure of SD occurs
as a sublattice of 1/b. A sublattice isomorphic to Gs, Gg, Ggl or GGy makes
L big immediately, and so does a sublattice isomorphic to D; with z > 0.
This proves (3).

Finally, if L is small, then FQ(a, k(a)) and FQ(c, k(c)) must be finite by
Theorem 26l which is (4).

Now assume that L satisfies (1)—(4) and that L < K. We want to show
that K is finite.
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Let k = k(a) and | = k(c). Note that, by SDj,
b=kANd=INf
=kANIAu.

Since br(L) = 2, this implies £k Al = b.

Lemma 32. Let L, S and T be sublattices of a lattice K, and let F' be a
subset of K, satisfying the following properties.

1. S<L<Kand S<T.

2. SUF=Land TNF =0.

3. For everyqe T — S, FUSg({q}US) is a sublattice of K.

Then S <T and TUF = K, whence |K — L| =|T — S|.

Proof. Let g€ T —S. Thengq¢ SUF = L,soL < FUSg({q}US) <K,
whence F' U Sg({q} US) = K. For any other element p € T'— S, we have
p ¢ FsopeSg({qtUS). Thus Sg({g} uUS) =T. O

Claim 1: We may assume that in K, I/d U k/f U 1/u C L. For suppose
that p € K — L and that p is in one of these intervals. Then we can prove
the following, using K = Sg(L U {p}) and the closure of these properties
under join and meet.

1. For all w € K, either w > a or w < k.
2. For all w € K, either w > ¢ or w <.
3. For all w € K, either w > b or w € {0, a, c}.

Now apply Lemma [32] with
S=L-{0,a,c}

T = Sg({p} U S)
F ={0,a,c}.

The properties above are used to verify the conditions of the lemma. The
crucial observation is that w € T implies w > b; hence wVa=wVdeT,
and similarly w V ¢ € T. We conclude that S < T and TU F' = K. Since S
is small by condition (3) of the theorem, and F' is finite, it follows that K is
finite.

Claim 2: We may assume that in K, b > 0, d = a and f > c¢. First
suppose that there exists p € K — L with b > p > 0. Then we can establish
the following series of claims.

1. For all w € K, either w > a or w < k.

2. For all w € K, either w > c or w < [.

3. For all w € K, either w > p or w € {0, a,c}.

4. p is the only element of K — L in b/0.

5. LU{p,pVa,pVc} <K (and hence = K).
It then follows easily that d > a and f > ¢, or else K is finite.

Claim 3: If there exists p € K — L with pjr) = a and plU < [, then K is
finite. For once again in this case we have K =1/a U k/c U 1/u U b/0, and
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using Claim 1 and Claim 2 one can prove that ¢ € K — L implies ¢ € l/a.
Now apply Lemma [32 with

S=L-{c}

T =Sg({p}US9)
F = {c}.

The conditions of the lemma are easily verified, and we conclude as in
Claim 1 that K is finite.

Thus we may assume that [/a C L, and symmetrically k/c C L.

Claim 4: We may assume that in K, a >= 0 and ¢ > 0. Proving this claim
gives us our first chance to use an argument which will recur several times.
It provides, under suitable hypotheses, a sort of converse to Theorem 26l
The last part of the argument (checking closure) will vary slightly in each
application, but the first part is easily formulated into a lemma.

Lemma 33. Let L be a finite lattice which is a maximal sublattice of a
lattice K. Suppose there exists an element p € K — L satisfying the following
properties, where p = a and pL) = b

1. a s meet irreducible in L.
2. There exists a unique largest element m € L such that a A m = b.

3. FQ(a, m) is finite.
Let

M=Sgx{pVz:ze Lnm/b}U{(pVvm)ANy:yeLn(aVvm)/a—{a}}).
Then M is a homomorphic image of FQ(a,m), and hence finite.

Proof. Suppose that L, K and p are as given. Then it is easy to check that
the map h : Q(a,m) — M defined by

pVt iftem/b
h(g) = ¢ (pVm) At ifte(avm)/a—{a}
P ift=a

is well defined and consistent with the defining relations of Q(a,m), as
follows.

L. h(qa) =pP= h(Qa/\m) and h(qm) =pVm= h(Qan)'

2. If s, t € m/b, then h(gsvi) =pV sV it=h(gs)V h(q).

3. If a < s,t <aVm,then a < s At since it is meet irreducible, and thus
h(gsne) = (pV m) As At =h(gs) Ah(q). Clearly h(qq) = p < h(q:) for
all t € (aVm)/a.

4. If s € m/band t € (aVm)/a and s < t, then w.lo.g. t # a and
h(gs) =pVs<(pVm)At=h(q).

Hence h extends to a homomorphism h : FQ(a, m) — M, which is surjective

because the generators of M are in its range. Since FQ(a,m) is finite, so is
M. O
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Now suppose say a > p > 0 with p € K — L. Applying Lemma 33 with
m = k, we conclude that M is finite. It remains to show that L U M is
a sublattice of K, and hence in fact equal to K. (This union need not be
disjoint; in particular, if p V m € L, then it won’t be.)

Let x € L and w € M. Note that p < w < pVm, and that again we have,
for all v € K, either v > corv <I[. If x <k, then x Vw = ((x Vb) Vp)Vw,
which is in M because (xVb)Vp € M. If z > a and either x or w > ¢, then
xVw > u, whence zVw € L by Claim 1. So we may assume that > a and
both z, w < [, whence a < z Vw < [. By Claim 3, this implies x Vw € L.
Since L and M are both sublattices, this shows that L U M is closed under
joins.

Likewise, if © > a then x Aw = ((z A (aVm)) A (pV m)) A w, which is in
M because z A (aVm) >aand so (x A(aVm))A(pVm)e M. If z = a,
then p < z Aw < a, while p < a by Lemma ETJ; thus z Aw € {p,a} C LUM.
On the other hand, if z < k and either x or w <[, then z A w < b, whence
x Aw € L by Claim 2. So we may assume that x < k and both z, w > ¢,
whence ¢ < x Aw < k. Again by Claim 3, this implies * A w € L. Thus
L U M is closed under meets.

Claim 5: If there exists p € K — L with py) = a and plU > u, then K is
finite. In this case we apply Lemma B2l with

S=L—{c}
T = Sg({p} U 9)
F = {c}.

Note that for all w € K, either w > a or w < k.

To verify that ¢ ¢ T (part of condition 2 of the lemma), we show that
¢ is doubly irreducible in K. Since ¢ > 0, it is join irreducible. Suppose
c=w; Awg in K. Then ¢ = ¢ = (w1)) A (w2)[) whence ¢ = (w1)[g) say.
Then a ﬁ w1, so wi < k. But by Claim 3, wy € k/c implies w; € L, whence
w1 = c¢. Thus c is meet irreducible.

To verify condition 3 of the lemma, let ¢ € T'— S and let w € Sg({q} US).
Since ¢ = 0 in K, cAw € {0,c}. If w > a then ¢Vw = uVw € Sg((L—{c})U
{p}). On the other hand, if w < k then ¢V w € k/c, and hence ¢V w € L
by Claim 3. Thus {c} U Sg({q}) U S) is a sublattice of K. As before, we
conclude that K is finite.

The case pjp) = ¢ and plU > 4 is similar. Combining Claims 3 and 5, we
see that if pjy) € {a,c} for some p € K — L, then K is finite. Thus we may
assume that pjy) ¢ {a,c} for allp € K — L.

Claim 6: K is finite. Let p € K — L. Again we apply Lemma [32] with

S=L-{c}
T = Sg({p} US)
F = {c}.
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To verify that ¢ ¢ T, we again show that ¢ is doubly irreducible in K.
Since ¢ = 0, it is join irreducible. Suppose ¢ = w; A wg in K. Then
¢ = c) = (w1)L) A (w2)1), whence ¢ = (w1)) say. By the assumption at
the end of Claim 5, this implies w; € L, and hence w; = ¢. Thus ¢ is meet
irreducible.

To verify condition 3 of the lemma, let ¢ € T'— S and let w € Sg({q} US).
Since ¢ = 0 in K, cAw € {0,c}. On the other hand, cVw = (cVw) Vw €
Sg({q} U S) because (cV w)g) > ¢ by the assumption at the end of Claim 5.

So we conclude that K is finite, as desired. O

Now we can apply Theorem [3T] to find all non-meet-semidistributive min-
imal big lattices.

Theorem 34. The only minimal big lattices which fail SDy are Gs, Gg,
G%l, Gr, Gg, and G; with 9 <1 < 19.

Proof. Let L be a minimal big lattice which fails SD. If L is not isomorphic
to Gs, Gg, Gg or Gr, then L contains a copy of D; and fails one of the
conditions (1)—(4) of the previous theorem. The first half of the preceding
proof shows that if L fails (1), (2) or (3), then K contains a sublattice
isomorphic to some G; with 8 <4 < 17.

It remains to consider minimal big lattices which satisfy (1)—(3), but fail
condition (4). Assume that L is such a lattice.

First, we claim that in L the interval u/d is a chain. For if s and ¢
were incomparable elements in u/d, then sV ¢ < w by condition (3), and
{u,s Vt,s,t,s At f,b,c, 2} would be a sublattice of L isomorphic to G4,,
contradicting the minimality of L. Symmetrically, u/f is also a chain.

Moreover, either u > d or u > f or |u/d| = |u/f| = 3. For otherwise, we
would have say |u/d| > 3 and |u/f| > 3. Then u/d would contain a 4 element
chain u > g > h > dsay, whileuw > m > f. Then D1U{g, h,m}—{a} = Gy,
contradicting (2).

Next, suppose |u/d| = |u/f| = 3, say u = h > d and u > m > f. If
L = D; U {h,m}, then it is straightforward to check that |FQ(a,m)| =
|FQ(c, h)| = 22, whence L satisfies (4) and is not big. But if L is properly
larger than that, then by (1) and (3) there is an element ¢ with say m < ¢ <
uVt. Then Dy U{h,m,t,uVt} —{c} = Gy, again contradicting (2).

Thus we may assume that u > d in L, the case u < f being symmetric.
Let k = k(a) and | = k(c). We will show that F = FQ(a, k) is finite.

We claim that for all w € F', either

Lowe {QZ7 b, 9c;9d N ey @b N ey @ V (Qd A QC)}’ or

ii. we Sgp(Q(a, k) —{qc}) and w > g4 A g5.
It is required to show that the set of elements satisfying (i) or (ii) contains
the generators of F and is closed under meet and join. The argument is
illustrated in Figure The only non-elementary calculation involves g. A w
where w satisfies (ii). Note that (again by induction), for all u € F, either
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U > qeor u < ggear. S0 if w # g, then gq A qr < w < gp=pa;, whence
QaNGe S WA Ge < Qirnl N Ge = Qrrnl N Qu N Ge = qd N e
and w A g, = qq N qe.

FIGURE 24.

It follows that Sgp(Q(a,k) — {gc}) U{de;qa A Ges o A ey @b V (ga A ge) } i
a sublattice of F, and hence equal to F. Therefore F is finite if and only if

Sep(Q(a, k) — {q.}) is finite. However, it is clear that Sggp(Q(a, k) — {q.})
is a homomorphic image of FL(Q(a, k) — {¢.}), and the latter is finite by
Theorem 26]since L — {c} is small. Hence F is finite, as claimed.

That leaves us to consider when H = FQ(c,1) will be infinite. If u > f,
then an argument symmetric to the preceding one would make H finite, and
L not big, contrary to assumption.

Next suppose |u/ f| = 3, with say u > h > f. We want to use an expanded
version of the preceding argument to show that H would again be finite.

First, we need to show that [ > d. For if [ = n > d, then either uVn = uVI,
in which case {uVl,u, h, f,c,l,n,b,d, z} = Ggo < L—{a}, a contradiction, or
uVn < uVlI, in which case {uVi,uVn,u,h, f,c,l,n,b,d, z} = Ggl < L—{a},
another contradiction.

The case | = d is easy, and yields [FQ(c, d)| = 12, contrary to assumption.
So w.lo.g. [ > d.

We claim that for all w € H, either

Lo w € {q 95,94 Nfs das Ga N Qs da NGF> da N ahy BV (Ga A Gf), @b V (ga A
an)s 45V (9aA@), (@aNgf)V (9aAGh), 45 NavV (2aNGn))s qaN(arV(daNNan)) }
or

ii. w e Sgu(Q(c,l) —{qga}) and w > g4 A gp.

Again we must show that the set of elements satisfying (i) or (ii) contains
the generators of H and is closed under meet and join. The argument is
illustrated in Figure B5. The non-elementary calculations involve g, A w and
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(g V (ga A qn)) AN w where w satisfies (ii). For the first of these, we use the
fact that for all uw € H, either u > g, or u < g+, to show that g, A w
is either ¢, or g4 A g, similar to before. For the second, we observe that
for all w € H, either u > g or u < gq (using [ > d). If w > g then
w > qpV(qaNgn) > qpV (ga A qn), while if w < gg then gg A g, < w < qq
implies w A (qf V (¢a A qn)) = aa A (a5 V (ga A an))-

A Q= qr

2 2 kAl

FIGURE 25.

It follows that Sgg(Q(c,1) — {¢a}) U{da>9a A @y da AN Gfsqa N Gryqy V (qa A
a5), @V (@a Nan), a5 V (da A @), (qa N ar) V (da Aan), g5 A @y V (qa A Gr))s qa A
(gr V (ga N qn))} is a sublattice of H, and hence equal to H. However,
Sex(Q(e, 1) — {qa}) is a homomorphic image of FL(Q(c, 1) — {qs}), and the
latter is finite since L — {a} is small. Hence H is finite, as claimed. We
conclude that |u/f] > 3.

