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CHAPTER I

GENERAL THEORY

OF LEFT DISTRIBUTIVE SEMIGROUPS

I.1 BASIC PROPERTIES OF LEFT DISTRIBUTIVE SEMIGROUPS

1.1 Proposition. Let S be an LD-semigroup. Then, for all x, y, z ∈ S:

(i) xyz = xyxz = xy2z.
(ii) xny = x2y for every n ≥ 2.

(iii) (xy)n = xyn = xy2 = (xy)2 for every n ≥ 2.
(iv) xn = x3 for every n ≥ 3.

Proof. (i) xyz = xyxz = xyxyz = xy2z by repeated use of the left distributive law.

(ii) For n ≥ 3, xny = xxn−2xy = xxn−2y = xn−1y.

(iii) For n ≥ 3, (xy)n = xyn = xyxyn−1 = xyxyyn−2 = xyxyn−2 = xyn−1.

(iv) For n ≥ 4, xn = xxxxn−3 = xxxn−3 = xn−1. �

1.2 Proposition. Let S be an LD-semigroup. Then:

(i) Id(S) is a left ideal of S and x3, xy2, xyx ∈ Id(S) for all x, y ∈ S.
(ii) S is elastic.

(iii) For every n ≥ 3, on,S = o3,S.

Proof. (i) First, xy2 ∈ Id(S) by 1.1(iii) and (xyx)2 = xyx2 = xyx. Now, Id(S) is a
left ideal of S (see also A1.II.1.5(i)).

(ii) Every semigroup is elastic.

(iii) This is an immediate consequence of 1.1(iv). �

1.3 Proposition. The following conditions are equivalent for an LD-semigroup S:

(i) Id(S) is an ideal of S.
(ii) S3 ⊆ Id(S).

(iii) S satisfies the (semigroup) identity x2y ≈ x2y2.

If these conditions are satisfied, then S/Id(S) is an A-semigroup.

Proof. (i) implies (ii). xyz = xy2z by 1.1(i), and xy2 ∈ Id(S) by 1.2(i).

(ii) implies (iii). Since x2y ∈ Id(S), we have x2y = x2y · x2y = x2y2.

(iii) implies (i). By 1.2(i), Id(S) is a left ideal. Let x ∈ S and a ∈ Id(S). Then
ax = a2x = a2x2 = a2x · a2x = (ax)2. Thus Id(S) is a right ideal. �

1.4 Definition. An LD-semigroup satisfying the equivalent conditions of 1.3 will
be called an LDR-semigroup.
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1.5 Proposition. The following conditions are equivalent for an LD-semigroup S:

(i) S2 ⊆ Id(S).
(ii) Id(S) is an ideal of S and S/Id(S) is a Z-semigroup.

(iii) S satisfies the identity xy ≈ xy2.
(iv) S/qS is idempotent.

If these conditions are satisfied, then S is an LDR-semigroup.

Proof. Easy. �

1.6 Definition. By an LDR1-semigroup we mean a semigroup satisfying xy ≈ xyx.
(Clearly, every LDR1-semigroup is left distributive.)

1.7 Proposition. Every LDR1-semigroup satisfies the equivalent conditions of 1.5
(hence it is an LDR-semigroup).

Proof. Let S be an LDR1-semigroup. By 1.2(i), xy = xyx ∈ Id(S) for all x, y ∈ S.
Thus S2 ⊆ Id(S). �

1.8 Proposition. Let S be an LD-semigroup. Then:

(i) pS is a congruence of S.
(ii) S/pS is an LDR1-semigroup.

Proof. (i) This is true for every semigroup.
(ii) We have xy · z = xyx · z for all x, y, z ∈ S. �

1.9 Proposition. The following conditions are equivalent for an LD-semigroup S:

(i) o2,S is an endomorphism of S.
(ii) o3,S is an endomorphism of S.

(iii) S satisfies the identity xy2 ≈ x2y2.
(iv) S is left semimedial.

Proof. By 1.1(ii) and 1.1(iii) we have (xy)3 = xy3 = xy2 = (xy)2 and x3y3 = x2y2

for all x, y ∈ S. Now it is clear that the first three conditions are equivalent.
If (iii) is satisfied, then xx ·yz = x2yz = x2y2z = xy2z = xyz = xy ·xz (use 1.1).

Conversely, if S is left semimedial, then x2y2 = xyxy = xy2. �

1.10 Definition. Every LD-semigroup satisfying the equivalent conditions of 1.9
will be called an LDT-semigroup.

1.11 Proposition. Let S be an LDT-semigroup. Then:

(i) o3,S is a homomorphism of S onto Id(S).
(ii) Every block of ker(o3,S) is an A-semigroup.

