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Abstract. Every equivalence relation can be made into a groupoid with the same

underlying set if we define the multiplication as follows: xy = x if x, y are related; oth-
erwise, xy = y. The groupoids, obtained in this way, are called equivalence algebras.
We find a finite base for the equations of equivalence algebras. The base consists of

equations in four variables, and we prove that there is no base consisting of equations
in three variables only. We also prove that all subdirectly irreducibles in the variety
generated by equivalence algebras are embeddable into the three-element equivalence

algebra, corresponding to the equivalence with two blocks on three elements.

0. Introduction

By a digraph we mean a directed graph with loops, i.e., a set equipped with
a reflexive binary relation →. By a quasitrivial groupoid we mean a groupoid
G such that xy ∈ {x, y} for all x, y ∈ G. (A groupoid is an algebra with one
binary operation, which can be denoted multiplicatively.) There is a one-to-one
correspondence between digraphs and quasitrivial groupoids: If (D,→) is a digraph,
we define multiplication on D by xy = x whenever x → y, and xy = y otherwise; on
the other hand, every quasitrivial groupoid can be made into a digraph by setting
x → y if and only if xy = x. In this way we can identify digraphs with quasitrivial
groupoids. Quasitrivial groupoids will be also called digraph algebras.

In a number of papers, for example, [2], [3], [4], [5], [6], [8], [9], [12] and [13], com-
mutative digraphs are investigated from the algebraic point of view. (Commutative
digraphs are called tournaments). The other interesting classes of digraphs (like
posets, quasi-orderings, tolerances or equivalences) have been so far much neglected
in this respect; the only two related papers seem to be [7] and [10].

It has been proved in [8] that the variety of groupoids generated by digraphs, as
well as the variety generated by tournaments, are not finitely based. The question
is natural to ask for other interesting classes of digraphs. In this paper we will
prove that the variety generated by equivalences is finitely based.

For the basics of universal algebra, the reader is referred to either [11] or [1].
In order to avoid writing too many parantheses in expressions involving nonasso-

ciative multiplication, we adopt the following conventions: X ·Y stands for (X)(Y ),
and missing parantheses are always assumed to be grouped to the left. So, for ex-
ample, x · yzu = x((yz)u).

For equivalence relations, we will write x ↔ y instead of x → y. So, x ↔ y iff
xy = x iff yx = y.
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1. Three-variable equations of equivalence algebras

We denote by E the variety generated by equivalence algebras.
Let us denote by E0 the variety of groupoids satisfying the following four equa-

tions:

(1) xx = x,
(2) x · yz = xy · xz,
(3) xyx = x,
(4) xyzyx = xzyx.

It is easy to check that these four equations are satisfied by any equivalence algebra.
Consequently, the variety E is contained in E0.

Proposition 1.1. The following equations are consequences of (1),(2),(3):

(5) x · yx = x,
(6) x · xy = xy,
(7) xy · y = xy,
(8) x · xyz = x · yz,
(9) xz · yz = xz,
(10) xy · zx = xyzx.

Proof. (5) x · yx =(2) xy · xx =(1) xy · x =(3) x.
(6) x · xy =(5) (x · yx)(xy) =(2) x · yxy =(3) xy.
(7) xy · y =(5) (xy)(y · xy) =(4) xy.
(8) x · xyz =(2) (x · xy)(xz) =(6) xy · xz =(2) x · yz.
(9) xz · yz =(2) (xz · y)(xz · z) =(7) (xz · y)(xz) =(3) xz.
(10) xy · zx =(2) (xy · z)(xy · x) =(3) xyzx. �

Lemma 1.2. Let A ∈ E0 and a, b be two elements of A. Then ab = a iff ba = b.
Also, ab = b iff ba = a.

Proof. Use the equations (3) and (5). �

For two elements a, b of a groupoid A ∈ E0, we write a ↔ b iff ab = a iff ba = b.

Lemma 1.3. Let A ∈ E0. Then ↔ is a congruence of A. (Also, every equivalence
on A extending ↔ is a congruence of A.) We have ab ↔ b for all a, b ∈ A.

Proof. Reflexivity of ↔ follows from (1). Symmetry and transitivity can be proved
as follows. If ab = a, then ba = b · ab =(5) b. If ab = a and bc = b, then
ac =(6) a · ac = a · abc =(8) a · bc = ab = a. So, ↔ is an equivalence on A. By (7),
ab ↔ b for all a, b ∈ A. This can be used to prove that every equivalence on A

extending ↔ is a congruence. �

It follows that if F is a free algebra in E0 and t ∈ F , then t ↔ x, where x is the
last variable in t. In particular, if t, u are two terms with the same last variables,
then the equation tu = t is satisfied in E0. This will be used extensively in the
following.