Let w > h > m > f. If perchance k(c¢) =1 > d, then Dy U{h,m,l,IVu} is
a sublattice of L isomorphic to Gig. Thus we may assume that d = k(c). In
that case the sublattice which determines Q(c,d) is u/c U d/0 = Dy Uu/f.
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If |u/f| = 4 then |[FQ(c,d)| = 24, and L would be small, while if |u/f| > 5
then Gig < L, and that is big.
This completes the proof of the theorem. O

9. DouBLY PRIME UNITS

In this section we will be concerned with showing that certain finite,
breadth 2, semidistributive lattices are big.
Definition. A subset F of a finite lattice L is a join prime unit if

1. E={ep,...,ep} with k> 0and eg <e; <+ < eg.
2. eg is join prime.

3. e; is doubly irreducible for 0 < j < k.

4. ey is join irreducible.

So with every join prime element p we can associate a maximal join prime
unit E(p). Note that in E(p), either e, is meet reducible or e} is join
reducible.

Definition. A join prime unit is doubly prime if also

5. e is meet prime.

Recall that in a lattice satisfying SDy,, the canonical joinands of 1 are join
prime.

Theorem 35. Let L be a finite, linearly indecomposable, breadth 2, semidis-
tributive lattice with 1y, = p V r canonically, and let E(p) and E(r) denote
their respective join prime units. If neither E(p) nor E(r) is doubly prime,
then L is big.

The proof of Theorem B3] can be simplified along the following lines. Let
L be as in the theorem and 11, = p V r canonically. Let E(p) = {eo,...,ex},
where of course ey = p, and let S be the sublattice L — {eq,...,ex_1}. Note
that ey, is a canonical joinand of 1 in S, and that E(p) is a doubly prime unit
of L if and only if {ex } is a doubly prime unit of S. Moreover, if S is big, then
so is L. Hence we can assume that F(p) = {p}, and similarly E(r) = {r}.
(This reduction applies only to the proof of Theorem [35, because we are
trying to show that lattices without a doubly prime unit are big; it does not
apply to the next section.)

The assumption that E(p) = {p} means that either p is meet reducible,
or p is meet irreducible and p* is join reducible. The proof will divide into
cases according to which of these properties hold for p and r. The next
lemma gives more information about the case when p* is join reducible.

Lemma 36. Let p be a join prime element in a finite lattice L with E(p) =
{p}. If p is meet irreducible, then p* = pV (p* A k(p)) properly.

Proof. If p is meet irreducible, then p* is join reducible, say p* = = V y
properly. One of these elements, say x, is incomparable with p. Thus z <
p* AK(p), so p* Ak(p) % p. Since p* > p, this implies p* = pV (p* Ak(p)). O
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Throughout the rest of this section, we will let £ = k(p) and | = &(r).
Note that these are coatoms of L.

Lemma 37. Let L be a finite, breadth 2, semidistributive lattice. If p is
join irreducible and p = p1 Apa, then either p1 Ak(p) = px or pa AK(p) = ps.

Proof. Use the breadth 2 property on p, = p1 A p2 A k(p). O

Lemma 38. Let L be a finite semidistributive lattice which contains ele-
ments p, r, p1, p2 such that

1. 1y, = p V r canonically,

2. p = p1 A p2 canonically,

3. p1 AK(p) = s,

4. p V1 < Kk(p).
Then L contains a sublattice isomorphic to one of the big lattices Gogy, Gay,
Gaa, or Gog. Hence L is big.

Proof. With k = k(p) and [ = k(r) as usual, choose ' such that p,Vr <1’ <
k, and let S = Sg({p1, p2,7’, k}). Note that for all w € S we have w > r’ or
w < p1 V py exclusively, since p; Vpy < 1. Hence 1 = pV 7’ canonically in S,
and dropping the prime we may as well assume that p, <r < k.

Next choose p) such that p < p| < p1, and note that ps < p/ V ps since py
is a canonical meetand of p. We claim that k A (p} V pa2) < pa, for otherwise
SDy would yield py Vpa = (kA (py Vp2)) Vp2 = (p) Ak) Ve = pa, a
contradiction. Thus

kA (p1Vp2) =k Aps
r A (py Vp2) =7 A pa.
These equations are used repeatedly in the following calculations.

If po Ar = py, then by SDA we have p, = p1 Ak =pa AT = (p1 Vp2) AEk.
In that case S is isomorphic to Gyp.

So let us assume that po A7 £ p1. Observe that p < pV (r A p2) < po. If
perchance kA (p} V (r Ap2)) <, then {p},p,ps, Py V (r Ap2),pV (r Ap2),7 A
p2, 1,k,r} is a sublattice of L isomorphic to Goj.

Thus we may assume that k A (p} V (r A p2)) £ r, so that » Vv (k A (p} V
(r Ap2))) = k. If it happens that k A (p} V (r A p2)) < pV (r A p2), then
0,00 p1 V(1 Ap2),p V(1 Ap2),k A (P V(1 Ap2)),m Ape, Lk T} is a
sublattice of L isomorphic to Gas.

So let us assume that kA (p} V (r Ap2)) £ pV (r Apz). Then check that
(P10, s, PV (1 A2), PV (1 Ap2), kA (P V (1 Ap2)), kA (pV (T Ap2)),pV (kA
(P} V (r Ap2))),1,k} (omitting r and r A ps) is a sublattice of L isomorphic
to Gas. (Alternately, since Gog is a splitting lattice, we can check that its
splitting equation fails in L.) O

Lemma 39. Let L be a finite, breadth 2, semidistributive lattice. Assume
1. 1, =pVr and r = r1 Arg, both canonically,
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2. (kAN Vr =k, where k = rk(p) and | = k(r).
Then L contains a sublattice isomorphic to one of the big lattices (Goyg or
Gos, and hence L is big.

Proof. Let S = Sg({k,l,r1,m2}). For all w € §, either w > [ or w < k
exclusively. Hence in S we have 1 = [V r canonically, and 1 > [. Since
(kAN Vr =k, we have k = k Al. By Lemma B7] say m Al =r,. It follows
that r1 V ro < k, because r1 V ro = k would imply by SD, that

k=riVro=rA(kVI)
=rV(ri Al)V(ra Al)
=rV(rg Al)
< 72,

which is a contradiction since r; < k.

If also 79 Al = 74, then by SDA we have (r1 V ry) Al = r,. In that case
{1k, l,kAl,r1 V1o, m1,79,7,74} is & sublattice of L isomorphic to Ge4. Thus
we may assume that ro AL £ ry.

Choose 7} such that r < 7§ < ry, and note that 7o < r] V ra. Then
LA (1) Vra) < rg, for otherwise SDy would yield 7y Vg = [[A(r] Vire)| Vg =
(r] A1) Vre =19, a contradiction. Thus {1,k, [,k Al,ra AL,V (rg AL), 71 V
(ro Al),r],r,ry} is a sublattice of L isomorphic to Gas. O

Now we consider the first possibility in the proof of Theorem

Case 1: p and r are both meet reducible. In this event, Lemma B8 implies
that either one of Gog, Go1, Gog or (o3 is a sublattice of L, or p, Vr = k.
In the former case L is big, while in the latter Lemma B9l implies that Goy
or Gos is a sublattice of L, whence again it is big.

Lemma 40. Let L be a finite, breadth 2, semidistributive lattice with 1y, =
pVr and r =11 Ary, both canonically. Assume that L contains no sublattice
isomorphic to any G; with 20 < ¢ < 23. Then for any element t with
p <t < k(r) we have t =pV (r At); in particular, r At £ p.

Proof. Apply Lemma to Sg({r1,r2,p,t}), with p and r interchanged,
noting that in this sublattice x(r) = ¢ and r, =7 At. O

Lemma 41. Let L be a finite, breadth 2, semidistributive lattice. Assume
1. 1, =pVr and r = r1 Arg, both canonically,
2. e Vp=1andri Nl =r., where l = k(r).
3. ro Ap <1y
Then L contains a sublattice isomorphic to one of the big lattices G4, or
G4;. Hence L is big.

Proof. 1f it happens that ro Al = 7., then by SD, we have r, = (r1 V7o) Al
In that case {1,l,p,p Ar,r1 Vre,r1,72,7, 74} is a sublattice of L isomorphic
to the dual of Go4. Thus we may assume that ro Al f 1.
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Choose 7} such that r < 7§ < ry, and note that 7o < r] V r. Then
LA (1) Vra) < rg, for otherwise SDy would yield 7} Vg = [[A(r] Vire)| Vg =
(riAl)Vry = rq, a contradiction. However, pAr = pAr] = pArg = pA(r]Vra)
does hold by SD. Thus {1,1,p,ra AL,rV (ra AL), 7y V (ra AL), vy, ryre,p A1}
is a sublattice of L isomorphic to G. O

Since the conditions in (2) of Lemma M must hold if L is to be small,
we can now assume that (3) fails when (1) holds, i.e., that 7o Ap £ r. In
particular, this means that p, £ r.

Recall that, because L satisfies SD,, if p is not meet prime then there
exists € L such that p # x and p > p* Az. (If p > x A y properly, then
either p > p* Az or p > p* Ay, for otherwise p* = pV (p*Az) =pV (p*Ay) =
pV (p* Ax Ay) = p, a contradiction.)

Lemma 42. Let L be a finite, breadth 2, semidistributive lattice. Assume
that there exist elements p, x, u € L such that

1. p is join prime and meet irreducible,

2. x £ pandp* ANz <p,

3.p>pe>u>pAx,

4. xVu Z D,

5. p* A(xVu) £p.
Then L contains a sublattice isomorphic to one of the big lattices Gg7 or
G4;. Hence L is big.

Proof. These conditions ensure that {p*,p,p«,p A (x Vu),p Az, pV z,ps V
r,xVu,z,p" A (peVa),p* A(xVu),p.V(p*A(xVu))}is a sublattice of L.
If p. V (p* A (x V u)) = p* A (ps« V ), then it is isomorphic to GY.; if not,
then to G. U

Lemma 43. Let L be a finite, breadth 2, semidistributive lattice. Assume
that there exist elements p, x, t € L such that

1. p is join prime and meet irreducible, and p* A k(p) £ p,

2. x £ pandp* ANz <p,

J.r<t<p.Veu,

4. p* Nt <p.
Then L contains a sublattice isomorphic to one of the big lattices Ggl or
G4, and hence L is big.

Proof. Note that p* A (ps V x) £ p, or else p, = p* A (ps« V) = p A K(p)
would imply by SDx that p, = p* A k(p), contrary to (1). If p* At < z, then
{p*,p, s, DV 2,0V, p" AN (P V), t,x,pAx} is a sublattice of L isomorphic
to G4,. On the other hand, if p* At & x, then {p*,p,ps,p V 2, ps V 2,p* A
(p« V), pAt,zV (pAt),z,pAx} is a sublattice of L isomorphic to Gg,. O

Combining the two preceding lemmas, with the substitution ¢ = x V u in
the second, we can eliminate the fifth condition of Lemma [42]
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Lemma 44. Let L be a finite, breadth 2, semidistributive lattice. Assume
that there exist elements p, x, u € L such that

1. p is join prime and meet irreducible, and p* A k(p) % p,
2. x £ pandp* ANz <p,

3.p>pe>u>pAx,

4. xVu 7,>_4 D

Then L s big.

Lemma [44] will be used most often with u = p A7, < r and p, £ r,
which makes (4) automatic.

Now we can deal with the next case of the proof of Theorem

Case 2: pis meet irreducible (but not meet prime) and r is meet reducible
(or vice versa). Thus r = r; A rg, and there is an element z € L such that
p # x but p > p* A xz. We may take = to be minimal with respect to = £ p,
so that z is join irreducible and x, = p A x. We want to prove that L is big.

By Lemma [38 we may assume that r, Vp = [, and since L has breadth 2,
r1 Al = ry. Thus by Lemma FI] we may assume that ro A p ﬁ r.. 1t follows
that p, £ 7 and p A1 < ps.

By Lemma[Qlwe have x # r, and hence x < [. If 2 < r, then we can apply
Lemma 44 with v = p A r to show that L is big. Checking the conditions of
the lemma, (3) holds because p A7 = p Az = p* A x would imply by SD,
that p Ar = p* Ar, while by Lemma H0] p* Ar £ p. For (4), 2V (pAr) <r
implies py £ 2V (p A ), since py £ 7.

Thus we may assume that z € r. Then p < p* < pVa < pVr, =1
because pV z = p V r, would imply pV z = pV (x Ar), while £ r implies
zAr <z, <p. Using Lemma and the fact that ry Al = r,, we see that
{p,p*spVae,pVro,LipAr,p" Ar,(pV z) Ar,rs, 7,71} is a sublattice of L
isomorphic to Gss.

This leaves the case where both p and r are meet irreducible.

Case 3a: p and 7 are meet irreducible, p* Ar < pand 7* Ap < r. It
follows by SDA that p Ar = p* Ar*.

Now p, < r* would imply by SD that p, = p* Ar* = p Ak = p* Ak,
contrary to our assumption that p* Ak £ p. Thus p, £ r*, and so r < r* <
ps V r. By Lemma 3] this implies that L is big.

Case 3b: p and r are meet irreducible, p* Ar < p, r* Ap £ r, and
there exists y € L with r* Ay < r properly (or vice versa with p and
r interchanged). As usual, we may choose y minimally, so that y is join
irreducible and y, < r.

First suppose that p, £ 7*. Then we can apply Lemma (4] with x = r
and u = p Ar* to show that L is big. Checking the conditions of the lemma
requires the observation that r VvV (p Ar*) = r* < p, V7.