Proof. Easy. �

1.12 Proposition. The following conditions are equivalent for an LD-semigroup
S:

(i) S satisfies the identity xy ≈ x2y.
(ii) S/pS is idempotent.

Proof. Easy. �

1.13 Definition. Every LD-semigroup satisfying the equivalent conditions of 1.12
will be called an LDT1-semigroup.
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1.14 Proposition. Let S be an LDT1-semigroup. Then:

(i) S is an LDT-semigroup.
(ii) oS is a homomorphism of S onto Id(S).

(iii) Every block of ker(oS) is a Z-semigroup.

Proof. Easy. �

1.15 Proposition. Let S be an LD-semigroup. Then S/qS is an LDT1-semigroup.

Proof. We have zxy = zx2y for all x, y, z ∈ S. �

1.16 Proposition. The following conditions are equivalent for an LD-semigroup
S:

(i) S satisfies the identity x2y ≈ xy2 (i.e., S is delightful).
(ii) S satisfies the identities x2y ≈ xy2 and xyz ≈ x2yz (i.e., S is strongly

delightful).
(iii) S is an LDRT-semigroup. (I.e., both LDR and LDT.)

Proof. (i) implies (ii). We have x2yz = xy2z = xyz by 1.1(i).
(ii) implies (iii). We have x2y = x · x2y = x2y2 by 1.1(ii), so that S is an

LDR-semigroup. Similarly, xy2 = xy2 · y = x2y2 by 1.1(iii), so that S is an LDT-
semigroup.

(iii) implies (i). This follows immediately from the definitions. �

1.17 Proposition. Let S be an LDRT-semigroup. Then:

(i) Id(S) is an ideal of S and S/Id(S) is an A-semigroup.
(ii) o3,S is a homomorphism of S onto Id(S) and every block of ker(o3,S) is an

A-semigroup.
(iii) ker(o3,S)∩ ≡Id(S)

= idS and S is a subdirect product of Id(S) and S/Id(S).

Proof. For (i) see 1.3; for (ii) see 1.11; (iii) is clear. �

1.18 Proposition. Let S be an LDR1-semigroup. Then there exists a congruence
r of S such that S/r is commutative and every block of r containing at least two
elements is a subsemigroup of S and an LZ-semigroup.

Proof. Define r by (a, b) ∈ r iff either a = b or a = cb and b = da for some c, d ∈ S.
Clearly, r is an equivalence and (a, b) ∈ r implies (ax, bx) ∈ r for any x ∈ S. On the
other hand, using the left distributive law, one can see that (a, b) ∈ r also implies
(xa, xb) ∈ r. So, r is a congruence of S. Since S is an LDR1-semigroup, we have
ab = aba, ba = bab and (ab, ba) ∈ r for all a, b ∈ S. Thus S/r is commutative.

Now, let A be a block of r and a, b ∈ A, a 6= b. We have a = cb and b = da for
some elements c, d. Then ab = ada = ad = cbd = cdad = cda = cb = a. Further,
(a, b) ∈ r implies (aa, ab) ∈ r, so that (aa, a) ∈ r, and we get aa ∈ A. If a 6= aa,
then a = a3 according to the previous observation, so that a ∈ Id(S) by 1.2(i), a
contradiction. �

1.19 Proposition. The following conditions are equivalent for an LD-semigroup
S:

(i) S is right semimedial.
(ii) S is middle semimedial.

(iii) S is medial.
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(iv) S/pS is right permutable.
(v) S/qS is left permutable.

Proof. (i) implies (iii). xyuv = xyu2v = xuyuv = xuyv.
(ii) implies (iii). xyuv = xyuxv = xuyxv = xuyv. �

1.20 Proposition. The following conditions are equivalent for a semigroup S:

(i) S is a medial LDR-semigroup.
(ii) S is a medial LDRT-semigroup.

(iii) S is a D-semigroup.

Proof. (i) implies (iii). xyz = xyxz = xxyz = x2y2z = x2y2z2 = x2yz2 = x2zyz =
xzyz.

(iii) implies (ii). xyuv = xuyuv = xuyv, xxy = xyxy = x2y2 and xyy = xyxy =
x2y2. �

1.21 Proposition. The following conditions are equivalent for a semigroup S:

(i) S is an LD-semigroup and card(Id(S)) = 1.
(ii) S is an A-semigroup.

