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Abstract. Some abstract here.

1. Introduction

By a medial groupoid we mean a groupoid satisfying the equation (xy)(uv) ≈
(xu)(yv). Entropic groupoids are homomorphic images of medial cancellation
groupoids. The class of entropic groupoids is a variety. This variety has been
introduced in [2]; the paper (some parts can be also found in [3],[4] and [5])
contains several equivalent definitions. The variety is not finitely based.
In [1], the following problem has been raised: Does there exist an algorithm,

deciding for any finite groupoid whether it is entropic? In this paper we are
going to present such an algorithm. On the other hand, we will show that there
is no algorithm deciding for any finite partial groupoid whether it satisfies all
the equations of entropic groupoids.
The algorithm that we are going to present is based on Theorem 2. It works

as follows: Given a groupoid with N elements, check if it satisfies all the basic
entropic equations of depth up to 5N18. If it does, the groupoid is entropic
according to the theorem; if it does not, then of course it is not entropic. This
algorithm is of no practical value: even for N = 2, the number of equations to
be considered is too big. For N = 2, however, one can do much better: it is easy
to see that a two-element groupoid is entropic if and only if it is medial, and
this is easy to check. The following problem remains open: Can the membership
problem for finite entropic groupoids be decided by an algorithm working in
a reasonable time for groupoids with, say, at most 26 elements? Is there an
algorithm, working in polynomial time?
For the terminology and basic notions of equational logic, helpful for under-

standing the following text, the reader is referred to [7].
In order to be able to describe the equational theory of entropic groupoids, we

need to introduce the following notation. Given a term t (we mean a term in the
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similarity type containing just one binary operation symbol, for multiplication)
and an occurrence o of a variable x in t, the weight of o (in t) is the ordered pair
(a, b), where a is the number of southwest turns and b is the number of southeast
turns in the path connecting the top of the term’s tree with the occurrence o;
the sum a + b is called the depth of o. For example, the weight of the (single)
occurrence of z in (x(yz))(xy) is (1, 2), and the depth is 3. Now, an equation
t ≈ u belongs to the equational theory of entropic groupoids if and only if for any
variable x and any ordered pair (w1, w2) of nonnegative integers, the number of
occurrences of x of weight (w1, w2) in t is the same as the number of occurrences
of x of weight (w1, w2) in u (see [3]). For example, the medial law, and also the
equation (x(yz))((uv)w) ≈ (x(yv))((uz)w) belong to the equational theory.
The paper [8] contains a construction of an infinite independent base for the

equations of entropic groupoids. In this paper we will need the following conse-
quence (which is, however, also easy to prove without relying on [8]).
By a slim term we mean a term t such that whenever uv is a subterm of t,

then either u or v is a variable. By a linear term we mean a term containing
no variable more than once. Let t, u be two slim terms such that the term tu is
linear; let x be a variable in t and y be a variable in u, such that the weights
of x and y in tu are the same, and there is no variable in tu of greater depth.
Denote by t′ the term obtained from t by replacing x with y, and by u′ the term
obtained from u by replacing y with x. Equations tu ≈ t′u′, obtained in this
way, will be called basic entropic equations.

Lemma 1. The set of basic entropic equations is a base for the equational theory

of entropic groupoids. �

By the depth of a term t we mean the maximum of the depths of occurrences
of variables in t, and by the depth of an equation t ≈ u we mean the maximum
of the depths of t and u. The aim of the next section is to prove the following
theorem, yielding the decidability of the membership problem for finite entropic
groupoids.

Theorem 2. Let G be a finite groupoid with N elements (N ≥ 2). Then G is

entropic if and only if it satisfies all the basic entropic equations of depth at most

5N18.