Thus we may assume that p, < r*. This in turn implies y £ p, and so
pAYy <y, <r. Hence p Ay < r Ay. Equality cannot hold by SD,, so
pAy <rAy=y. Thusy, £p.
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Consider p* A r* Ay, which is below p Ar. Now p* Ar* £ r and r* Ay =
ys % p. As br(L) = 2, we must have p* Ay =p* Ar* Ay <.

Also note that pAr £ y. For otherwise SD would yield p* Ay = p* Ar =
p* A (rVy) > p* Ar*, whereas p* Ay <r and p* Ar* £ r.

These preliminaries provide the setup for us to apply Lemma B4 with = =
yx and u = pAr. Checking the conditions of the lemma uses y. V (pAr) <7,
and p, £ r because p Ar* £ r.

Case 3c: p and r are meet irreducible, p* Ar £ p, 7* Ap £ r, and there
exist z, y € L such that p* Az < p and r* Ay < r properly. Again we may
take x and y to be join irreducible, with z, < p and y, < r.

First note that p, ¢ r, for otherwise r* Ap < p* < r, contrary to assump-
tion. Likewise 7, £ p.

If perchance x < r, then we can apply Lemma [4] with = as itself and
u = p A r. For condition (3) we have p Ar > p A x because p Ar = p* Az
would imply by SDx that pAr = p*A(rvz) > p*Ar* > pAr, a contradiction.
Again we use z V (p A1) < r.

Thus we may assume that z ¢ r, and likewise y £ p. In this case we
can apply Lemma (4] with x = y, and u = p A r. We need to observe
that p Ay < yo < r. Thus pAr £ ys, as pA 7T = p Ay would imply
pAT=pA(rVy)>pAr*>pAr, acontradiction.

This completes the proof of Theorem B5l

Corollary 45. Let L be a finite, linearly indecomposable, breadth 2, semidis-
tributive lattice with 1y, = p V r canonically, and let E(p) and E(r) denote
their respective join prime units. If neither E(p) nor E(r) is doubly prime,
then L contains a sublattice isomorphic to an G; with 20 < i < 28, G,,
Ggg) or G53.

10. SEMIDISTRIBUTIVE LATTICES WITH A DOUBLY PRIME UNIT

It remains to decide which breadth 2, semidistributive lattices with a
doubly prime unit are big.

Theorem 46. Let L be a finite, linearly indecomposable, breadth 2, semidis-
tributive lattice containing a doubly prime unit E = {eg,...,en}. Then L
1s small if and only if the following conditions hold.

1. L — E s small.

2. For each b < ey, the finitely presented lattice FQ(eg, A(b)) is finite,
where A\(b) = \/{x € L : eg Nz = b}.

3. For each a > ey, the finitely presented lattice FQ(u(a),ey) is finite,
where p(a) = N{r € L:e, Vx=a}.

Note that these conditions are clearly necessary for L to be small. So
assume that L satisfies (1)—(3) and that L < K. We want to show that K
is finite.

Let k = k(eg), | = K'(en), u =€, v = eps, uy = uAk and vt = v VL.
Note that u = u, and v < v*. The situation is diagrammed in Figure
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FIGURE 26.

Claim 1: If there exists p € K — L with ey < p < ey, then K is finite.
For it is easy to see that in this case L U {p} is a sublattice of K, and hence
equal to K.

Thus we may assume that eg < p < e, implies p € L.

Claim 2: If there exists p € K — L withp € 1/u U k/l U v/0, then K
is finite. For in this case we can prove the following, using K = Sg(L U {p})
and the closure of these properties under join and meet.

1. For all w € K, either w > eg or w < k.
2. For all w € K, either w > 1 or w < e,.
. Foralwe K,we E U 1/u U k/l U v/0.

Now apply Lemma [32 with

S=L-F
T = Sg({p} US)
F=E.

The properties above are used to verify the conditions of the lemma. We
conclude that S < T and T"U E = K. Since S is small by condition (1) of
the theorem, and F is finite, it follows that K is finite.

Thus we may asume that in K, 1/u U k/l U v/0 C L.
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Claim 3: Iffor allp € K — L, pl* ¢ F and py; ¢ E, then K is finite. In
this case we again apply Lemma [32] with

S=L-F
T = Sg({p} US)
F=E.

To verify that T N E = (), we show that each e; is doubly irreducible in K.
Suppose e; = wy Awy in K. Then e; = (e;)r) = (w1)) A (w2)1), whence
€ = (wl)[L} say. By our hypothesis, this implies that w; = e;. Thus each e;
is meet irreducible, and dually they are join irreducible.

To verify condition 3 of the lemma, let ¢ € T'— S and let w € Sg({q}U.S).
Then for any i we have e;Vw = (e;Vw)yVw. If e;Vw ¢ L, then (e;Vw)r) >
e; implies (e; V w)) > u, whence e; Vw € L by Claim 2, a contradiction.
Hence e; Vw € L C EUSg({q} US). Dually, e; Aw € EUSg({q} US).

Thus we may assume that, say, there exists p € K — L with pl € E.

Claim 4: If there exists p € K — L with pl € E, then K is finite. Let
plt = e, with s minimal, and let p) =b. By Claim 1,b ¢ E so b <wv. Let
m = A\(b), so that for x € L and e; € E, we have e; A (bV z) = b if and only
if b <m.

Now by Lemma B3] the sublattice

M= Sgx({pVe:x e Lnm/b}U{(pvm)Ay:y € LN(esVm)/es—{es}})

is finite, since M is a homomorphic image of FQ(es, A(b)), which in turn is
a homomorphic image of FQ(eg, A(b)), which is finite. It remains to show
that L U M is a sublattice of K, and hence equal to K.

Note that since K is generated by L U {p}, the following hold.

1. For all w € K, either w > [ or w < e,.
2. For all w € K, either w > porw <k or w=¢; withi € {0,...,s—1}.

Showing that the second condition is closed under meets and joins requires
a little care. Consider e; V w with ¢ < s and w € K. If w > [ then
e, Vw > u > e; > p, while if w < e, then ¢; < ¢; Vw < e,, whence
e; Vw € E by Claim 1. In either event the condition follows. On the other
hand, e; > e; A w implies e; Aw € L, whence e; Aw € Eor e; Aw < u < k.

It follows from (2) and v/0 C L (Claim 2) that p is the only element of
K — L in e4/0.

Now let x € L and w € M. Note that p < w < pV m. First we consider
rVuw.

1. If x € F and w < ey, then x Vw € e,/ey, and hence x Vw € E by
Claim 1.

2. If x € E and w > [, then z Vw > u, and hence x V w € L by Claim 2.

3. If x >u,thenxVwel/uC L.

4. If £ <m, then zVw = ((z Vb) Vp) Vw € M because (zVb)Vpe M.
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If:cgkbutxfm,then
sNVw=zxzVwVesAbVI)|Vp
=xVwV e,

because b < es A (bV z) < v. (This case does not arise when b = v
because m = k.) Thus if z or w > [ then z V w > w, while if z and
w < e, then e; < xVw < e,. Either way, z Vw € L.

Now consider z A w.

1.
2.
3.

4.

Ifx <kand x Aw>1, then x Aw € k/l C L.
fex<kandzAw<e,, thenzx Aw < kAe, =wv,s0again xt Aw € L.
If z > e, then

zAw=1[zA(esVm)A(pVm)Aw

which is in M because [z A (es Vm)] A (pVm) e M.
If x = ¢; with 0 <7 < s, then x Aw € L since p is the only element of
K — L in e,/0.

Thus LUM is a sublattice of K. So LUM = K and K is finite, completing
the proof of Theorem [46.

Corollary 47. If L is a finite, breadth 2, semidistributive, minimal big
lattice containing a doubly prime unit, then there exist x, y € L such that L
is the disjoint union of 1/x and y/0, and FQ(x,y) is infinite.

11. AN ALCORITHM FOR DETERMINING SMALLNESS

Combining all the previous results yields an algorithm for determining
whether a finite lattice is big or small.

Theorem 48. Let L be a finite lattice.

1.

2.

If L is linearly decomposable, say L = Lo + Ly, then L is small if and
only if both Ly and L1 are small.

If L is linearly indecomposable and br(L) > 2, then L is big unless
L = Bj3, and Bjs is small.

. If L is linearly indecomposable, br(L) = 2, and L does not satisfy

SDx, then L is big unless L contains a sublattice {a,b,c,d, f,u,z}
isomorphic to Dy (as labelled in Figure 23]) such that
i. L=D; U 1/d U 1/f (soz=0),
ii. L—{a} and L — {c} are small lattices satisfying SDx,
iii. a and c are join prime,
iv. FQ(a,k(a)) and FQ(c,k(c)) are finite.
If L satisfies i-iv, then it is small.

. The dual criterion applies if L is linearly indecomposable, br(L) = 2,

and L fails SDy.

. If L is linearly indecomposable, semidistributive, br(L) = 2, and 1y, =

p V r canonically, and the join prime units E(p) and E(r) are neither
one doubly prime, then L is big.
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6. If L is linearly indecomposable, semidistributive, br(L) = 2, and L
contains a doubly prime unit E = {eg, ... e}, then L is small if and
only if the following conditions hold.

i. L —F is small.
ii. For each b < ey, the finitely presented lattice FQ(eg, A(b)) is finite,
where A\(b) = \/{x € L : eg Nz = b}.
iii. For each a > ey, the finitely presented lattice FQ(u(a), ey,) is finite,
where p(a) = N{fr € L:e, Vx=a}.

12. THE LARGEST MINIMAL EXTENSION OF A SMALL LATTICE

Let us note one more interesting consequence of the arguments given so
far. As we have seen, there are other types of minimal extensions besides
those given by the construction of Theorem [26. However, in this section we
will prove that, for small lattices, the construction always gives the largest
minimal extension.

Theorem 49. If L is a small lattice with |L| > 1 and L < K, then |K| <
|L| + ¢ where ¢ = max(|[FQ(x,y)| : z,y € L and z || y).

This justifies the bounds given for minimal extensions of small lattices in
Section 5. We should note that it is not obvious that a small lattice has a
largest minimal extension. For example, the one element group is small as
a group, but {0} < Z, for all primes p. See Section 20 for a discussion of
these properties in other varieties.

For a finite lattice L with |L| > 1, let

(L) = max(|K| : L < K)
and let 0(L) = u(L) — |L|. Moreover, define
q(L) = max([FQ(p, k)| : p,k € L and p || k).

Our goal is to prove that 6(L) = ¢(L), and thus p(L) = |L| + ¢(L).

Of course, by the construction of Theorem 26] we have 6(L) > ¢(L). The
proof of the reverse inequality is by induction on |L|. The following facts
are relevant.

Fact 1. If S <L, then 6(S) < 4(L).

Fact 2. If S < L, then ¢(S) < ¢g(L).

These are consequences of the proofs of Theorems [7] and respectively.
(Theorem B3] will be proved later in this section.)

The only small lattice of breadth 3 or more is Bg, for which 6(B3) =
q(B3) = 6. See Figure [0

For non-semidistributive lattices, we refine Theorem Bl as follows.

Theorem 50. Let L be a finite, linearly indecomposable, breadth 2 lattice
which does not satisfy SDA. Then either L is big or L contains a sublattice
{a,b,e,d, f,u,z} isomorphic to Dy such that

1. L=D; U 1/d U 1/f (so z=0),

2. L —{a} and L — {c} satisfy SDn,
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3. a and c are join prime,

4. 6(L) < max(6(L — {a}),6(L — {c}), [FQ(a, k(a))], [FQ(c, K(c))])-

The details are provided by applications of Lemmas B2land[33l Whenever
Lemma[32]is applied, we are in a situation with S <L < K and S < T; the
conclusion is that S < T and |K — L| = |T'— S|. Whenever Lemma B3] is
applied, we are in a situation with L < K and K = L U M; the conclusion
is that |M| < |FQ(a,m)| for some a, m.

For semidistributive lattices, first recall that by Theorem [B5] a finite, lin-
early indecomposable, breadth 2, semidistributive lattice which is small must
contain a doubly prime unit.

Finally, we refine Theorem 46l as follows.

Theorem 51. Let L be a finite, linearly indecomposable, breadth 2, semidis-
tributive lattice containing a doubly prime unit E = {eg,...,en}. Then
either L is big or

0(L) < max(d(L — E), |[FQ(ep, A(b))| for all b < ey,
[FQ(v(a),en)| for all a > ey,)
where A(b) =\/{zr € L:egNz=0b} andv(a) = N\{r € L:e,Vr=a}.

So we conclude by induction that every small lattice has a largest minimal
extension, given by the construction of Theorem 26l

This is an appropriate place to discuss the structure of small lattices, even
though we must use some results from later on. For non-semidistributive
small lattices, we have the structural Theorem 31 and its dual. As an addi-
tional comment, let us show that a small semidistributive lattice is bounded
(in the sense of McKenzie).

We need to recall the relations A, B, and C' = AUDB on the join irreducible
elements of a finite semidistributive lattice, and also to recall that a finite,
nonbounded, semidistributive lattice contains a minimal C-cycle which con-
tains both A’s and B’s. (See e.g. [5], Chapter II, Section 5.) These relations
are defined by

pAq ifg<p<qVk(g),
pBq ifp#q, p<p.Vgandp L p.V g,
pCq if either pAqor pByg,

where £(q) denotes the largest element x such that ¢ A z = g..

Theorem 52. Let L be a finite, breadth 2, semidistributive lattice. If L
contains join irreducible elements p, q such that p AqBr and not pBr,
then L is big.