Proof. (i) implies (ii). Let Id(S) = {0}. By 1.2(i), 0 is a right absorbing element
of S and xy2 = 0 = xyx for all x, y ∈ S. Now, 0x = 0x0x = 0x2 = 0 and hence
xyz = xyxz = 0z = 0 for all x, y, z ∈ S. �

1.22 Proposition. Let S be an LD-semigroup, C = Cl(S) and D = S −C. Then:

(i) Every element of C is a left neutral element of S.
(ii) If C is nonempty, then qS = idS, S is an LDT1-semigroup and C is an

RZ-semigroup.
(iii) If D is nonempty, then D is a prime ideal of S.
(iv) If C is nonempty and S is an LDR1-semigroup, then C = {e} is a singleton

and e is a neutral element of S.

Proof. (i) For a ∈ C and x ∈ S, aax = aaax implies x = ax.
(ii) C 6= ∅ implies immediately that qS = idS , and then S is an LDT1-semigroup

by 1.15. Further, C is a subsemigroup of S (see also A1.II.4.1(i)) and C is an
RZ-semigroup by (i).

(iii) Since S is a semigroup, D is a left ideal of S. Let a ∈ D and x ∈ S. Then
au = av for some u, v ∈ S, u 6= v, and we have axu = axau = axav = axv. Hence
ax ∈ D and we see that D is an ideal. Finally, if ab ∈ D, then abu = abv, u 6= v,
and therefore either a ∈ D or b ∈ D.

(iv) We have ax = axa and x = xa for all a ∈ C and x ∈ S. The rest is clear by
(i). �

I.2 EXAMPLES OF LEFT DISTRIBUTIVE SEMIGROUPS

2.1 Example. There are (up to isomorphism) precisely four two-element LD-
semigroups. They are:

D(1), D(2), D(3), D(4)

(see A1.IV.4). The first three of them are idempotent; the last one is not.
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2.2 Example. There are (up to isomorphism) precisely sixteen three-element LD-
semigroups. They are:

D(7), . . . , D(14), D(20), D(24), . . . , D(28), D(36), D(46)

(see A1.IV.10). All of them, except D(20) and D(28), are distributive. The idem-
potent ones are D(7), . . . , D(14) and D(20).

2.3 Example. The following table shows the numbers of isomorphism types of at
most five-element LD-semigroups and LDI-semigroups:

1 2 3 4 5

LDS 1 4 16 93 682
LDIS 1 3 9 38 179

2.4 Example. Consider the following five-element groupoid S:

S 0 1 2 3 4

0 1 1 3 4 4
1 1 1 4 4 4
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4

This groupoid is an LDR1-semigroup; it is not an LDT-semigroup and it does not
satisfy the identity xyx ≈ x2yx.

2.5 Example. Consider the following four-element groupoid S:

S 0 1 2 3

0 2 3 2 2
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3

This groupoid is an LDR1-semigroup; it is not an LDT-semigroup; it is subdirectly
irreducible and satisfies x2 ≈ x2y.

2.6 Example. Consider the following two three-element LD-semigroups:

D(20) 0 1 2

0 0 0 0
1 1 1 1
2 0 1 2

D(28) 0 1 2

0 0 0 0
1 0 1 2
2 0 0 0

D(20) is an idempotent LDR1-semigroup; it is not medial. D(28) is an LDT1-
semigroup; it is medial and satisfies xy2 ≈ yx2. Moreover, Id(D(28)) is not an
ideal and D(28) is not an LDR-semigroup.
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2.7 Example. Let f be a transformation of a nonempty set S and define multu-
plication on S by xy = f(y) for all x, y ∈ S. Then S becomes a D-semigroup.

2.8 Proposition. Let S be an LD-semigroup and e /∈ S. Then:

(i) S[e] is an LD-semigroup.
(ii) S{e] is an LD-semigroup.

(iii) S[e} is an LD-semigroup iff S is an LZ-semigroup.
(iv) S{e} is an LD-semigroup iff S is an idempotent LDR1-semigroup.

Proof. Easy (see A1.IV.1.9). �

2.9 Proposition. Let S be a D-semigroup and e /∈ S. Then:

(i) S[e] is a D-semigroup.
(ii) S{e] (resp. S[e}) is a D-semigroup iff S is an RZ-semigroup (resp. LZ-

semigroup).
(iii) S{e} is a D-semigroup iff S is a semilattice.

Proof. Use 2.8. �

I.3 BASIC FACTS ON SUBDIRECTLY IRREDUCIBLE

LEFT DISTRIBUTIVE SEMIGROUPS

3.1 Proposition. Let S be a subdirectly irreducible LD-semigroup. Then just one
of the following two cases takes place:

(i) Cl(S) 6= ∅, qS = idS and S is an LDT1-semigroup.
(ii) Cl(S) = ∅ and qS 6= idS.