2. Proof of Theorem 2: shifting around

Let G be a finite groupoid with N elements (N ≥ 2). Let us fix two symbols
α and β (they can be thought of as symbols for the southwest and the southeast
direction in trees of terms, respectively). For any positive integer n denote by
En the set of finite sequences e = (e1, a1, . . . , en−1, an−1, en), where ei ∈ {α, β}
and ai ∈ G. The elements of En will be called paths (of length n).
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For a ∈ G, e = (e1, a1, . . . , en) ∈ En and i ∈ {0, . . . , n− 1} define an element
(a ∗ e)i of G as follows: (a ∗ e)0 = a; if ei = α, then (a ∗ e)i = (a ∗ e)i−1ai; if
ei = β, then (a ∗ e)i = ai(a ∗ e)i−1.
For i ∈ {0, . . . , n} put wα

e (i) = |{j : 1 ≤ j ≤ i, ei = α}|, wβ
e (i) = |{j : 1 ≤ j ≤

i, ei = β}| and we(i) = (wα
e (i),w

β
e (i)). The ordered pair we(i) will be called the

e-weight of i (it would be also possible to call it the weight of the i-th position
in the path e, with respect to the paths’s bottom). The e-weight of n will be
called the weight of the path e.
Let (a, b) ∈ G2 be fixed. Also, for most of the time, the positive integer n will

be fixed.
For e ∈ En we define a mapping κe of {0, . . . , n−1} by κe(i) = ((a∗e)i, (b∗e)i).
Two paths e = (e0, a1, . . . , en) and f = (f0, b1, . . . , fn) of the same length n are

said to be similar if en = fn, κe(n− 1) = κf (n− 1) and there is a permutation
π of {0, . . . , n− 1} such that fi = eπ(i) and bi = aπ(i) for all i = 1, . . . , n− 1.
For 0 ≤ i < j ≤ n put [i, j] = {i, i + 1, . . . , j}. These sets will be called

segments. The number j−i is called the length of [i, j]. (By definition, the length
is always positive.) Two segments [i, j] and [k, l] are said to be nonoverlapping

if either j ≤ k or l ≤ i. By the total length of a set S of pairwise nonoverlapping
segments we mean the sum of the lengths of all segments in S. A segment [i, j] is
called regular if j < n. For a regular segment [i, j], the two ordered pairs, κe(i)
and κe(j), will be called the lower and the upper e-value of [i, j], respectively;
if they are the same, we say that the segment is e-valued and we call κe(i) the
e-value of [i, j]. A segment is called e-correct if it is e-valued and of length at
most N2 (in particular, it must be regular). Since the range of κ has at most
N2 elements, it is easy to see that for a given e, every regular segment of length
at least N2 contains at least one e-correct subsegment. A regular segment [i, j]
is called e-correctly glued if there is a sequence i = p0 < p1 < · · · < pr = j such
that [pk−1, pk] is e-correct for any k = 1, . . . , r. Of course, every e-correctly glued
segment is e-valued.
By an e-assembly we will mean a set of pairwise disjoint, e-correctly glued

segments with pairwise different e-values. (Clearly, an e-assembly contains at
most N2 sets.) By a gap in C we mean any regular segment [i, j] such that i is
either 0 or the last element of a segment in C, j is either n−1 or the first element
of a segment in C, and there is no segment in C contained in [i, j]. Clearly, there
are at most N2 + 1 gaps in C, and the sum of the lengths of all gaps and of all
segments in C gives n− 1 precisely. By a maximal e-assembly we will mean an
e-assembly C such that for any path e′ similar to e, any e′-assembly has total
length less or equal to the total length of C.

Lemma 3. Let e ∈ En and C be a maximal e-assembly. Then the total length

of C is at least n−N4.
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Proof. Suppose, on the contrary, that the total length of C is smaller than n−N4.
This is the same as to say that the sum of the lengths of the gaps in C is at
least N4. There are at most N2+1 gaps. If each of them were of length at most
N2−1, then the sum of their lengths would be at most (N2+1)(N2−1) = N4−1,
a contradiction. So, there is at least one gap of length at least N2. But then,
there is an e-correct segment [u, v] contained in that gap.
Suppose there is no segment in C having the same e-value as [u, v]. Then

C ∪ {[u, v]} is an e-assembly of greater total length compared to that of C, a
contradiction.
So, there is precisely one segment [k, h] ∈ C with the same e-value as [u, v].