Proof. Let | = k(q), and note that r, <1 < I* = gV I but r £ I* else
I*=rvi=qVIi=(qgAr)Vi=1I, a contradiction.
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Ifp £ qVr, thenl, pVr,, ¢Vris a3 element antichain in Q(r,1*), and L
is big by Theorem[62l (If I < pV 7y, then I* =qVI=pVr.=qV(Ap)Vr,,
while no two of these terms join above p.)

So we may assume that p < ¢V r < p, Vr. Since not p Br, this implies
p < pi V1. But then, in Q(g«,7), the elements py, p, g« V r, satisfy the
conditions of Lemma [66, making L big. O

FQ(p, k) and Sublattices. The finitely presented lattice FQq,(p, k) is de-
termined by the sublattice (p V k)/p U k/(p A k) of L. The following result
summarizes how the cardinality of FQy,(p, k) depends on the parameters L,
p and k.

Theorem 53. Let L be a finite lattice with L = (pV k)/p U k/(p A k).
Suppose there is a sublattice S of L containing elements p' > p and k' < k.
Then |[FQg(p', k)| < |FQL(p,k)|. In particular, if FQg(p', k') is infinite,
then FQq,(p, k) is infinite.

Let us begin with the case when p’ = p and k¥’ = k. Note that this case
suffices to prove Fact 2 above: If S <L, then ¢(S) < q(L).

Lemma 54. The conclusion of Theorem [53) is true if p’ = p and k' = k.

In fact, the argument for this lemma works if p’ = pV (p’ A k') and
K =kA (@@ VE), but not in general.

Proof. Let Qu(p,k) = {¢ : t € L} with & = gpvx and g, = gpak, and
Qs(p,k) = {rs : s € S} with 7, = rpy, and rp, = 1,0 We prove that
FQg(p, k) is a homomorphic image of Sg({gs : s € S}) in FQp(p, k). Let
X ={zs : s € S}, and let f : FL(X) — FQq(p, k) and g : FL(X) —
FQg(p, k) be the natural maps with f(zs) = ¢s and g(zs) = rs. We want
to show that ker f < ker g, i.e., that f(u) < f(v) implies g(u) < g(v). The
proof is by induction on the complexities of u and v.
First we need another lemma.

Lemma 55. Let L, p, k, S be as above. If w > q; withw € Sg({qs : s € S})
and t € LN k/0, then there exists t' € SN k/0 such that w > qy > q;.

Proof. Again we use induction on the complexity of w. If w = ¢5; with s € S,
take ' = s A k.

Suppose \/ w; > ¢;. Then there exists U C L such that {q, : v € U} <
{wy,...,wi} and ¢ <\ q,. Without loss of generality U C k/0, as every
proper join in Qy, refines to one of this type. For each u € U there exists
w; such that ¢, < w;, and by induction there exists ' € S N k/0 with
Gu < quw < w;. Let U’ denote the set of all such v’ for v € U. Then
% <Vau <V aquw =qyur <V wi, so we can take t' = \/ U".

Suppose A w; > ¢. By induction, for each i there exists t; € SN k/0
such that w; > gy > ¢ Since t; > t for each i, we have At; > ¢t and
At; € SN k/0. Moreover, Aw; > A\gy > qpy > qu, as desired. O
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Now we proceed with the proof. First suppose u and v are generators, say
u = x5, and v = x5, with s1, s5 € S. Then f(zs,) < f(zs,), 1€, g5, < ¢s,
holds if and only if 57 < sy or s1 = p or s3 = k. Hence g5, < ¢s, implies
sy < Ty, L€, 9(@s;) < g(2s,)-

The cases where u is a join or v is a meet are easy.

Suppose u is a generator and v is a join, say u = x5 and v = \/ v;. Then
f(u) < f(v) means g5 <V f(v;) in FQq,(p, k). This refines to a join cover
s < V{q :t € T} with T'C LNk/0, and either s < \/T or \/ T = k. For
each t € T there exists 7 such that ¢; < f(v;). By the lemma above, there
exists ¢ € SN k/0 such that ¢; < qv < f(v;). Let T” denote the set of all
such ¢’ for ¢t € T. By induction, we have g(zy) < g(v;) for all ¢/ € T". If
5 < \/Tv then g(zs) = rs < Ty = g(\/t/eT’ zy) < g(\/vi) = g(v)' But
if /T =k, then k = \/T' € S implies r; < \/g(v;) as before, whence
g(xs) =rs < rpur =1 < g(V v5).

Dually, the claim holds when u is a meet and v is a generator. The final
case, when u is a meet and v is a join, follows from the fact that FQy,(p, k)
satisfies (W). O

Lemma 56. The conclusion of Theorem B3] is true if p' = p and p ANk <
K <kand S=pVEK/pUK/pAk.

Applying Lemma [54, then Lemma 56, and then the dual of Lemma
yields the proof of Theorem

Proof. Let R = Qs(p, k') = {rs : s € S} with 7 = rpyp and rp, = 70, and
let FR = FQg(p, k).

Step 1. Using the construction of Theorem 26 glue FR into L to form
the lattice C = LUFR. We take A = (pV k)/p and B =k'/(p A k), and
use the homomorphisms «, 3 extending

ap(re) = a forae A,
ap(rp) =pVb forbe B,
Bo(re) =K Na fora € A,
Bo(ry) = b for b € B.

Step 2. The element p is completely join irreducible in C, with lower
cover p, = rp = rpar. Hence C' = C' — {p} with the inherited order is also
a lattice. The join operation in C’ agrees with that in C, while the meet
operation differs only in that z Ay = r, in C’ whenever z Ay = p in C.

Step 3. Let L' = L — {p}, and let

M=Sgc({rp,Vs:se LNk /pANk}U{(r,VE)At:te L'n(pVEk)/p}).
Note that

itk =k
rpVk= pvk >
pV k otherwise.
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So M C 1/rp, but usually M ¢ FR. However, M D R, since r, =1, V b if
b € B, including 7 = 7y, and vy = ((rp V k) Aa) Arpyi if a € A — {p}.
Hence M > FR, as the latter is a sublattice of C’, and C' = L' U M.

Step 4. Now let h : Qr(p, k) — M be defined by

rp V'S if sek/pnk,
h(gs) = (rp,VE)As ifteL'n(pVEk)/p,
Tp ifs=p

As in the proof of Lemma B3l check that h respects the defining relations
of QL(p, k). (The modification required is that if a A @’ = p properly in
L, then h(g,) A h(ge) = (rp V k) NaAd’ = r, in C'.) Hence h extends
to a homomorphism A : FQq, (p,k) — M, which is surjective because the
generators of M are in its range. Since M is infinite, so is FQq,(p, k). O

13. CHARACTERIZING SMALLNESS BY EXCLUDED SUBLATTICES

The algorithm of the preceding section can be refined to a characterization
of small lattices in terms of excluded sublattices, to wit:

Theorem 57. A finite lattice is small if and only if it contains none of the
145 manimal big lattices G; or sz with 1 <1 < 81 as a sublattice.

The 145 minimal big lattices come in 81 different types up to dual iso-
morphism, 17 of which are self-dual and 64 of which are not.

We can summarize the reduction to the semidistributive, breadth 2 case
as follows.

Theorem 58. If L is a finite lattice which is big and not both semidistribu-
tive and breadth 2, then L contains a sublattice isomorphic to one of the big
lattices G, Gclly Ga, G, Ggy Gy, Gs, G, G%ly Gr, Gs, Ggy Go, G§l7 G,
GC1l07 Gll; G?l; G12; GC1l27 G137 GC1l37 G14; G?zl; G15; G?E)y G167 Gcllﬁy G177
Gcll7, Gis, Gcllg, G, G‘fg, or a sublattice which is big, semidistributive and
breadth 2.

Theorem 59. If L is a finite, semidistributive, breadth 2, big lattice, then
L contains a sublattice of the form (pVk)/p U k/(p k) such that FQ(p, k)
s infinite.

Section 14 provides a set of sufficient conditions for FQ(p, k) to be finite.
The subsequent four sections prove that if one of those conditions fails in a
finite, semidistributive, breadth 2 lattice L, then L contains a minimal big
lattice from our list. This will prove Theorem
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14. WHEN FQ(p, k) 1S FINITE

Theorem 60. Let L be a finite lattice which contains incomparable ele-
ments p and k such that L = (pVk)/p U k/(pAk). Assume that L satisfies
the following conditions.

1. L —{p,k} contains no 3 element antichain.
2. If L —{p,k} contains elements xo < x1 and yo < y1, then either
(a) wo < y1, or
b) yo < x1, or
c) p<xg and x1 A (2o Vy1) = xg, or
) p<yo and y1 A (yo V x1) = yo, or
e) r1 <k and xoV (1 Nyo) = x1, or
f) y1 <k and yo V (y1 A z0) = y1.
f L —{p,k} contains elements x and yo < y1 < y2 < y3, then either
) © <ys, or
) Yo < x, or
) ys >p and ys A (zVp) < ya, or
) (Vp)A(ysVp)=p, or
) o < k and yo v (x A K) > 1, o
) (@ ANE)V (yo Nk) = k.
4. If L — {p,k} contains elements x and yo < y1 < y2 < y3 < ya, then
either
(a) © < wyy, or
(b) yo <z, or
(c) y3 >p and ya A (z Vy3) = ys, or
(d) yi <k and yoV (x Ay1) = 1.
Then the finitely presented lattice FQ(p, k) is finite.

Proof. We begin by recalling the analogous result of Jezek and Slavik [6] for
the finitely presented lattice generated by a join trivial partial lattice to be
finite. (A partial lattice is join trivial if its presentation contains no proper
joins.)

Lemma 61. The free lattice over a finite join trivial partial lattice P is
finite if and only if P satisfies the following conditions.

1. P contains no 3 element antichain.
2. If P contains elements xg < x1 and yo < y1, then either

(a) zo < w1, or

(b) Yo < Iy, or

(c) there exists an element s € P such that s > y1 and x1 A\ s = xg, or
(d) there exists an element t € P such that t > x1 and y1 At = yp.

3. If P contains elements x and yo < y1 < y2 < ys, then either

(a) © < ys, or

(b) Yo <z, or

(c) there exists an element s € P such that s > x and y3 A\ s < ys.

4. If P contains elements x and yo < y1 < y2 < y3 < y4, then either
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(a) © < wya, or
(b) yo <=z, or
(c) there exists an element s € P such that s > x and ys N\ s = y3.

Our goal is to show that if L satisfies the hypotheses of Theorem [60] then
FQ(p, k) is the union of two sublattices, A and B, where A is generated
by a subset of Q(p,k) satisfying no nontrivial join relations and the hy-
potheses of Lemma [B1] and B is generated by a subset of Q(p, k) satisfying
no nontrivial meet relations and the hypotheses of the dual of Lemma [G1]
Now a finitely generated sublattice of a finitely presented lattice need not be
finitely presented (Ralph McKenzie, private communication), but A and B
will be homomorphic images of the corresponding finitely presented lattices,
which are finite. Towards this end, note that the conditions of Theorem [60]
translate as far as is possible the conditions of Lemma and its dual into
Q(p k).

Let L be a lattice satisfying the hypotheses of Theorem Note that
Q = Q(p, k) is isomorphic to L — {p, k} as an ordered set. Since L — {p, k}
has width 2, by Dilworth’s Theorem we can write it as the union of two
chains, L — {p,k} = X UY. Let

XOZXﬂk‘/O XlzXﬂl/p
Yo=Y NEk/O Y1 =YnN1/p.

If say Xo = 0, then Q is join trivial. In this case, conditions (1)—(4) reduce
to the conditions of Jezek and Slavik [6] for a join trivial finitely presented
lattice to be finite. Thus, by symmetry and duality, we may assume that
Xo, X1, Yy and Y7 are all nonempty.

Let zg be the greatest element of Xy, 7y the greatest element of Yy, 21 the
least element of X7, and 7; the least element of Y;. Note that Ty V g9 < k
implies Zo V §o € {Zo, Yo, k}, and dually 1 A 91 € {Z1,91,p}. We may also
assume that g1 # k, for otherwise §; > pV k = 1, and Q would be meet
trivial. Similarly 21 # k, go £ p and &g £ p.

Applying condition (2), we see that either &y < g1 or g < #1, w.l.o.g. the
former. In that case &9V 9o < 91 Ak < k. So Zo V 9o € {Z0,90}. If 5o < Zo,
then every element of L — {p, k} is comparable to Zo; in that event FQ(p, k)
is the linear sum of ¢;,/0 and 1/¢;,, with the bottom half meet trivial and
finite, and the top half join trivial and finite. Thus we may assume that
Zg < go. Dually, 21 < 9.

We want to consider the structure of the middle interval ¢, /Z¢. Let

S={seX1:s5s<uy}
T:{TEYE)Zth()}.

Our situation is diagrammed in Figure @6[a). There are two cases to con-
sider:

1. |S|=1or|T| =1,
2. 15| > 2 and |T| > 2.
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FIGURE 46. Q(p, k)

Case 1. Suppose say |S| =1 and |T| > 1. Let b be minimal is 7. Let
¢ be minimal in Y, such that ¢ ﬁ Zo, so that ¢V 2o = b. Likewise, let d
be maximal in Y7 such that d % 91, so that d A g1 = &1. This situation is
diagrammed in Figure [46(b). Now it is straightforward to prove that, for
all w € FQ(p, k), either
L.ow>qs ANgp, w € Sg({gr : 7 > 21} U{gs : b < s < go}), which is meet
trivial, and w < ¢4 or w > qp, or
2. w < qp, we Sg({q: : t <b}U{qs}), which is join trivial, and w > g,
or w < gg,.
Indeed, let U denote the set of all w € FQ(p, k) satisfying either (1) or (2).
The generators g, (x € L — {p, k}) are contained in U, so it is required to
show that U is closed under meet and join. The critical case is when say
u satisfies (1) and v satisfies (2). If u > g, or v < gz,, then u < v, so
w.l.o.g. u < gq and v > g.. Then

UANV =qqg N Qg NUANV=qz, NGy NUNV = qz, NV
so u A v satisfies (2). Similarly,
uVuv=q. Vg YVuVuv=qgVu

so u V v satisfies (1). Hence U = FQ(p, k). Thus if L satisfies (1)—(4), then
FQ(p, k) is finite.