Lemma 1.4. The following equations are consequences of (1),(2),(3),(4):

(11) xyzxy = xy,
(12) xyzyz = xyz,
(13) xyzyxy = xyzy,
(14) xyzx · zy = x · zy,
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(15) x · yz · y = xyzy,
(16) xyz · yx = xzy · zx,
(17) xyzxz = xzyz.

Proof. (11) xy = xy · xyzxy = xy · xyz · xyx · xyy = xyzx · xy = xyzxx · xyzxy =
xyzx · xyzxy = xyzxy.

(12) xyzyz = xyzy · xyzyz = xyzy · xy · xyzyz = xyzy · xyz = xyz.
(13) Where a = xyzy, we have xyzy = ax·a = axx·axy·axz·axy = ax·yzy = axy.

(14) xyzx · zy = xyzxz · xyzxy = (xyzxz · xyz)(xyzxzx)(xyzxzy) = xyzxz ·
xyzxzx · xyzxzy = xyzxzx · xyzxzy = (xy)zxz(xy) =(4) (xy)xz(xy) = xz · xy =
x · zy.

(15) Put a = x ·yz ·y and b = xyzy. We have xzyx(x ·yz) =(9) xzyx(xzyx ·yz) =
xzyx · yz =(14) x · yz, so that x · yz · xzyx = xzyx and hence

bx =(4) xzyx = x · yz · xzyx = (x · yz) · xz · (x · yz · y) · (x · yz · x)

= (x · yz)(x · yz · y)x = ax.

Also,

xa = xx · (x · yz) · xy = x · (x · yz) · xy = (x · yz) · xy = x · yzy = xy,

xb = xx · xy · xz · xy = x · xy · xz · xy = xy · xz · xy = xy.

From ax = bx and xa = xb we get a = ax · xa = bx · xb = b.
(16) Put a = xyz · yx and b = xzy · zx. We have

a · xy = xy · z · yx · xy =(4) xy · yx · z · yx · xy = x · z · yx · xy = xz · yx · xy

= xzy · xzx · xy = xzyx · xy = xzyxx · xzyxy = xzyx · xzyxy = xzyxy,

so that

a · xy · xz = (xz)yxy(xz) =(4) (xz)xy(xz) = xy · xz = x · yz.

Also, noting that for any u with u ↔ x, we know that u ·xy = ux ·uy = u ·uy = uy,
we have

b ·xy ·xz = xzy · zx · xy · xz = xz · y · zx · y · xz =(4) xz · zx · y · xz = xy ·xz = x · yz.

This proves a · xy · xz = b · xy · xz. Since

xz · (a · xy) = xz · xzyxy = xzx · xzz · xzy · xzx · xzy = x · xz · xzy · x · xzy

= xzy,

xz · (b · xy) = xz · (xzy · zx · xy) = xzy · (xz · zx) · (xz · xy) = xzyx · (x · zy)

= xzyx · (x · xzy) = xzy,

we also get xz · (a · xy) = xz · (b · xy). It follows that a · xy = b · xy. But we also
have xy · a = xy · b, since xy · a = xyzx (easily) and

xy · b = (xy · xzy) · (xy · zx) = xy · (xy · zx) = xy · zx = xyzx.

Now a · xy = b · xy and xy · a = xy · b yield a = b.
(17) We have

xyzxz · x =(12) xyzx =(4) xzyz · x,

x · xyzxz = xx · xy · xz · xx · xz = xy · xz · x · xz = x · yz · x · xz = x · xz = xz,

x · xzyz = (x · xz) · xy · xz = xz.

From xyzxz · x = xzyz · x and x · xyzxz = x · xzyz we get xyzxz = xzyz. �
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Theorem 1.5. The equations (1)-(4) imply all three-variable equations valid in
equivalence algebras. The free algebra over {x, y, z} in both E and E0 has 36 ele-
ments, represented by the terms

x, xy, x · yz, xyz, xyzy, xyzx, xyz · yx

and all terms obtained from these by permutations of variables. (These 39 elements
are pairwise different, except for xyz · yx = xzy · zx and the two symmetric cases.)

Proof. Let us work in the free algebra F over {x, y, z} in E0. Denote by Γ the set of
the 36 elements listed above. (Their number is at most 36, since xyz · yx = xzy · zx
has been verified in Lemma 1.4.)