Proof. Suppose first Cl(S) = ∅. Then, for every x ∈ S, Lx is not injective, so that
ωS ⊆ qx,S ; but then ωS ⊆ qS . On the other hand, if Cl(S) 6= ∅, then (i) is true by
1.22(ii). �

3.2 Proposition. Let S be a subdirectly irreducible LD-semigroup such that C =
Cl(S) 6= ∅; put D = S − C. Then just one of the following five cases takes place:

(i) S ≃ D(1).
(ii) S ≃ D(2).

(iii) S ≃ D(10).
(iv) S is neither idempotent nor an LDR-semigroup and card(D) ≥ 2 (then

pS 6= idS.)
(v) S is an idempotent LDR1-semigroup, card(D) ≥ 2, pS = idS, C = {e} for

a neutral element e of S, D is subdirectly irreducible and pD = idD 6= qD.

Proof. By 3.1, qS = idS and S is an LDT1-semigroup. By 1.22, either D = ∅ or D
is a prime ideal of S. Let (a, b) ∈ ωS , a 6= b. Obviously, D = {x ∈ S : xa = xb}. If
D = ∅, then S is an RZ-semigroup by 1.22(ii) and one can readily see that S ≃ D(2)
in that case.

Next assume that D = {0} is a singleton. Then 0 is an absorbing element of S,
C is an RZ-semigroup and it is easy to see that s∪ idS is a congruence of S for any
congruence s of C. If card(C) = 1, then S ≃ D(1). If card(C) ≥ 2, then a, b ∈ C,
C ≃ D(2) and S ≃ D(10).
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Finally, assume that card(D) ≥ 2. Since D is an ideal, ≡D is a congruence of S
and thus a, b both belong to D. Then aa = ab and ba = bb.

Let pS 6= idS . Then (a, b) ∈ pS , ab = bb, and therefore aa = bb. It follows that
either aa 6= a or bb 6= b and we see that S is not idempotent. Suppose that S is an
LDR-semigroup. Then Id(S) is an ideal and, since either a /∈ Id(S) or b /∈ Id(S),
we must have card(Id(S)) = 1 by the subdirect irreducibility. Then, by 1.21, S is
an A-semigroup and thus C = ∅, a contradiction.

Let pS = idS . Then, by 1.8, S is an LDR1-semigroup; S is idempotent by 1.22(ii)
and 1.17(iii). The rest is clear from 1.22(iv). �

3.3 Proposition. Let S be a subdirectly irreducible delightful LD-semigroup (see
1.16). Then just one of the following four cases takes place:

(i) S ≃ D(2).
(ii) S ≃ D(10).

(iii) S is an idempotent LDR1-semigroup with pS = idS.
(iv) S is an A-semigroup.

Proof. With respect to 1.16(iii) and 1.17(iii), we can assume that S is idempotent.
Further, with respect to 3.1 and 3.2, we can assume that qS 6= idS . Let (a, b) ∈ ωS ,
a 6= b. We have (a, b) ∈ qS , so that a = aa = ab abd b = bb = ba. Thus ab 6= ba
and (a, b) /∈ pS . But then pS = idS and S is an LDR1-semigroup by 1.8(ii). �

3.4 Proposition. Let S be a subdirectly irreducible D-semigroup. Then just one
of the following two cases takes place:

(i) S is idempotent and S is isomorphic to one of the five distributive semi-
groups D(1), D(2), D(3), D(9) and D(10).

(ii) S is an A-semigroup.

Proof. With respect to 3.3, we can assume that S is an idempotent LDR1-semi-
group, i.e., S satisfies xy ≈ xyx. Dually, using the right hand form of 3.3, we can
assume that S satisfies xy ≈ yxy. However, then S is commutative, i.e., it is a
semilattice. A subdirectly irreducible semilattice is isomorphic to D(1). �

3.5 Remark. Let S be a subdirectly irreducible LD-semigroup. We have either
tS 6= idS or tS = idS .

If tS 6= idS , then tS = ωS = {(a, b), (b, a)} for some a, b ∈ S, a 6= b. Then
a2 = ab = ba = b2, and so either a /∈ Id(S) or b /∈ Id(S).

If t = idS , then either pS = idS and S is an LDR1-semigroup, or else qS = idS

and S is an LDT1-semigroup. In the latter case, 3.2 applies.

3.6 Proposition. The groupoids D(1), D(2), D(3) and D(4) are (up to isomor-
phism) the only (congruence) simple LD-semigroups.