The case when |T'| =1 is dual.

Case 2. Suppose |S| > 2 and |T'| > 2. Let ap = #; and a; be the bottom
two elements of S, and let by and b; = §jy be the top two elements of T. By
condition (2), either by < aj or a; A (ag V b1) = ag or by V (b1 A ag) = by.
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We claim that by < a; always holds. For suppose say a; A (ag V b1) = ap.
If ag Vb1 €Y, then ag V by > §1 > a1, a contradiction. But if ag V b1 € X,
then ag V by ;f a1 implies ag V by = ag, whence by < a¢ and thus by < ay.
Dually, the third possibility also implies by < aq. This situation is depicted
in Figure [6lc).
In this case we prove that, for all w € FQ(p, k), either
1w > qgy A Gay» w € Sg({gs : s > bo} U{gs,}), which is meet trivial, and
w < Qg OF W > (g, OF
2. w < gz V gy, w e Sg({g 1t < a1} U{qgg}), which is join trivial, and
w <@gy OF W 2> Gz -
Again let U denote the set of all w € FQ(p, k) satisfying either (1) or (2).
The generators ¢, (z € L—{p, k}) are contained in U, so we must show that
U is closed under meet and join. The critical case is when say u satisfies (1)
and v satisfies (2). If u > gz, or v < gy, then u < v, so w.lo.g. u < ¢4, and
v > qz,. Then
UNVU=qz VQp, VUV U=gqz Vu
so uV v satisfies (1). Dually, u A v satisfies (2), and therefore U = FQ(p, k).
Thus if L satisfies (1)—(4), then FQ(p, k) is finite. O

15. CAsES WITH 1 +1+1 < Q(p, k)

First we consider the case when Q(p, k) contains a 3 element antichain.
As a matter of notation, we will henceforth use n; 4 - - - 4+ ny to denote the
ordered set which is a parallel sum (disjoint union) of chains.

Theorem 62. Let L be a finite, breadth 2, semidistributive lattice contain-
ing elements p, k such that pV k=11, pAq=0y and L =1/p U k/0. If
L—{p,k} contains a 3 element antichain, then L has a sublattice isomorphic
to one Of GQO, G21, Ggl, GQQ, Ggg, Gg3, G24, Gg4, G25, Ggg), GQG, G%l6,
Gor, G, Gas, G5, Gog, Gao, GY, Ga1, G4, Gz, GYy, Gas, GY3, Gsy,
Gg4, G35, Gg5, G36, G37, Ggg, Gg& G39, Ggg, G65, Gg5, G73, G07l3.

(Note: The indexing of the G;’s is based on their generating configura-
tions. The lattices Ggz and Grs, which may appear out of order here, are
so numbered because they are generated by 1+ 4 and 1 + 5, respectively.)

FIGURE 47. Gy
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FIGURE 52. Gog

FIGURE 53. Gy

FIGURE 54. Goy

The proof divides into two subcases.

Lemma 63. Let L be a finite, semidistributive, breadth 2 lattice which con-
tains incomparable elements p and k. Assume there exist p1, ps, t € L such
that

1. p1, p2 and t form a 3 element antichain,
2. p<pnp2<pVEk,
3. k>t>pAk.
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FIGURE 55. Gog

FIGURE 56. Gog

FIGURE 57. Ggg

Then L contains a sublattice isomorphic to one of Gog, Gay1, Gao, Gag,
Gaa, Gos, Gog, Gar, Gag, or one of their duals, and FQ(p, k) is infinite.

Thus L 1is big.
Proof. Throughout we can restrict our attention to Sg({p1,p2,t,k}), so that
pVk=1and pAk=0.
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FIGURE 58. Gg3;

FIGURE 59. Gg3o

FIGURE 60. Ggss

First, we need to show that we may assume that p; Aps = p and p; Vps2 <
pVk. If pr Vps = pVk, then by SDy we have pVk=pV (p1 Ak)V (p2 A k),
while L has breadth 2 and no two of these terms join to p V k.

If p1 Apa > p, we would like to replace p by p1 Aps and ¢ by ¢V (p1 ApaAk).
We can do this unless ¢tV (p1 A ps A k) = k, so assume that is the case. Since
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FIGURE 61. Ggy

FIGURE 62. Gg3g

FIGURE 63. Ggg

L has breadth 2, we have say p1 Apas Ak =p1 Ak, whence p1 Ak < pa Ak
and k =tV (p1 A k). In particular, po Ak £ ¢. If perchance po Ak £ p1, then
we have the dual of the desired situation: k =tV (pa Ak) > t,po ANk >pAk
and p < p1 < pV k with p1,p2 A k,t a 3 element antichain. (Moreover,
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FIGURE 64. Gg37

FIGURE 65. Ggsg

FIGURE 66. Ggg

p2 At # p Ak, else by SDy we would have p Ak =pa Ak A (pVt), while no
two of these terms meet to p.)

Thus we may assume ps Ak = p; Ak = (p1V p2) A k, again using SD.
Then we have the dual of the desired situation with m = p1 V ps > p1,p2 >
prtAps>mAtandt <k <tVm and p1, p2, k a 3 element antichain.

61
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Thus w.l.o.g. py Apo=pand p; Vps <pVk.

We may assume that pq, pa > p. Let p} and p} be the canonical meetands
of p, with p, > p;. Since p} Aph Ak =0 and L has breadth 2, say pj Ak = 0.

Case 1. Suppose pVt = 1. Then we can check that the hypotheses of
Lemma B8] are satisfied with p} — p1, p — p2 and ¢t — r, and hence one of
Ggo, G21, GQQ, G23 is a sublattice of L.

So w.lLo.g. pVt < 1. We claim that p} vV ph vVt < 1, else by SDy,

l=pVk=p|VphVt=pVtV(phAk),

and no two of the right hand terms join to 1. Let [ = p} V p), V ¢, and note
for future reference that | = p; V pa V¢ (the join of the generators except k).

Let ¥ = kAL, and note t < t' < k, so that | = pj Vph V. In
Sg({p1,p2,t,k}) we have

1 = pV k canonically

k(p) =k
k(k) =1
EAnl=1t.

Replace t by ¢/, and drop the prime.

Case 2. If p Vvt = [, then we can check that Lemma applies (with
p — 1 and k — p) and conclude that Gas or Gos is a sublattice of L. So
w.lo.g. pVit<l.

Case 3. Suppose po At = 0. Then po Ak =pa Ak Al =py ANt = 0.
Applying SD, to this and p; A k = 0, we obtain (p; V p2) Ak = 0. Now
Il =p1 VpyVtand L has breadth 2, while the preceding observation shows
that p1 V pa # I. Thus say p; Vi =1, in which case po Vt #lelse pVit =1
by SDy. Therefore ps V t # pi.

We claim that pV¢ > py. For otherwise p = paA(pVt) = p1A(p2Vt) (using
p1, p2 > p and the preceding paragraph). Then p = (p1Vp2)A(p1VE)A(p2 Vi)
by SDA, while no two of these terms meet to p.

Now check that {Ovta kapa (pl \4 p?) N (p \ t)ap Vi,p1,p V p27l7 1} is a
sublattice of L isomorphic to Gag.

Thus we may assume that poAt > 0. Since ps = p we have ps = pV (pa2At).
ThustVp<l=tVpiVp=tVp.

Case 4. If p; V po = [, then check that {0,ps At,t, k,p,p2,pVt,p1,l,1}
is a sublattice of L isomorphic to Gog.

Case 5. If p; V py < [, then check that {0, (p1 V p2) At t,k,p,pV ((p1 V
p2)At), (p1 Vp2)A(pVit),pVit,p1,p1Vpa,l,1} is a sublattice of L isomorphic
to either Go7 or Gog, depending on whether or not p vV ((p1 Vp2) A t) =
(p1Vp2) A (pVi). O

Lemma 64. Let L be a finite, semidistributive, breadth 2 lattice which con-
tains incomparable elements p and k. Assume there exist x, y, z € L such
that



LATTICES WITH LARGE MINIMAL EXTENSIONS 63

1. z, y and z form a & element antichain,
2. p<z,y,z<pVk.

Then L contains a sublattice isomorphic to one of Gag, Gszo, Gs1, Gso,
Gas, Gaa, Gss, Gas, Gz, Gss, Gy, Ges, Grs, or one of their duals, or
one of the lattices of Lemma[G3], and FQ(p, k) is infinite. Thus L is big.

Proof. This time we can clearly assume that £ A y A z = p, and confine our
attention to Sg({z,y, z,k}).

Since L has breadth 2, we have £ VyV z = z V z say. On the other hand,
we cannot have tVy = x Vz = y V 2, else SDy would yield x Vy V z =
(x ANy)V (zA2)V(yA z), contradicting breadth 2. Thus say x Vy < x V z
(with y V z yet to be determined). Likewise, we cannot have =V z = p V k,
elsepVk=pV(xAk)V(yAk), while no two of these terms join to the top.
Summarizing, we may assume that zVy <z Vz<pVk.

Case 1: Suppose yVz = xV z, in which case 2V z = (xAy)V z. Moreover,
replacing z if necessary, we may assume that z < zV z without affecting the
assumptions.

Subcase la. Assume xAz = yAz, in which case p = zAyAz = (xVy)Az.

Now 0 =pAk=(xVy AzAk If zAk £ zVy, then we can take
p1=x,p2 =y, t =z Ak and apply Lemmal63l If 2 Ak = (z Vy) Ak, then
0= (zVz)ANkby SDp, and {0,k,p,z,x ANy, z,y,xVy,zV (z Ay),1} forms
a sublattice of L isomorphic to Gag.

Thus we may assume z Ak =0 < (z Vy) A k. It follows that z A k £ z,
else 0 =z ANk=2ANk=(xVz)ANk > (zVy) ANk by SDs, contrary to
hypothesis. Likewise y Ak £ z. Recall that zVz=yVz If (xV2) Ak £y,
then we can apply Lemma [63] with p; = y, po = z and t = (x V 2) A k.
Symmetrically, Lemma [63 applies if (y V z) A k £ z. Thus we may assume
that t Ak = yAk = (zVz)Ak. Note that z Ak £ z < 2V 2, and so
(xANk)Vz=2zV 2z

If pvV((zVy)Ak) = x Ay, then {0, (zVy) Ak, k,p,x Ny, z,y, xVy, z,xVz),1}
is a sublattice of L isomorphic to Gsp. But if pV ((z Vy) Ak) < z Ay, then
{0, (zVy) ANk k,p,pV ((xVy) ANk),z ANy, z,xVy,z,xVz),1} is a sublattice
of L isomorphic to Grg.

Subcase 1b. Assume z Az =p<yAz (Thecase yAz=p<xAzis
symmetric, while t Ay # p since xV z = (z Ay) V z.)

Let Y = (x Ay) V(2 A (xzV (y A z))). Note that z £ ¢/, else 2 V (y A 2) =
(xAy)V(2A(2V(yAz2))) = (zAy)V(yAz) <y by SDy. We have z £ ' because
y' < xVy, while yAz < ¢/ implies y’ £ x and Ay < ¢/ implies y' £ z. Thus
x,y', z is a 3 element antichain. Also note zV (y/ Az) =z V (yAz). We can
replace y by 3’ without affecting the assumptions (the ones involving y are
xVy <aVz=(xAy)Vz = zand yAz > p), and we gain zA(zV (y' Az)) <y
and (x Ay')V (¥ A z) =14'. Do so (for the remainder of Case 1) and drop
the prime.
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Note x Az Ak = 0 implies xt Ak = 0 or z Ak = 0. If both hold, then
(xVz)ANk=0,and {0,p,x Ay, z,y Nz,y,zVy,z xV 2k, 1} is a sublattice
of L isomorphic to Gs;.

Next suppose z Ak =0 < x A k. As in Subcase la we can show that
(xV2z)ANk <z, y or else Lemma B3] applies. Hence we may assume that
cANk=yANk=(xVz)ANk. Letl=axA((yNz)V(zAk)). fpV(zAk)=1,
then {0,p,y Az, z,x ANk, I, (yA2)V(x ANk),z,xVy,xV z k,1} is a sublattice
of L isomorphic to Gsz. But if pV (x A k) < I, then {0,p,y A z,z,2 Nk,pV
(xANE), L (yAN2)V(xANk),xV 2z k, 1} (omitting x and = V y) is a sublattice
of L isomorphic to Ggs.

Finally, suppose z Ak = 0 < z A k. This time we argue that (z V z) A
k <y, z or else Lemma [63] applies. Hence we may assume that y A k =
zANk=(xVz)ANk. Let m=zA(xV(zAk)). If pV (2 Ak)=m, then
{0, 2Nk, k,p,m,z,x ANy, (xAy)V (2 ANk),z,xV (2 Nk),zV z,1} is a sublattice
of L isomorphic to Gss. If not, then pV (2 A k) < m, and we have more
work to do.