Note that if a, b are two terms in the three letters, and, say, a ↔ x, then the left
distributive law allows us to write ab as a term t(a, ay, az). Since a is a left unit
and right zero in the subgroupoid generated by {a, ay, az}, it is easy to see that
t(a, ay, az) reduces to either a, or a term in ay and az. Using the left distributive
law again, together with the two-variable equations, we see that ab is reduced to
one of a, ay, az, a · yz, a · zy. Now using all of the equations (1)–(17) above, one can
show with modest effort that whenever a ∈ Γ, then au ∈ Γ if u is either a variable
or a product of two variables. Thus it follows that F = Γ.

It is easy to see that the 36 elements of Γ represent pairwise different term
functions on the three-element equivalence algebra with two equivalence blocks.
Consequently, F is also free over {x, y, z} in the variety E. �

Proposition 1.6. The equation (4) cannot be derived from (1),(2),(3).

Proof. A 24-element groupoid A satisfying (1),(2) and (3) but not satisfying (4)
can be constructed in the following way. Let A = {0, 1}×{0, 1}×{0, 1}×{0, 1, 2}.
Let a = (i, j, k,m) and b = (i′, j′, k′, n) be two elements of A. If n = m, we put
a · b = a. If n ≡ m+ 1 mod 3, we put

a · b =

{

(i′, i, 1− k, n) if i = j = i′ = 0 and (m,n) ∈ {(0, 1), (2, 0)},

(i′, i, k, n) otherwise.

If m ≡ n+ 1 mod 3, we put

a · b =

{

(j, j′, 1− k, n) if i = j = j′ = 0 and (m,n) ∈ {(1, 0), (0, 2)},

(j, j′, k, n) otherwise.

The verification of the equations is a bit tedious. The groupoid A does not satisfy
any of the equations (14)–(17). �

2. Subdirectly irreducible algebras in E′

0

This section contains some auxiliary results. We denote by E′

0 the variety of
groupoids determined by the equations (1), (2) and (3). By 1.6, E0 is properly
contained in E′

0.
For an algebra A ∈ E′

0 and an element a ∈ A, define a binary relation ∼a on
A by x ∼A y iff ax = ay. It follows from the left distributivity of A that ∼a is a
congruence of A for any a ∈ A.
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Lemma 2.1. Let A ∈ E′

0. The following are equivalent for an element e ∈ A:

(1) ∼e is the identity;
(2) {e} is a block of ↔;
(3) ex = ey implies x = y;
(4) ex = x for all x ∈ A;
(5) xe = e for all x ∈ A.

Proof. (1) implies (2): Let ∼e be the identity. If x ↔ e, then ex = e = ee, so that
x ∼e e and hence x = e.

(2) implies (1): Let {e} be a block of ↔ and let x ∼e y, i.e., ex = ey. Since
xe ↔ e, we have xe = e and hence ex = x by Lemma 1.2. Similarly, ey = y. From
ex = ey we get x = y.

(3) is a reformulation of (1), and (4) is equivalent to (5) by Lemma 1.2. (3)
implies (4): e(ex) = ex. (5) implies (2): If e ↔ x, then xe = x, but xe = e by
assumption, so x = e. �

An element e of an algebra A ∈ E′

0, satisfying the equivalent conditions of 2.1,
will be called singular.

Proposition 2.2. All isomorphism types of subdirectly irreducible algebras in E′

0

(including the one-element algebra) come in pairs, each pair containing one algebra
A without singular elements (or a one-element algebra), and one algebra A′ resulting
from A by adjoining a singular element.

Proof. It is easy. Observe that if e is a singular element of an algebra A ∈ E′

0, then
A − {e} is a subalgebra of A and for every congruence α of A − {e}, α ∪ idA is
a congruence of A. Also, if S is any set of singular elements of A, then S2 ∪ idA
is a congruence of A. This implies that if e is a singular element of a subdirectly
irreducible algebra A ∈ E′

0 of cardinality at least 3, then e is the only singular
element of A and A − {e} is a subdirectly irreducible subalgebra of A without a
singular element. �

Lemma 2.3. Let A ∈ E′

0 be a subdirectly irreducible algebra with at least three
elements and without singular elements; denote by θ the monolith of A. Then xθy

implies x ↔ y and ax = ay for all a ∈ A.

Proof. If θ is not contained in ↔, then ↔ is the identity, xy = x implies x = y,
but from x · yx = x we get yx = x for all x, y ∈ A; then A has only two elements,
a contradiction. So, xθy implies x ↔ y. The rest follows from Lemma 2.1. �

3. Main results

The equivalence algebra on {a, b, c}, corresponding to the equivalence with two
blocks {a, b} and {c}, will be denoted by E3. This groupoid can be also given by
its multiplication table:

a b c

a a a c

b b b c

c a b c
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Theorem 3.1. The variety generated by equivalence algebras is determined by the
equations

(E1) xx = x,
(E2) x · yz = xy · xz,
(E3) xyx = x,
(E4) yzxyuz = yuz,
(E5) (u · yzxy)z = uyz.