Proof. The result follows easily from A1.II.7.4. �
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CHAPTER II

FREE LEFT DISTRIBUTIVE SEMIGROUPS

II.1 CONSTRUCTION OF FREE

LEFT DISTRIBUTIVE SEMIGROUPS

1.1 Construction. Let X be a nonempty set. Denote by F the (absolutely) free
semigroup over X. Denote by F the union of the following four pairwise disjoint
subsets A,B,C,D of F:

A ={xi : x ∈ X, 1 ≤ i ≤ 3}

B ={xiyj : x, y ∈ X, x 6= y, 1 ≤ i, j ≤ 2}

C ={xi
1x2 . . . xn−1x

j
n : x1, . . . , xn ∈ X pairwise different, n ≥ 3, 1 ≤ i, j ≤ 2}

D ={xi
1x2 . . . xn−1xnxk : x1, . . . , xn ∈ X pairwise different, n ≥ 2, 1 ≤ k < n,

1 ≤ i ≤ 2}

For every element u of F, (uniquely) expressed as u = xk1

1 . . . xkn

n where n ≥ 1,
xi ∈ X, ki ≥ 1 and x1 6= x2 6= x3 6= · · · 6= xn, we define an element f(u) of F as
follows:

(i) If n = 1, let f(u) = xk
1 where k = min(3, k1).

(ii) If n = 2, let f(u) = xk
1x

l
2 where k = min(2, k1) and l = min(2, k2).

(iii) If n ≥ 3 and xn /∈ {x1, . . . , xn−1}, let f(u) = xk
1y1 . . . ymxl

n where k =
min(2, k1), l = min(2, kn) and (by induction on i) yi is the first member of
x1, . . . , xn−1 not contained in {x1, y1, . . . , yi−1}.

(iv) If n ≥ 3 and xn ∈ {x1, . . . , xn−2}, let f(u) = xk
1y1 . . . ymxn where k =

min(2, k1) and (by induction on i) yi is the first member of x1, . . . , xn−1 not
contained in {x1, y1, . . . , yi−1}.

It is easy to see that f(u) ∈ F in any case. Also, it is easy to see that f(u) = u for
u ∈ F . Let us define a binary operation ∗ on F in this way: u ∗ v = f(uv) for any
u, v ∈ F . We are going to prove that F (∗) is a free LD-semigroup over X.

1.2 Lemma. Let u ∈ F. The identity u ≈ f(u) is satisfied in any LD-semigroup.

Proof. It is easy; use I.1.1, I.1.2 and, of course, the left distributive law. �

1.3 Lemma. Let u, v ∈ F and u 6= v. Then there is an LD-semigroup not satisfy-
ing u ≈ v.

Proof. Suppose that u ≈ v is satisfied in all LD-semigroups. Since every LZ-
semigroup is left distributive, the words u, v have the same first letters. Similarly,
every RZ-semigroup is left distributive and hence u, v have the same last letters.
Furthermore, every semilattice is distributive and we conclude that the set of letters
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occurring in u coincides with the set of letters occurring in v. Now, we distinguish
the following cases.

Case 1: u = xi and v = xj . The LD-semigroup D(28) (see I.2.6) satisfies
neither x ≈ x2 nor x ≈ x3. The LD-semigroup D(46) (see A1.IV.8.1) does not
satisfy x2 ≈ x3. Using these observations, we conclude that i = j. Hence u = v, a
contradiction.

Case 2: u = xiyj and v = xkyl. The LD-semigroup S from I.2.4 satisfies none of
the identities xy ≈ x2y, xy ≈ x2y2, xy2 ≈ x2y2 and xy2 ≈ x2y. The LD-semigroup
D(28) satisfies neither xy ≈ xy2 nor x2y ≈ x2y2. Consequently, i = k, j = l and
u = v, a contradiction.

Case 3: u = xi
1x2 . . . xn−1x

j
n ∈ C and v = xk

p(1)xp(2) . . . xp(n−1)x
l
p(n) ∈ C for

a permutation p of {1, . . . , n} with p(1) = 1 and p(n) = n. If n ≥ 4, then every
idempotent LD-semigroup satisfying u ≈ v is medial. However, D(20) (see I.2.6)
is a non-medial LDI-semigroup. Consequently, n = 3. It is easy to see that either
xy2 ≈ x2y2 or x2y ≈ x2y2 is a consequence of u ≈ v, and we get a contradiction by
Case 2.