Note that m =z A (zV (yAk)) <zA(xVy)=zA(zV(yAz)) =yA-z,
and hence m V (x Ay) < y. If perchance m < (x Ay) V (z A k), then
{0,p,z Ny, x, zNk,pV (zANk),m, (xAy)V (zAk),xV (2Ak),k,1} (omitting z
and zV z) is a sublattice of L isomorphic to Ggs. But if m £ (zAy)V (2Ak),
let n=2zA((zAy)V(zAk)); then {p,n,m,z,z Ay,(x Ay)V (z ANk),mV
(xANy),z,xV (2 ANk),zV z} is a sublattice of L isomorphic to Gas.

This finishes Case 1.

Case 2: Suppose y Vz <z Vz (and still zVy <xVz<pVk). Choose
x',y such that z <2/ <z Vyand 2 <2 <yVz Sety = (xVy)A(yVz),
and note that ' A 2’ < y/. Set p’ = 2/ A 2. Now it is straightforward to
check that 2/, 3/, 2’ form a 3 element antichain, and the hypotheses for this
case are still satisfied by these elements, p’ and k. So, dropping the primes,
we may assume that z < xVy, z <yVz, (xVy)A(yVz) =y, and x Az = p.
Also note that the roles of z and z are symmetric at this point.

We cannot have both x Ay =pand yAz=p,elsep=yA(xVz)=1yby
SDx. Also note that (zV z) A k is below at least 2 of the elements z, y, z or
else Lemma [63] applies.

Subcase 2a. Assume yAz=p<zxAy. (Thecase xtAy=p<yAzis
symmetric.) Since x A z = p, we obtain (x V y) A z = p by SDj.

If (xVz)ANk =0, then {0,k,p,x ANy, z,y,x Vy,z,yVz,xVz),l}is a
sublattice of L isomorphic to G;.

So assume (zVz)Ak > 0. Then (zVz)Ak £ p = 2Nz = yAz, so (xVz)Ak <
xAy. Then {0, (xV2) Ak, k,p,pV((zV2)A k), z Ny, z,y,xNVy, z,yVz,xVz),1}
is a sublattice of L isomorphic to Gs4 or Gss, depending on whether or not
pV({(zV2)ANEk)=xAy.

Subcase 2b. Assume x Ay > pand y A z > p.

If (zV2)ANk=0,then {0,k,p,z Ay, z,y ANz, (x Ay)V(yAz),y,xVy,z,yV
z,x V z),1} is a sublattice of L isomorphic to Gsg or Gsz, depending on
whether or not (x Ay)V (y A z) =y.
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So suppose (zVz)Ak > 0. Now (zVz)Ak is below two of the elements z, y,
z, but not below p = Az, so by symmetry we may assume (zVz)Ak < yAz.
Then (xV2)ANk=yANk=2zAk,whilec ANk<zAzANk=pAk=0.

IfpV(zAk) =yAz, then {0, zAk, k,p,yNz, z,x ANy, (xAy)V(yAz),y,yV
z,x,xVy,xVz 1} is a sublattice of L isomorphic to Gag or Gag, depending
on whether or not (x Ay)V (yAz) =y.

Thus we may assume pV (zAk) < yAz. If perchance yAz < (zAy)V(zAk),
then {0,p,x ANy, z,z ANk,pV (2 ANk),y ANz, (x ANy)V (zANEk),xzVy,k 1} is a
sublattice of L isomorphic to Ggs. But if y Az € (z Ay) V (2 A k), then let
Y =(xAy)V(zAk)and 2/ =y A z. Then z, ¢/, 2’ is a triple satisfying the
hypotheses of Subcase 1b (with z and z interchanged), and in fact we get
Gg; or (G35 as a sublattice of L.

This finishes Case 2 and the proof of the lemma. O

16. CASES WITH 2 + 2 < Q(p, k)

Next we consider the case when Q(p, k) contains a subset isomorphic to
2 + 2 violating the conditions of Theorem [60(2).

Theorem 65. Let L be a finite, breadth 2, semidistributive lattice contain-
ing elements p, k such that pV k=11, pAq=0y, and L =1/p U k/0. If
L — {p,k} contains elements xo < x1 and yo < y1 satisfying

L 2o £ y1,
- Yo % X1,
. p < xo implies x1 A (zo V y1) > o,
p < yo tmplies y1 A (yo V x1) > yo,
. x1 < k implies zo V (1 A yo) < w1,
6. y1 < k implies yo V (y1 A o) < Y1,

CUs o N

then L has a sublattice isomorphic to one of Gyg, foo, Ga1, Gyo, foQ,
Gus, Gl3, Gu, G4, Gus, Gug, G, Gur, G, Gus, Glg, Gug, Gso, Gy,
Gsi, Ggl, Gs2, Gss, Ggg, G4, or one of the previous lattices.

FIGURE 67. Gy
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FIGURE 68. Gy

FIGURE 69. Gy

FIGURE 70. Gys

The proof divides into three subcases.

Lemma 66. Let L be a finite, semidistributive, breadth 2 lattice which con-
tains incomparable elements p and k. Assume there exist xg, x1, y1 € L
such that

l.p<xg<ax1 <pVk,

2.p<y1 <pVEk,

3. zo £ Y1,

4. kNyp ﬁ X1,



LATTICES WITH LARGE MINIMAL EXTENSIONS 67

FIGURE 71. Gy

FIGURE 72. Gys

FIGURE 73. Gyg

9. T1 A\ (.’Eo vV yl) > xg.
Then L contains a sublattice isomorphic to Gyg, or one of the previous

lattices, and FQ(p, k) is infinite. Thus L is big.

k A yi1, and replace x1 by x) = z1 A (2o V y1), so that

Proof. Let yg =
Note that =1 Vy; < pV k, for if &1 Vy; = pV k then

1 < 2o V.
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FIGURE 74. Gyr

FIGURE 75. Gyg

FIGURE 76. Gyg

pVk=pV(x1 Ak)V (y1 A k) by SDy, while no two of these terms join to
pVk.

Now xg V yg = x1 or yi, or else x1, y1, g V yo is a 3 element antichain.
Likewise, 21 A y1 < z¢ (since 1 Ay £ k).

If perchance z1 V yo # y1, then 2oV yo > z1. In that case, let yj = pV yo,
and note that the hypotheses are preserved and x1 V yo > y;. Thus we may
assume that z1 V yg > y;.
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FIGURE 77. Gxg

FIGURE 78. G351

FIGURE 79. Gso

Now we have x1Vy; = xoVy1 = 1 VYo, whence by SDy x1Vy1 = xgVygV
(x1Ay1) = 2o Vyo. Moreover, we may assume that kA (z1Vy1) = EAy1 = yo,
or else 1, y1, (1 Vy1) Ak is a 3 element antichain.

Finally, we can check that {z1 Ak, yo, k,x1 Ay1,y0 V (x1 Ayr), o, 21,20 V
Yo, 1} forms a sublattice of L isomorphic to Gyp. O
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FIGURE 80. Gs3

FIGURE 81. Gsy

Lemma 67. Let L be a finite, semidistributive, breadth 2 lattice which con-
tains incomparable elements p and k. Assume there exist xg, x1, Yo, y1 € L

such that
l.p<xg<ax1 <pVk,
2.p<yo <y <pVk,
3. w0 £y,
4. y()fxl;
5. 21 A (zo V y1) > o,
6. y1 A (yo V1) > yo.

Then L contains a sublattice isomorphic to one of Gy1, Gz, Gus, Guq, or
one of the previous lattices, and FQ(p, k) is infinite. Thus L is big.

Proof. As before, 1 Vy1 < pV k by SDy and the breadth 2 property.
W.lo.g z1 < xgVy and y; < yo V 1. Moreover, by Lemma [66, we may
assume that kAz; < y; and kAy; < 1, so that kAzy = kAy1 = kA(z1Vyr).
Again we see that xg V yo > x1 or y1, say the former, or else we get a 3
element antichain. It follows that y; < yo V 21 = xg V yo also holds.
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Consider x1 A y1, which is below xy or yg, or else we get a 3 element
antichain. If it is below both, then {kAx1, k, z1 Ay1, zo, 1, Y0, Y1, 0 V Yo, 1}
forms a sublattice of L isomorphic to Gy .

So suppose say 1 Ayr < yo but x1 Ay ﬁ xg. Consider £k A 1 =
k A y1, which is below 79 and may or may not be below zg. If £ A 21 < zg,
then set zf = xo V (x1 A y1). Since xy < 2§ < z1, we see that {k A
x1, k, 20 Ay1, 1 A Y1, Yo, Y1, To, T, To V Yo, 1} is a sublattice of L isomorphic
to Guo. If, however, k A 21 £ zo, then set z{ = zo V (k A z1). In this case
{kNxo,k Nx1, k2o Ayr, (o Ayar) V(KA z), 2 Ay, yo, v, zo, 24, 20 Vyo, 1}
is a sublattice of L isomorphic to Gy3 or G4, depending on whether or not
(o Ay1) V (EAz1) =2 Ayr. O

Lemma 68. Let L be a finite, semidistributive, breadth 2 lattice which con-
tains incomparable elements p and k. Assume there exist xg, x1, Yo, y1 € L
such that

l.p<zg <z <DPVE,
2.pA Nk <y <y <k,
3. yo £ x1,
4. 1 A (.’Eo vV yl) > Xo,
5. YoV (y1 A xo) < y1-
Then L contains a sublattice isomorphic to one of Gus, Gug, Gar, Gus,

Gy, Gso, Gs1, Gso, Gssz, Gsa, or one of their duals, or one of the previous
lattices, and FQ(p, k) is infinite. Thus L is big.

Proof. Replacing 1 by 2} = x1 A (zo Vy1) and yo by v, = vo V (y1 A xo), we
may assume that x1 < gV y; and yo > y1 A zg. Check that the hypotheses
are preserved, and drop the primes.

If 29 V yo # x1, then @1, o V yo, y1 form a 3 element antichain. (Note
that if y1 < xg V yo, then x1 < 29V y; = 2oV yp.) Thus we may assume that
zg V yo > x1, and dually 1 Ay < yo.

In fact, we can assume p V yo > x1 and dually k A 1 < yo. For if
pVyo # x1, then zo, 1 and y] = pV yp satisfy the hypotheses of Lemma [66]
(That zo £ ¥} and zo V y} > 1 both follow from zo V yo > x1.)

The rest of the proof divides into 16 subcases, according to whether or
not

A kEAN(pVyo) >y, or

B. EA(pVyo) =yi, or

C.pVyo 21 and kA (pVyr) >y, or

D.pVyo#2yiand kA (pVy1) =1,
and dually,

a. pV (kAz) < xg, or

b. pV (kAx1) = g, or

c. KAz £ xoand pV (kA xg) < zp, or
d. EANzy £ 2o and pV (kA xo) = xo.
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We will do the first 4 subcases, where (A) holds; the remaining 12 subcases
are similar.

Subcase Aa. If kA (pVy) >y and pV (kA x1) < zo, then {k A
1,90, Y1,k A (pV yo),p V (kA x1),20,21,p V yo} forms a sublattice of L
isomorphic to Gys.

Subcase Ab. If kA (pVyo) >y and pV (kA x1) = g, then {p Ak, kA
1,90, Y1,k A (pV Yo), 0, o, 1,p V yo} forms a sublattice of L isomorphic to
G-

Subcase Ac. If kA (pVyo) > y1 and k Az £ zg and pV (kA zg) < zo,
then {k A xo,k A z1,90,y1,k A (pV yo),pV (kA xo),z0,pV (EAx1),pV Yo}
forms a sublattice of L isomorphic to Gyy.

Subcase Ad. If kA (pVyo) > y1 and kAzy £ zo and pV (kA xzo) = o,
then {p Ak, k ANxzo,k Ax1,y0,y1, kAN (PVyo)p,zo,pV (EAx1),pVyo} forms
a sublattice of L isomorphic to Gys. O

17. CASES WITH 1 +4 < Q(p, k)

Next we consider the case when Q(p, k) contains a subset isomorphic to
1 + 4 violating the conditions of Theorem [60]3).

Theorem 69. Let L be a finite, breadth 2, semidistributive lattice contain-
ing elements p, k such that pV k=11, pAq=0y, and L =1/p U k/0. If
L — {p,k} contains elements x and yo < y1 < y2 < y3 satisfying

1. Yo f Z,
x £ Y3,
ys > p implies y3 A (x V p) £ y2,
(xVp)A(ysVp)>p,
Yo < k implies yo V (x Nk) # y1,
6. (xAk)V(yoAk) <k,
then L has a sublattice isomorphic to one of Gss, Gsg, Gg6, Gy, Gg7, Gsg,
Ggg;, Gso, Ggg; Geo, G%l07 G, Ggly G2, ng; Ges, Gg37 Gy, G%l47 Ges,
Gg%, Geg, Gglﬁ, Ggr, Ges, Ggls, Ggo, Ggg, or one of the previous lattices.

G W

The proof divides into five subcases. By duality we may assume that the
element x is above p.

Lemma 70. Let L be a finite, semidistributive, breadth 2 lattice which con-
tains incomparable elements p and k. Assume there exist x, Yo, Y1, Y2,
y3 € L such that
l.p<x<pVk,
DAk <y <yl <ye <ys <k,
- Yo % z,
.z A (Y3 Vp) > p,
Cyo V(xAE) F oy

O i W N
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FIGURE 82. G55

FIGURE 83. Gsg

FIGURE 84. Gs7
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FIGURE 85. Gsg

FIGURE 86. Gsg

FIGURE 87. Gy
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FIGURE 88. Gg1

FIGURE 89. Ggo

FIGURE 90. Ggg
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FIGURE 91. Ggy

FIGURE 92. Ggs

FIGURE 93. Ggg

Then L contains a sublattice isomorphic to one of Gss, Gsg, Gs7, Gss,
Gs9, Geo, Ge1, Gez, or one of the previous lattices, and FQ(p, k) is infinite.
Thus L s big.
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FIGURE 94. Ggr

FIGURE 95. Ggg

FIGURE 96. Ggy

7
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Proof. W.l.o.g. we may assume z < y3 V p. In fact, with this assumption, if
z % yo Vp, then z, yo V p, y3 is a 3 element antichain. Thus we may assume
that = < yg V p.