We have either v ≤ k or h ≤ u. Let us consider the first case.
Where e = (e1, a1, . . . , en), let

e′ = (e1, a1, . . . , eu, au, ev+1, av+1, . . . , ek, ak, eu+1, au+1, . . . , ev, av, ek+1, ak+1, . . . ).

Let C ′ be the set obtained from C by replacing [k, h] with [k − (v − u), h] and
any segment [i, j] ∈ C, contained in [v, k], with [i − (v − u), j − (v − u)]. It is
easy to see that e′ is similar to e and C ′ is an e′-assembly with total length larger
than the total length of C, a contradiction.
In the second case, if h ≤ u, the segment [u, v] could be shifted to hang at

the position h and joined to [k, h] in a similar way, yielding a contradiction as
well. �

Lemma 4. For every path e ∈ En there exists a path e′ similar to e such that

there is a set S of pairwise nonoverlapping, e′-correct segments of total length at

least n−N4.

Proof. It is an immediate consequence of Lemma 3. �

3. Proof of Theorem 2 continued: slopes

Throughout this section let a pair (a, b) ∈ G2 and a path e ∈ En be fixed.
We will assume that there exists a set S of pairwise nonoverlapping, e-correct
segments of total length at least n−N4, and we will keep S fixed.

Lemma 5. Let m be a positive integer and let (i, j), (k, l) be two pairs of non-

negative integers such that 0 < i + j ≤ m, 0 < k + l ≤ m and i
i+j

6= k
k+l

. Then

| i
i+j

− k
k+l

| ≥ 1
m2 .

Proof. We have | i
i+j

− k
k+l

| = | c
(i+j)(k+l)

| for an integer c. Since the fraction is

nonzero, we have |c| ≥ 1 and hence | c
(i+j)(k+l)

| ≥ 1
m2 . �
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For each segment [i, j] put λe[i, j] =
wα

e (j)−wα
e (i)

j−i
. This is a rational number

between 0 and 1; it will be called the e-slope (or just slope, if e is clear from
context) of [i, j]. Since

λe[i, j] =
wα

e (j)− wα
e (i)

wα
e (j)− wα

e (i) + w
β
e (j)− wβ

e (i)
,

it follows from Lemma 5 that if λ1 and λ2 are two different slopes of two segments
of length at most N2, then |λ1 − λ2| ≥

1
N4 .

Put Λe = λe[0, n] =
wα

e (n)
n

.
A rational number r will be called large (with respect to e) if r ≥ Λe +

1
2N4 ;

it will be called small if r ≤ Λe −
1

2N4 ; and middle if |r − Λe| <
1

2N4 .

Lemma 6. There is at most one middle rational number r with the property

that there is a segment of length at most N2 with e-slope equal to r.

Proof. It follows from Lemma 5 and the definitions. �

If it exists, the unique middle rational number from Lemma 6 will be denoted
by Λ′

e. If it does not exist, we put Λ′
e=Λe.

The set S is the disjoint union S−1 ∪ S0 ∪ S1, where S−1, S0 and S1 denote
the set of the segments in S with small, middle and large slopes, respectively.
For k ∈ {−1, 0, 1} put dk =

∑
[i,j]∈Sk

(λe[i, j]− Λe)(j − i).

Lemma 7. We have

(1) |d−1 + d0 + d1| ≤ N4,

(2) −|S−1|N
2 ≤ d−1 ≤ − |S−1|

2N4 ,

(3) |d0| ≤
|S0|
2N2 ,

(4) |S1|
2N4 ≤ d1 ≤ |S1|N

2.

Proof. For each i = 0, . . . , n put δe(i) = wα
e (i) − iΛe. (This rational number

could be called the distance of the i-th position on the branch e from the line
connecting the top of e with its bottom.) Clearly, δe(0) = δe(n) = 0.
It is easy to check that for any segment [i, j] we have δe(j)− δe(i) = (λe[i, j]−

Λe)(j − i). Denote by S ′ the set of all the segments of length 2 that are not
contained in any segment from S, so that the total length of S∪S ′ is precisely n

and the total length of S ′ is at most N4. We have

0 = δe(n)− δe(0) =
∑

[i,j]∈S∪S′

(δe(j)− δe(i)) =
∑

[i,j]∈S∪S′

(λe[i, j]− Λe)(j − i)