Case 4: u = xi
1x2 . . . xn−1x

j
n ∈ C and v = xk

p(1)xp(2) . . . xp(n−1)xp(n)xp(k) ∈ D

for a permutation p of {1, . . . , n} with p(1) = 1 and p(k) = n. One can easily check
that every LDI-semigroup satisfying u ≈ v is distributive. However, D(20) is not
distributive, a contradiction.

Case 5: u = xi
1x2 . . . xn−1xnxk ∈ D and v = xj

p(1)xp(2) . . . xp(n−1)xp(n)xp(l) ∈ D

for a permutation p of {1, . . . , n} with p(1) = 1 and p(l) = k. Since D(20) is not
middle semimedial, we have p(2) = 2, . . . , p(n) = n. However, the LD-semigroup
from I.2.4 does not satisfy xyx ≈ x2yx. Thus i = j and u = v, a contradiction. �

1.4 Theorem. For a nonempty set X, the groupoid F (∗) constructed in 1.1 is a
free LD-semigroup over X.

Proof. Denote by ∼ the set of the ordered pairs (u, v) of elements of F such that
the equation u ≈ v is satisfied in all LD-semigroups. So, ∼ is a (fully invariant)
congruence of F and F/ ∼ is a free LD-semigroup over X. We know (by 1.2) that
f(u) ∼ u for any u ∈ F, so that (by 1.3) u ∼ v iff f(u) = f(v) for any u, v ∈ F and
∼ is just the kernel of f . Now, f is a homomorphism of F onto F (∗): if u, v ∈ F,
then both f(uv) and f(u) ∗ f(v) belong to F and are congruent modulo ∼ with uv.
The result follows from the homomorphism theorem. (In particular, the operation
∗ is associative; this is not immediate from the definition.) �

1.5 Corollary. Every finitely generated LD-semigroup is finite. The variety of
LD-semigroups is locally finite. �

1.6 Remark. Proceeding similarly, one can construct free LDI-semigroups. In
that case we get words of two types only: words of the form x1 . . . xn for n ≥ 1 and
words of the form x1x2 . . . xnxk for n ≥ 2 and 1 ≤ k < n, where (in both cases)
x1, . . . , xn are pairwise distinct letters.

1.7 Remark. By I.1.20, every D-semigroup is a medial LDRT-semigroup. The
words in a free D-semigroup are of the following types only: x, x2, x3, xy, x2y,
xyx, x1x2 . . . xm and x1x2 . . . xmx1 (m ≥ 3). Of course,

x1 . . . xm ∼ x1xp(2) . . . xp(m−1)xm and x1x2 . . . xmx1 ∼ x1xq(2) . . . xq(m)x1

for any permutation p of {x2, . . . , xm−1} and any permutation q of {x2, . . . , xm}.
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II.2 AUXILIARY RESULTS ON NUMBER-THEORETIC FUNCTIONS

2.1 Definition. Put

(i) a(n,m) = n(n− 1) . . . (n−m),
(ii) a(n) =

∑n

m=0 a(n,m),
(iii) b(n) =

∑n

m=0 ma(n,m)

for all nonnegative integers n,m.

2.2 Lemma. Let n,m ≥ 0. Then:

(i) a(n + 1,m + 1) = (n + 1)a(n,m).
(ii) a(n + 1) = (n + 1)(a(n) + 1).

(iii) b(n + 1) = (n + 1)(a(n) + b(n)).
(iv) b(n) = (n− 2)a(n) + n.

Proof. By induction on n. �

2.3 Lemma. For every n ≥ 1, a(n)+c(n)+1 = n!e, where (n+1)−1 < c(n) < n−1

and e =
∑

∞

k=0 1/(k!).

Proof. Indeed, n!e− 1 = 2n! + 3 · 4 · . . . ·n+ 4 · 5 · . . . ·n+ · · ·+ (n− 1)n+n+ c(n) =
a(n)+c(n), where c(n) = 1/(n+1)+1/(n+1)(n+2)+1/(n+1)(n+2)(n+3)+ . . . .
Clearly, 1/(n + 1) < c(n) < 1/n. �

2.4 Lemma. For every n ≥ 1, na(n) = [nn!e]−n (here, for a positive real number
r, [r] means the entire part of r).

Proof. By 2.3, na(n) = [nn!e] − n − nc(n) + u, where 0 < u < 1. Then −1 <
u − nc(n) < (n + 1)−1 and, since u − nc(n) is a whole number, we must have
u− nc(n) = 0. �

II.3 THE NUMBER OF ELEMENTS OF A

FREE LEFT DISTRIBUTIVE SEMIGROUP

3.1 Theorem. The cardinality f1(n) of the free LD-semigroup of rank n and the
cardinality f2(n) of the free LDI-semigroup of rank n are given by

f1(n) = 2[n!ne] − n,

f2(n) = [n!(n− 1)e] + 1.