Likewise, if yoV (zAk) £ y1, then z, yoV (zAk), y1 is a 3 element antichain,
so we may assume y(, = yoV (zAk) < y1. Replacing yy if necessary, Ak < yj.

If yo V p # ya, then z, yo V p, y2, ys satisfy the hypotheses of Lemma [G8l
Thus we may assume yg V p > yo.

The rest of the proof divides into 4 cases, with 2 subcases each, according
to whether or not

A.pVv(xANk) <z, or

B.pV(zAEk)=uz,
and

a. kA (yoVp) >y, or

b. kA (yoVp) =y
We will do the first 2 cases, where (A) holds; the remaining 2 cases are
similar.

Case Aa. If pVv (z A k) <z and kA (yo V p) > y2, we consider whether

i. kA (yoVp)>ys, or

ii. kA (yoVp) # ys
If (i) holds, then {z A k,y0,y1,y2,y3, kA (yo Vp),pV (kAx),z,y0 V p} forms
a sublattice of L isomorphic to Gss. If (ii) holds, then {z A k,yo,y1, 92,k A
(yoVp)k,pV(kANz),z,90V p,pVEk} forms a sublattice of L isomorphic to
Gsg.

Case Ab. If pV (x AN k) <z and k A (yo V p) = y2, we consider whether

i. kA (ysVp)>ys, or

ii. kA (y3Vp) = ys.
If (i) holds, then {z A k,yo,y1,%2,y3,k A (ysVp),pV (kANz), 2,90 V D,ys V
p} forms a sublattice of L isomorphic to Gs;. If (ii) holds, then {z A

ko yo,y1.y2,y3. k. p V (kA x), 2,90 V p,ys V p,p V k} forms a sublattice of
L isomorphic to Gsg. O

Lemma 71. Let L be a finite, semidistributive, breadth 2 lattice which con-
tains incomparable elements p and k. Assume there exist x, yo < y1 < y2 <
ys € L such that

l.p<z,y3<pVEk,
CPAE<yo <y <y2 <k,
. Yo % 7,
- X ﬁ Y3,
. TNy > p,

6. yoV (zANk) # yi.
Then L contains a sublattice isomorphic to Ggz, or one of the previous
lattices, and FQ(p, k) is infinite. Thus L is big.

U= W N
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Proof. Note that x V y3 < pV k by SDy and the breadth 2 property. As in
the previous lemma, we may assume that z A k < yqg.

Moreover, we may assume that kA (zVys) < pVyo, or else z, kA (zVys),
pV 1o is a 3 element antichain. It follows that yo < pV yo < ys3.

If pVv(zAk) <z Ays, then we can apply Lemma [6§ with p — yo, k — z,
o — Y1, 1 — Y2, Yo — pV (x Ak), y1 — x Ays. Thus w.lo.g. pV(xAk) =
x A y3, whence we also get z Ak > p A k.

Now we can check that {p Ak, Ak,y0,y1, kN (xVyo), k,p,pV(xANk),pV
Yo, Z, Y0 V z,p V k} is a sublattice of L isomorphic to Ges. O

Lemma 72. Let L be a finite, semidistributive, breadth 2 lattice which con-
tains incomparable elements p and k. Assume there exist x, yo < y1 < yo <
y3 € L such that

l.p<x<pVkandp<ys <y <pVek,
PNk <yo <y <k,
- Yo % z,
cxfys,
- T AY3 $ Y2,

6. yoV (xANk) # yi.
Then L contains a sublattice isomorphic to Ggyq, or one of the previous
lattices, and FQ(p, k) is infinite. Thus L is big.

Proof. Note that x V y3 < pV k by SDy and the breadth 2 property. As
before, we may assume that x A k < yp.

We can assume that y; < pV yg, or else x, pV yp, y1 is a 3 element
antichain. Likewise, k A (2 V yo) < pV yo, or else z, kA (x V yp), pVyo is a
3 element antichain. Note that y3 < kA (2 V yo).

Now we can check that {z A k,yo,k A (zVyo),k,x ANya,yo V (z Aya),x A
Y3, Y0 V (x Ays),x,x Vyo,p V k} is a sublattice of L isomorphic to Ggg. O

O i W N

Lemma 73. Let L be a finite, semidistributive, breadth 2 lattice which con-
tains incomparable elements p and k. Assume there exist x, yo < y1 < y2 <
ys € L such that

l.p<x<pVkandp<y <ys<ys3<pVk,

2. pANk <yg <k,

3. yo £z,

4. x £ ys,

5. A Y3 $ Y2,
Then L contains a sublattice isomorphic to Ggs or Ggg, or one of the pre-
vious lattices, and FQ(p, k) is infinite. Thus L is big.

Proof. Note that yo V (x A k) < k, orelse pVk =pVyyV(xAk) would
violate the breadth 2 property.

As usual we get xVys < pVk and x Ak < yo. Moreover, we may assume
that kA (yo V) < y1, or else x, k A (yo V x), y1 is a 3 element antichain.
Replacing y if necessary, we may assume that k A (yo V x) = yo.



80 RALPH FREESE, JAROSLAV JEZEK, AND J. B. NATION

Likewise, yo < yo V (x A ys), or else z, yo V (z A y3), y2 is a 3 element
antichain.

Now check that if x Ays < y1, then {x Ak, yo, k,x Ay1, 50V (zAy1), Y2, A
Y3, YoV (x Ays),x,xVyo,pVEk} is a sublattice of L isomorphic to Ggs. (This
lattice appeared in Lemma [64] but properly belongs here.)

But if z Aya £ y1, then {& Ak, yo, k,x Ay1,50 V (@ Aya),z Aya,yo V (2 A
Y2),x AN y3,yo V (x Ays),z,x Vyo,p V k} is a sublattice of L isomorphic to
Gge- |

Lemma 74. Let L be a finite, semidistributive, breadth 2 lattice which con-
tains incomparable elements p and k. Assume there exist x, yo < y1 < y2 <
ys € L such that

l.p<z<pVE,

2.p<yo<y1 <y2<ys<pVk,
3. yo £z,

4. x £ ys,

5-95/\y3fy2;

Then L contains a sublattice isomorphic to Ggr, Ggs, Ggg, or one of the
previous lattices, and FQ(p, k) is infinite. Thus L is big.

Proof. Note that (z Ayo)V (x ANk) <k,orelse pVk=pV (zAy)V (zAk)
would violate the breadth 2 property. As usual we get x V y3 < pV k (but
not necessarily A k < yp).

W.lo.g. yo Ak < x, or else we can apply Lemma [[3. Using this, we can
assume that y3 A k < x, or else x, yg, y3 A k is a 3 element antichain.

We may assume that x A k < y3, or else Lemma [66] applies with zg — yo,
x1 +— y3, y1 — x. Then w.l.o.g. we may assume that x A k < ys, for if not
we can replace y3 by y5 = y2 V (z A k).

Next we claim that y2 < y1 V (y3 A x), or else =, yo2, y1 V (y3 A z) is a 3
element antichain. So we may assume that yo Az £ y1, or else {x Ak, k,ya A
T,ys Az, x,y1,Y2,y2 V (ys Ax),y2 V x,pV k} is a sublattice of L isomorphic
to GY,.

Similarly y1 < yo V (y2 A x), or else =, y1, yo V (y2 A ) is a 3 element
antichain. Thus we may assume that x A k& < y1, or else we can apply
Lemma [66] with z¢ — o, 1 — y1, y1 — z. It follows exactly as above that
y1 Ax £ yo, or else G, is a sublattice of L.

Now if it happens that = A k < yo, then {x Ak, k,y0 A x,y0,y1 A x,y0 V
(Y1 Az),ya Awyo V(Y2 Ax),ys Ax,yo V (Ys Ax), @, yo V a,p V k) forms a
sublattice of L isomorphic to Ggy.

On the other hand, if Ak £ yo, then {yoAk, Ak, k, yo Az, yo, (Yo Az)V (A
k), y1 Az, yoV (y1Ax), y2 Az, yoV (y2Ax), ysAx, yoV (ysAz), x, yoVa, pVk} forms
a sublattice of L isomorphic to either Ggg or Ggg, depending on whether or
not (yoAz)V(xANk)=y1 Ax. O
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18. CASES WITH 1+ 5 < Q(p, k)

Finally we consider the case when Q(p, k) contains a subset isomorphic
to 1 + 5 violating the conditions of Theorem [60[(4).

Theorem 75. Let L be a finite, breadth 2, semidistributive lattice contain-
ing elements p, k such that pV k=11, pAq=0y and L =1/p U k/0. If
L — {p,k} contains elements x and yo < y1 < y2 < y3 < ya satisfying

1. yo ﬁ x,

2. x ﬁ Y4,

3. y3 > p implies ys A (x V y3) > ys3,

4. y1 < k implies yo V (x N y1) < y1,
then L has a sublattice isomorphic to one of Gro, G%, G, G?l, Gra,
G¢2; G737 GC7137 G747 G75; Gc7l5; G76; GC7167 G777 GC7177 G78; Ggg; G79; Gc7l9;
Gso, Gy, Gg1, G, or one of the previous lattices.

FIGURE 97. Gy

The division into subcases is somewhat complicated, being based on our
desire to avoid the lattices from the case 1 + 4. We can assume that the
elements x, yo, y1, Y2, ya fail the hypothesis of Theorem [69, and therefore
must satisfy

C3. y4 >pand yg Ax < yo, or

D3. z A (ys Vp) =p,or

E3. yo <k and yo V (x AN k) >y, or

F3. (x Nk)V (yoNk) =k,

Likewise, we can assume that the elements x, yo, y¥2, y3, y4 satisfy
Cl. yy >pand yg Ax < ys, or

DI1. z A (ya Vp) =p, or

El. yo <k and yo V (x A k) > ya, or
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FIGURE 98. Gr;

FIGURE 99. Gro

FIGURE 100. Grs
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FIGURE 101. G4

FIGURE 102. G5

F1. (x ANk)V (yoNk) = k.
We could write three more such sets of conditions (largely overlapping), but

these are the ones we will use. By duality we may assume that = > p.
Our first case covers D3=D1.

Lemma 76. Let L be a finite, semidistributive, breadth 2 lattice which con-
tains incomparable elements p and k. Assume there exist x, yo < y1 < y2 <
ys <ys €pVk/pUk/pAk such that

.p<zx<pVEk,

- Yo % xz,

@ Loy,

. Y3 > p implies ys A (z V y3) > y3,

- y1 < k implies yo V (x Ay1) < y1,

.z A(yaVp)=np.

O UL W N+~
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FIGURE 103. Grg

FIGURE 104. Gr7

Then L contains a sublattice isomorphic to one of Grg, Gr1, Gro, Gz, or
G4, or one of the previous lattices, and FQ(p, k) is infinite. Thus L is big.

Proof. First, we claim that we may assume y4 > p. If y3 > p, this follows.
If y3 # p, let yj = y3 Vp. Then z £ y) and x Ay = p. So we can assume
y4 > p and hence x A yqy = p. Note that x Vyq4 < pV k, or else SDy, would
yield xVys =pVk=pV (xAk)V (ys A k), while no two of these elements
join to the top.

The following arguments apply when yo < k. Note that kA (x V y4) < ya,
or else z, y4, kA(xVy,) is a 3 element antichain. Likewise kA(xVys) < pVyo,
or else x, pV yo, kA (zVys) is a 3 element antichain. Also, using breadth
2, ANk=xAys Nk <p.
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FIGURE 105. Grg

FIGURE 106. Grg

Subcase 1. If y3 < k, then check that {pAk,yo, y1,y2, kA (xVyo), k,p,pV
Yo, T, V yo,p V k} forms a sublattice of L isomorphic to Gro.

Thus we may assume that y3 > p, and w.l.o.g. * V y3 > y4. Moreover,
x Vyg > ys3, or else Lemma applies to the elements x, = V yo, ys3, y4. It
follows that = V yg > y4.

Subcase 2. If Yo < k, then {p/\ k, Yo, Y1, kA (x v y0)7 k,p,pV Yo, Y4, %, TV
yo,p V k} forms a sublattice of L isomorphic to Gr;.

Subcase 3. If yo > p and y1 < k, then {p A k,yo,k A (x V yo),k,p,p V
Y0, Y3, Ya, T, V yo,p V k} forms a sublattice of L isomorphic to Gra.

Subcase 4. If y; > p and yo < k, then {p Ak, kA (z V yo),k,p,p V
Y0, Y2, Y3, Y4, T, T V yo,p V k} forms a sublattice of L isomorphic to Grs.
(This lattice appeared earlier, but properly belongs here.)
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FIGURE 107. Ggg

FIiGURE 108. Gg;

Subcase 5. Suppose yo > p. Note that we still have xVyg > y4 as above.

If © A k £ ya, then Lemma [66] applies with the elements yo, y4, 2. Hence
we may assume r A k < yq, whence 0 =pAk=xzAys ANk=xANk.

Suppose ys Ak > 0. Then ys Ak £ @, but ys Ak < yo or else z, yo, ya Ak is
a 3 element antichain. Then replacing yo by y4 A k, we can apply Subcase 4.
Thus we may assume y4 Ak = 0. By SDx, we get (z Vys) Ak =0.