The only subdirectly irreducible groupoids in the variety generated by equivalence
algebras are (up to isomorphism) the groupoid E3 and its subgroupoids.

Proof. It is easy to check that the five equations are satisfied by any equivalence
algebra. For the rest, it is sufficient to show that any subdirectly irreducible algebra
A satisfying the five equations can be embedded into E3. According to 2.2, it is
sufficient to consider just the case when A contains no singular elements.

For every element c ∈ A define a binary relation βc on A as follows: (a, b) ∈ βc

if and only if ab = a and ac = bc. Clearly, βc is an equivalence. If (a, b) ∈ βc

and d ∈ A, then bcabdc = acabdc = abdc = adc, while bcabdc = bdc according
to (E4), so that adc = bdc; also, (d · bcab)c = (d · acab)c = (d · ab)c = dac, while
(d · bcab)c = dbc according to (E5), and we get dac = dbc. This proves that βc is a
congruence of A.

Denote by µ the monolith of A. If there exists an element c with µ ⊆ βc, then
for any (x, y) ∈ µ we have xc = yc, so that (according to Lemma 2.3) x = xc · x =
xc · y = yc · y = y. Since this is impossible and µ is the monolith, it follows that βc

is the identity for any c ∈ A. Hence, A satisfies the quasi-equation

(xy = x & xz = yz) ⇒ x = y.

Now let a, b, c be any elements of A. Taking x = a(bc), y = ac, z = a, we conclude
that a(bc) = ac. Since a, b, c are arbitrary, we also have

abc = ab · ac = a · bc = ac .

Thus A is a rectangular semigroup. Since A is subdirectly irreducible, it follows
that A is a two-element semigroup satisfying either the law xy = x or the law
xy = y. In both cases, A is embeddable into E3. �

Theorem 3.2. The variety E0 is not locally finite; it contains an infinite, four-
generated groupoid. Consequently, E 6= E0. (The variety generated by equivalence
algebras cannot be defined by three-variable equations only.)

Proof. We are going to define an infinite groupoid G with the underlying set {ai :
i ∈ Z} ∪ {bi : i ∈ Z} (these are pairwise distinct elements). Denote by F01 the
set of the integers congruent with either 0 or 1 modulo 4, and put F23 = Z − F01.
Denote by ≡ the equivalence with the two blocks F01 and F23 on Z.

For i, j ∈ Z put aiaj = ai, bibj = bi,

aibj =

{

bi+1 if i ≡ j − 1,

bi−1 if i ≡ j + 1,
biaj =

{

ai+1 if i ≡ j − 1,

ai−1 if i ≡ j + 1.

One can easily check that this idempotent groupoid satisfies x · yx = xy · x = x.
Also, it is easy to check that ai · ajbk = aibk for all i, j, k. Then it is not difficult
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to verify the left distributive law. The equation (4) is satisfied in any groupoid
from E′

0 which has just two blocks of ↔, so G ∈ E0. The groupoid is generated
by {a0, b0, a1, b1}. According to Theorem 3.1, the variety E is generated by the
finite groupoid E3, so that it is locally finite; on the other hand, E0 is not locally
finite. �

Also, the eight-element groupoid G8 with elements a, b, c, d, e, f, g, h and multi-
plication table

a b c d e f g h

a a a a a e e h h

b b b b b f f g g

c c c c c e e g g

d d d d d f f h h

e a a c c e e e e

f b b d d f f f f

g b b c c g g g g

h a a d d h h h h

belongs to E0 −E.
There is a more general construction for these and similar examples. Choose

any non-void set C and put A = C × {0, 1, 2, 3}. Now choose permutations
π02, π03, π12, π13 of C. Define (c, i) · (d, j) = (c, i) if either {i, j} ⊆ {0, 1} or
{i, j} ⊆ {2, 3}. If i ∈ {0, 1} and j ∈ {2, 3}, put (c, i) · (d, j) = (πij(c), j). And

if i ∈ {2, 3} and j ∈ {0, 1}, put (c, i) · (d, j) = (π−1
ji (c), j). This defines a groupoid

A in which every three-generated subgroupoid is either a rectangular band or else a
subdirect product of a two- or three-element right-zero semigroup and the groupoid
E3. With the appropriate choice of the permutations πij we can ensure that A has

an infinite four-generated subgroupoid—for example, by having π02π
−1
12 π13π

−1
03 be

a permutation of infinite order containing an infinite cycle.
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