Proof. By 1.4, 2.1 and 2.2 we have f1(n) = 4a(n)+2b(n)−n = n+2na(n). In order
to compute f1(n), it remains to use 2.4. The other formula is clear from 1.6. �

3.2 Remark.

(i) f1(n) = ε(n)(n + 1)!, where ε(n) → 2e. Moreover, f1(n)/f2(n) → 2.
(ii) Let S be a finitely generated LD-semigroup and n = σ(S) (see A1.I.1.5). If

n = 0, then card(S) = 1. If n ≥ 1, then

n ≤ card(S) ≤ 2[n!ne] − n.
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3.3 Remark.

(i) The cardinality f3(n) of the free idempotent LDR1-semigroup of rank n is
given by

f3(n) = [n!e] − 1.

(ii) The cardinality f4(n) of the free DI-semigroup of rank n is given by

f4(n) = n(n + 1)2n−2.

(iii) The cardinality f5(n) (resp. f6(n)) of the free LDI-semigroup satisfying
xyz ≈ xzy (resp. xyz ≈ yxz) of rank n is given by

f5(n) = f6(n) = n2n−1.

(iv) The cardinality f7(n) of the free semilattice of rank n is given by

f7(n) = 2n − 1.

(v) The cardinality f8(n) of the free idempotent semigroup satisfying x ≈ xyx
of rank n is given by

f8(n) = n2.

(vi) The cardinality f9(n) (resp. f10(n)) of the free LZ-semigroup (resp. RZ-
semigroup) of rank n is given by

f9(n) = f10(n) = n.

3.4 Remark. Denote by f11(n) the cardinality of the free D-semigroup of rank
n. According to 1.7, f11(n) = 3n + 2n(n − 1) + n(n − 1)(

(

n−2
1

)

+ · · · +
(

n−2
n−2

)

) +

n(
(

n−1
1

)

+ · · · +
(

n−1
n−1

)

). After easy calculation, we find that

f11(n) = n(n + 1)(1 + 2n−2).

3.5 Remark. Denote by f12(n) (resp. f13(n), f14(n), f15(n), f16(n)) the cardi-
nality of the free A-semigroup (resp. free unipotent A-semigroup, free commuta-
tive A-semigroup, free unipotent commutative A-semigroup, free Z-semigroup) of
rank n. Then

f12(n) = n2 + n + 1,

f13(n) = n2 + 1

f14(n) = (n2 + 3n + 2)/2,

f15(n) = (n2 + n + 2)/2,

f16(n) = n + 1.
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3.6 Table.

1 2 3 4 5 6 7 8

f1(n) 3 18 93 516 3255 23478 191793 1753608
f2(n) 1 6 33 196 1305 9786 82201 762208
f3(n) 1 4 15 64 325 1956 13694 109600
f4(n) 1 6 24 80 240 672 1792 4608
f5,6(n) 1 4 12 32 80 192 448 1024
f7(n) 1 3 7 15 31 63 127 255
f8(n) 1 4 9 16 25 36 49 64
f9,10(n) 1 2 3 4 5 6 7 8
f11(n) 3 12 36 100 270 714 1848 4680
f12(n) 3 7 13 21 31 43 57 73
f13(n) 2 5 10 17 26 37 50 65
f14(n) 3 6 10 15 21 28 36 45
f15(n) 2 4 7 11 16 22 29 37
f16(n) 2 3 4 5 6 7 8 9
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CHAPTER III

A-SEMIGROUPS AND THEIR VARIETIES

III.1 BASIC PROPERTIES OF A-SEMIGROUPS

1.1. An A-semigroup is a groupoid satisfying x · yz ≈ uv · w. It is apparent that
A-semigroups are nothing else than semigroups nilpotent of class at most 3. Thus
every A-semigroup S contains an absorbing element 0 (= 0S) such that xyz = 0
for all x, y, z ∈ S.

1.2 Proposition. Let S be an A-semigroup and Z(S) = {a ∈ S : Sa = 0 = aS}.
Then:

(i) 0, S2 and Z(S) are ideals of S.
(ii) Id(S) = Int(S) = {0} = S3 ⊆ S2 ⊆ Z(S) ⊆ S.

(iii) S2, Z(S), S/S2 and S/Z(S) are Z-semigroups.
(iv) Z(S) × Z(S) ⊆ tS.
(v) σ(S) = card(S − S2).