Now check that {0, k, p, v0, Y1, Y2, Y3, Y4, T, V yo,p V k} is a sublattice of
L isomorphic to Gry. U

The second case covers F3=F1.
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Lemma 77. Let L be a finite, semidistributive, breadth 2 lattice which con-
tains incomparable elements p and k. Assume there exist x, yo < y1 < y2 <
ys <ys €pVk/pUk/pAk such that
.p<zx<pVEk,
- Yo f Z,
- Ly,
. Y3 > p implies yo A (x V y3) > ys,
- y1 < k implies yo V (x Ay1) < y1,
6. (xAk)V(yoNk)=k.
Then the dual of Lemma [T6l applies with x replaced by x N\ k.

Proof. If (6) holds, then pVk=pV (z Ak)V (yo ANk) =pV (yo A k), using
the breadth 2 property. If follows that ys # p, and hence y4 < k. It is
straightforward to check that the hypotheses of the dual of Lemma [76] are
satisfied. O

Next we consider C1 (which is implied by C3).

QUi W N~

Lemma 78. Let L be a finite, semidistributive, breadth 2 lattice which con-
tains incomparable elements p and k. Assume there exist x, yo < y1 < yo <
ys <ys €EpVk/pUk/pAk such that

.p<zx<pVEk,

- Yo f Z,

- Ly,

. Y3 > p implies yo A (x V y3) > ys,

- y1 < k implies yo V (x Ay1) < y1,

6. y4 >p and ys Nz < ys.

QUi W N~

Then L contains a sublattice isomorphic to one of Grs, Grg, Gr7, Grs,
Grg, Ggo, or Ggi, or one of the previous lattices, and FQ(p, k) is infinite.
Thus L 1is big.

Proof. 1t follows from (6) that y3 > p, and w.l.o.g. we may assume z V y3 >
Ya. As in Lemmal70, =V ys < pV k.

Suppose y1 < k, in which case we may also assume x A y; < yg. If
z Ak £ y1, then the dual of LemmalG6 applies to the elements y1, yo, x A k.
Thus we may assume z Ak < y1, whence xt Ak < x Ay < yg. Then condition
E3 fails, in which condition C3 holds, or we reduce to a previous case. So
ysAx <y and yo > p. It is straightforward to check that Lemma [f6lapplies
with p’ = x A yq4.

Next suppose y1 > p and yg < k. Then condition E3 fails, so we may
assume that condition C3 holds: y4 Az < yo. We may assume that (xVys) A
k <, or else z, y1, ( V ys) A k forms a 3 element antichain. So replace yg
by yy, = (x V ys) A k. Further, we may assume that y3 <  V yo, and hence
ys < xV yo, or else Lemma [67 applies to the elements z, x V yo, y3, Y4.

If x Ayy < 1, then Lemmal[76] applies with p’ = x Ayy. But if 2 Ayy f Y1,
then {x Ak, yo, k,xAy1,y0V (£ AY1), T AYa, Yo V (T AYa), Y3, ya, T, £V yo,pV k}
forms a sublattice of L isomorphic to Grs.
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This leaves the case yg > p. Again condition C3 should hold, so that
yaA\x < y9. As above, we may assume that y3 < zVyg, and hence y4 < xVyp.
Likewise, we may assume that x A k < yp, or else Lemma [66 applies to the
elements yg, y1, T.

Now assume z Ak < yg. Then (zVyq) ANk < yo, or else x, yo, (xVys) Nk
forms a 3 element antichain. However, if x A y; < gy, then the dual of
Lemma [70 applies with p’ = z V yo, ¥y} = ya—i, 2’ = x and k' = k. So we
may assume that z Ay £ yo.

If 2 Aya < g1, then {x Ak, k, 2 Ayo, Yo, T Ay1,y0 V(T AY1), Y2, Y3, Ya, T,V
Yo, pV k} forms a sublattice of L isomorphic to Grg. But if z Ays £ 31, then
{x Ak, k2 Ayo, yo, 2AY1, Yo V (2 AY1), TAY2, Yo V (TAY2), Y3, Ya, T, 2V yo, pVE}
forms a sublattice of L isomorphic to Gr7.

Finally, assume z A k £ yo (but still A k < y; from above). Then
(xVys) Nk <z, or else z, yo, (zVys) Ak forms a 3 element antichain. Note
that © A yg A k = yo N\ k by the breadth 2 property.

If perchance 2 Ay1 £ yo V (z A k), so that yo V (z Ay1) > yoV (2 Ak), then
the preceding argument applies with v, = yo V (z A k). So we may assume
that x Ay; < yo V (x A k).

Now check that if z A yo < y1, then {yo A k,z Ak, k,x A yo,yo, (z Ayo) V
(x NE),z ANyr,yo V(2 Ayr),y2, Y3, Ya, T, 2 V yo,p V k} forms a sublattice of
L isomorphic to either G7g or Grg, depending on whether or not (z A yg) V
(xANk) =2z Ay1. Butif z Ays £ y1, then {yo Ak, x Ak, k, 2 Ayo, Yo, (x Ayo) V
(xAk),z Ay, yoV (@ Ay1), @ Ay2, 90 V (T AY2),Ys, Ya, T, 2V yo, p V k} forms
a sublattice of L isomorphic to either Ggg or Ggi, depending on whether or
not (z Ayo)V(xANk)=xAyi. O

It follows that condition E1 (which implies E3) must hold: yy < k and
Yo V (x A k) > yo. But then the dual of Lemma [66] applies to the elements
Y1, Yo, * A k. This completes the proof of the theorem.

19. BiG MODULAR LATTICES

Now we turn our attention to modular lattices. Let S be the lattice in
Figure [1QY.

Theorem 79. There is an infinite modular lattice M such that S is a mazx-
tmal sublattice of M.

Proof. Just as S is made by gluing four diamonds together, so we shall
construct M by gluing four lattices (with a twist).

Let Z denote the integers, and let Z* be the lattice 1 + Z 4+ 1 obtained
by adding a least and greatest element to Z. Let F be the lattice of all
nondecreasing functions f : Z — Mg, ordered pointwise. If 0, I, @, b, ©
denote the constant functions, then these elements form a sublattice M3 of
F isomorphic to M3. Each interval @/0, b/0, /0, 1/a, 1/b, 1/¢ is isomorphic
to Z*. Moreover, F is generated by M3 and the elements in any one of these
legs, e.g., M3 U@/0.
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FiGure 109.

To describe the gluing, we need to establish some notation. For v < v in
M3, let fuiv be the element of M3 such that

Fonli) = {u if § < i,

v if j > 1.

These are, of course, the elements of F in the legs of M.

Let FB, FL FE FT be four (originally) disjoint copies of F. We think of
B, L, R, T as forming a lattice isomorphic to 2 x 2 with B < L, R <T. All
gluings described below are (tight) Hall-Dilworth gluings, and so preserve
modularity. Our gluing scheme is indicated in Figure [[T0.

S]
o

—|

S]]

9}

FiGure 110.
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Glue FR to FT by identifying T"/a® with ¢/0" directly: 1" = 7,
af =0", and R = fL.. Also, glue FP to FL by identifying 17 /aP with
EL/GL, but this time with a shift: T~ = ¢, @8 = 0", and B = foL(z‘+1)c'

Lemma 80. In the glued lattice F* UFT,

a ot =a" 0" U a0 14+ Z+1+Z+1.
Similarly, in the glued lattice FB U FL,

T/ =1/t U TP /P 2142 +1+Z +1.

So we can glue these two parts together (directly, no shift) using another
Hall-Dilworth gluing. If we call the resulting lattice M, then S is a maximal
sublattice of M. For if z is any element of M — S, then the sublattice
generated by S U {z} contains a point in one of the legs of one of the F’s.

Since each jz(-y projects around to qu( using only elements of S, the

(i4+1)v
entire leg is contained in the sublattice generated by S U {z}. Finally, it is

easy to see that any leg together with S generates M. O

The preceding construction must be modified somewhat to show that S
is a maximal sublattice of arbitrarily large finite lattices.

Theorem 81. There are arbitrarily large finite modular lattices M such
that S is a mazximal sublattice of M.

Proof. For each positive integer n, let G,, = Mj. Again the constant func-
tions 0, 1, @, b, ¢ form a sublattice M3 of G,, isomorphic to Ms. Each
interval @/0, b/0, ¢/0, 1/a, 1/b, 1/ is isomorphic to 2". Moreover, G,, is
generated by M3 and the elements in any one of these legs, e.g., M3 Ua/0.

We need more. Let 7:n — n by n(i) =i+ 1 mod n, and note that =
induces natural automorphisms on G,, = M} and 2", with (7(x)); = zi41.

Lemma 82. Assume n is prime. If ) C A C n, then A,7A,..., 7" 1A
generate 2™.

Proof. The proof is by induction on |A|. If |A| = 1, then A,7A,..., 7" 1A
are the atoms of 2”.

So let |A| > 1. Note that J7¥A =n as {i,...,7"71(i)} = n. If any pair
mtA, 7/ A are distinct and not disjoint, then 0 < |7°A N7/ A| < |A|, and
7 ANl A is in the sublattice generated by A,7A, ..., 7" ' A. But then so
are all the sets 7*(n' AN A) = 7 T* AN 7I+kA for 0 < k < n (since 7 is a
permutation), and these generate 2™ by induction.

But if distinct sets 7°A are always disjoint, then they form a partition of
n with equal sized blocks, which is impossible for n prime. U

So let n be prime, and let G2, GE G GI be four (originally) disjoint
copies of Gy,. Again we use (tight) Hall-Dilworth gluings, and so preserve
modularity.
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Glue GE to GT by identifying 1" /af with /0" directly, and glue GB
to GL by identifying i /a®? with ¢* /ﬁL using the shift induced by =, so that
AB = wAL for all A C n. Then, after checking that the quotients @’ /GR

and T /&P are isomorphic, glue these two parts together with no shift to
form M.

The proof that this works is a straightforward modification of the previous
argument. If z is any element of M — S, then the sublattice generated by
SU{x} contains a point in one of the legs of one of the G,,’s, corresponding
to a set A C n. This we can project around to obtain the sets corresponding
to F A for 0 < k < n. By Lemma BZ, these generated the entire leg. Finally,
any leg together with S generates M. U

For a field F, let Si(F) denote the subspace lattice of the vector space
F*. Then as the only subfield of GF(2P) for p prime is Z, the Fano plane
S3(Z3) is a maximal sublattice of S3(GF(2P)). The following conjecture is
tempting.

Conjecture. The Fano plane S3(Zs) is not mazximal in any infinite Argue-
sian (modular?) lattice.

20. B1G ALGEBRAS IN OTHER VARIETIES

Let V be a variety of algebras, and let A be a finite algebra in V. We say
that A is

1. V-big if there exists an infinite B € V with A < B,

2. V-small if A is not V-big, i.e., A < B €V implies |B| < cc.

3. V-strictly small if there is a finite bound on |B| for algebras B € V
with A < B,

4. V-sortabig if A < B for arbitrarily large finite algebras B € V.

First we note two extremes.

A. If V is locally finite, then every finite algebra of V is V-strictly small.

B. If V. is the variety of all algebras of type 7, then every finite algebra
of V, is V,-sortabig. If 7 contains at least two operations of arity > 1, or
at least one operation of arity > 2, then every finite algebra of V is V-big.
(This is an easy exercise due to B. Jénsson.)

Groups. Let C, denote the cyclic group of order p. Considering G x C,
for large primes p, we see that any finite group is G-sortabig.

We claim that the two-element group Cj is G-small. Let Cy = {1,z},
and suppose Cy < G. If Cy < Z(G), then it is easy to see that G is finite.
So w.lo.g. G = Sg(z,y) where y is a conjugate of x. It follows that G is
a dihedral group generated by z, xy. Then it must be of order 2p with p
prime for Sg(z) to be maximal. Thus G is finite.

On the other hand, let B, denote the variety of groups of exponent p.
A. Ju. Olshanskii has shown that for every prime p > 107°, there exists
an infinite simple p-group all of whose proper subgroups are of order p [11].
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Such a group has Sub(G) = M,,. Thus for large primes C, is B,-big.
However, by the solution of the restricted Burnside problem (Kostrikin [§],
Zel'manov [15], [16]) no finite group in B, is B,-sortabig.

Lattice varieties of finite height. Similarly, let V be a lattice variety
such that

1. 'V contains only finitely many finite subdirectly irreducibles (and at
least one infinite one),

2. there is a finite lattice F € V which is a maximal sublattice of an
infinite lattice L € V.

Such a variety was constructed in [10], and similar constructions yield other
varieties with these properties. If F is a maximal sublattice of a finite lattice
K €V, then |K| is at most the cardinality of the relatively free lattice with
|F| + 1 generators in the variety generated by the finite members of V,
which is finite. Thus F is V-big, but there is a bound on the size of the finite
minimal V-extensions of F.

Lattices. The main part of the paper shows that a finite lattice is either
L-big or L-strictly small.

Modular lattices. Mj is M-strictly small. The section on modular lattices
shows that there is a finite modular lattice which is M-sortabig and M-big.
Beyond that we don’t know much.

A V-big sublattice of a V-strictly small lattice. Let K be the lattice in
the paper with M3 < K. Note that K has width 4. Let V = HSP(M;, K).
So Vgi = {My, M5} U V(K)s;, and the latter lattices all have width at most
4 by Joénsson’s Lemma.

Now Mj is V-big, but we claim that Mj is V-strictly small. Suppose
M; <T €V with T'= Sg(Ms U {p}). Writing T as a subdirect product, we
have T < [[T; with each T; € Vg;. If w(T;) < 4, then the projection map
m; « T — T; collapses M5, and so m;(T) = T; is 2-generated. Therefore
T; € V(Mj5) for all 4, and |T'| is bounded (by [Fy ;) (6)] say).
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