= d−1 + d0 + d1 +
∑

[i−1,i]∈S′

(λe[i− 1, i]).
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The last sum is in absolute value at most N4, so |d−1 + d0 + d1| ≤ N4. We have
proved (1).
In order to prove (2), (3) and (4), observe that 1 ≤ j − i ≤ N2 and |λe[i, j]−

Λe| <
1

2N4 in the case (3), while 1
2N4 ≤ |λe[i, j]−Λe| ≤ 1 in cases (2) and (4). �

Lemma 8. If n > 5N18, then at least one of the following two cases takes place:

either |S0| ≥ 2N10 or both |S−1| ≥ N10 and |S1| ≥ N10.

Proof Let |S0| < 2N10. Since the total length of S is at least n−N4 > 5N18−N4

and each segment in S is of length at most N2, we have |S−1| + |S0| + |S1| =

|S| > 5N18−N4

N2 = 5N16 −N2. Hence |S−1| + |S1| > 5N16 −N2 − 2N10. Then at

least one of the two sets, either S−1 or S1, has more than 5N16−N2−2N10

2
elements.

By symmetry, it is sufficient to consider the case |S−1| >
5N16−N2−2N10

2
. This

number is larger than N10, so it remains to prove that also S1 has at least
N10 elements. By Lemma 7, |d−1| >

5N16−N2−2N10

4N4 , so that d1 ≥ |d−1| − |d0| −

N4 > 5N16−N2−2N10

4N4 − 2N10

2
− N4. We can again apply Lemma 7 to see that

|S1| ≥
d1
N2 > 5N16−N2−2N10

4N6 − N6 − N2. However, it is easy to check that this
number is larger than N10. �

Lemma 9. If n > 5N18, then there are two disjoint sets P1, P2 of pairwise

nonoverlapping, e-correct segments and two ordered pairs (p1, q1), (p2, q2) of non-
negative integers such that |P1| ≥ N6, |P2| ≥ N6, (wα

e (j)−wα
e (i),w

β
e (j)−wβ

e (i)) =
(p1, q1) for all [i, j] ∈ P1, (wα

e (j) − wα
e (i),w

β
e (j) − wβ

e (i)) = (p2, q2) for all

[i, j] ∈ P2, and
p1

p1+q1
≤ Λ′

e ≤
p2

p2+q2
.

Proof. It follows easily from Lemma 8, since any set of N10 segments of length at
most N2 contains necessarily a subset of N6 segments [i, j] with identical pairs
(wα

e (j) − wα
e (i),w

β
e (j) − wβ

e (i)). (These are ordered pairs (r, s) of nonnegative
integers with 0 < r + s ≤ N2, and one can easily see that the number of such
ordered pairs is at most N4.) �

4. Proof of Theorem 2 completed

Lemma 10. The following two conditions are equivalent for a given quadruple

of ordered pairs (ci, di) 6= (0, 0) (i = 1, 2, 3, 4) of nonnegative integers such that
c1

c1+d1
≤ c2

c2+d2
and c3

c3+d3
≤ c4

c4+d4
:

(1) there exists a quadruple (n1, n2, n3, n4) 6= (0, 0, 0, 0) of nonnegative in-

tegers such that n1c1+n2c2 = n3c3+n4c4 and n1d1+n2d2 = n3d3+n4d4;

(2) there is a rational number r such that c1
c1+d1

≤ r ≤ c2
c2+d2

and c3
c3+d3

≤
r ≤ c4

c4+d4
.
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If (2) is satisfied, then the integers n1, n2, n3, n4 can be always selected to be less

or equal m3, where m is the maximum of the numbers ci and di.

Proof. If (1) is satisfied, we can put

r =
n1c1 + n2c2

n1c1 + n2c2 + n1d1 + n2d2
=

n3c3 + n4c4

n3c3 + n4c4 + n3d3 + n4d4
.

Let (2) be satisfied. If c1d4 = c4d1, we can take either (c4, 0, 0, c1) or (d4, 0, 0, d1)
for (n1, n2, n3, n4); at least one of the two quadruples is different from (0, 0, 0, 0).
Similarly, if c2d3 = c3d2, we can take either (0, c3, c2, 0) or (0, d3, d2, 0). If c1 =
c2 = c3 = c4, we can take (n1, n2, n3, n4) = (d3, d4, d1, d2). In all other cases
we can take n1 = c4(c2d3 − c3d2), n2 = c3(c4d1 − c1d4), n3 = c2(c4d1 − c1d4),
n4 = c1(c2d3− c3d2); it follows from (2) that these numbers are nonnegative. �

In order to prove Theorem 2, it is obviously sufficient to show that for any
positive integer n, any (a, b) ∈ G2 and any e, f ∈ En with the same weights and
such that en = α and fn = β,

(a ∗ e)n−1(b ∗ f)n−1 = (b ∗ e)n−1(a ∗ f)n−1.

Suppose that this is not true and let n be the least positive integer for which
there exist (a, b) ∈ G2 and e, f ∈ En giving a contradiction. According to the
assumption, n > 5N18.
By Lemma 4, there exist paths e′ and f ′ similar to e and f respectively, such

that there are a set S of pairwise nonoverlapping, e′-correct segments and a set
T of pairwise nonoverlapping, f ′-correct segments, both S and T of total length
at least n−N4.
We have en = e′n = α and fn = f ′

n = β. Since we(n) = wf (n) = we′(n) =
wf ′(n), we have Λe = Λf = Λe′ = Λf ′ , the four sets of middle rational numbers
are the same for all these four paths, and also Λ′

e = Λ′
f = Λ′

e′ = Λ′
f ′ ; let us

denote this number by Λ.
Now Lemma 9, applied to the path e′, produces two sets P1, P2 of cardinalities

at least N6 and two ordered pairs (p1, q1), (p2, q2); and applied to f ′, it similarly
produces two sets P3, P4 and two ordered pairs (p3, q3), (p4, q4). We have 0 <

pi + qi ≤ N2 (i = 1, 2, 3, 4) and we have both p1
p1+q1

≤ Λ ≤ p2
p2+q2

and p3
p3+q3

≤

Λ ≤ p4
p4+q4

. It follows by Lemma 10 that there is a quadruple (n1, n2, n3, n4) 6=

(0, 0, 0, 0) of nonnegative integers such that n1p1 + n2p2 = n3p3 + n4p4, n1q1 +
n2q2 = n3q3 + n4q4 and ni ≤ N6 (i = 1, 2, 3, 4). Take n1 segments [ri, si] in P1

(i = 1, . . . , n1) and n2 segments [ri, si] in P2 (i = n1+1, . . . , n1+n2) and denote
by e′′ the path obtained from e′ by deleting all the members with indexes in
one of the sets {ri+1, . . . , si} (i = 1, . . . , n1 + n2). This new path is of a length
m < n, and its weight is we(n) − (n1p1 + n2p2, n1q1 + n2q2). We can similarly
obtain a path f ′′ from f ′; its weight is wf (n) − (n3p3 + n4p4, n3q3 + n4q4), and
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we see that e′′ and f ′′ are of the same weight. (In particular, f ′′ is of the
same length m < n as e′′.) By the minimality of n, (a ∗ e′′)m−1(b ∗ f ′′)m−1 =
(b ∗ e′′)m−1(a ∗ f ′′)m−1. Since all the segments that have been ‘squeezed to one
point’ during this process were correct (with respect to the appropriate paths),
we have (a∗e)n−1 = (a∗e′)n−1 = (a∗e′′)m−1, (b∗e)n−1 = (b∗e′)n−1 = (b∗e′′)m−1,
(a ∗ f)n−1 = (a ∗ f ′)n−1 = (a ∗ f ′′)m−1 and (b ∗ f)n−1 = (b ∗ f ′)n−1 = (b ∗ f ′′)m−1.
It follows that (a ∗ e)n−1(b ∗ f)n−1 = (b ∗ e)n−1(a ∗ f)n−1.
This completes the proof of Theorem 2.
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