Proof. Easy. �

III.2 VARIETIES OF A-SEMIGROUPS

2.1 Notation. Denote by A0 the variety of trivial groupoids, by A1 the variety of
Z-semigroups, by A2 the variety of commutative unipotent A-semigroups, by A3 the
variety of commutative A-semigroups, by A4 the variety of unipotent A-semigroups
and by A = A5 the variety of A-semigroups.

2.2 Theorem. The varieties A0, A1, A2, A3, A4 and A5 are pairwise different
varieties of A-semigroups and there are no other varieties of A-semigroups. We
have

A0 ⊂ A1 ⊂ A2 ⊂ A3 ⊂ A5, A2 ⊂ A4 ⊂ A5

and there are no other inclusions except those which follow by transitivity. The
lattice of varieties of A-semigroups is given in Fig. 1.

Proof. Let V be a variety of A-semigroups determined by an identity u ≈ v, where
u, v are two semigroup words of lengths k and l, respectively. If k ≥ 3 and l ≥ 3,
then V = A5. If k ≥ 3 and l = 2, then V is either A4 or A1. If k ≥ 3 and l = 1,
then V = A0. If k = l = 2, then V is either A5 or A4 or A3 or A1. If k = 2
and l = 1, then V = A0. Finally, if k = l = 1, then V is either A5 or A0. Hence
every one-based variety of A-semigroups can be found among A0, . . . ,A5. Since
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A0

A1

A2

A3

A5

A4

Fig. 1

this collection is closed under intersection (we have A3 ∩A4 = A2), it follows that
there are no other subvarieties of A.

All the inclusions are clear. The groupoid T given by

T 0 1 2 3

0 0 0 0 0
1 0 0 3 0
2 0 3 0 0
3 0 0 0 0

is in A2 but not in A1. The groupoid D(46) (see A1.IV.8.1) is in A3 but not in A4,
and the groupoid S given by

S 0 1 2 3 4

0 0 0 0 0 0
1 0 0 3 0 0
2 0 4 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0

is in A4 but not in A3. �
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III.3 FREE A-SEMIGROUPS

3.1 Construction. Let X be a nonempty set and let f : X×X → Y be a bijective
mapping, where X ∩ Y = ∅. Let 0 be an element not belonging to X ∪ Y . Define
a multiplication on F = X ∪ Y ∪ {0} by xy = f(x, y) for x, y ∈ X and xy = 0
otherwise. Then F becomes a free A-semigroup over the set X.

3.2 Proposition. An A-semigroup S is a free A-semigroup if and only if it satisfies
the following four conditions:

(i) S is nontrivial;
(ii) If x, y, u, v ∈ S are such that xy = uv 6= 0, then x = u and y = v;

(iii) If x, y ∈ S − Z(S), then xy 6= 0;
(iv) Z(S) = S2.

Proof. Easy. �

3.3 Proposition. An A-semigroup S is a subsemigroup of a free A-semigroup if
and only if it satisfies the conditions 3.2(ii) and 3.2(iii).

Proof. The direct implication is clear from 3.2 (if S ⊆ F , then S − Z(S) ⊆ F −
Z(F )). Now, assume that S satisfies both 3.2(ii) and 3.2(iii) and put A = S−Z(S)
and B = Z(S)− S2. It follows from 3.2(iii) that S = A∪B ∪A2 ∪ {0} is a disjoint
union. Further, let C be a set such that C ∩ S = ∅ and card(C) = card(B), and
let g : B → C be a bijection. Put X = A ∪ C and define a mapping h : S → F
(where F is as in 3.1) as follows: h(a) = a for every a ∈ A; h(b) = g(b)2 for every
b ∈ B; h(xy) = xy for all x, y ∈ A; h(0) = 0. It follows from 3.2(ii) that h is
well defined and, by 3.2(iii), h is an injective homomorphism of S onto the free
A-semigroup F . �

3.4 Corollary. Every Z-semigroup is a subsemigroup of a free A-semigroup. �

3.5 Remark. The A-semigroup T from the proof of 2.2 is not a subsemigroup of
any free A-semigroup.

3.6 Remark. The number of elements of a free semigroup in any subvariety of A
has been computed in II.3.5.

III.4 SUBDIRECTLY IRREDUCIBLE A-SEMIGROUPS

4.1 Proposition. Let S be an A-semigroup containing at least three elements.
Then S is subdirectly irreducible if and only if the subsemigroup T = S2 contains
precisely two elements and tS = (T × T ) ∪ idS.

Proof. Let S be subdirectly irreducible. As one can see easily, every subdirectly
irreducible Z-semigroup contains only two elements. Consequently, S is not a Z-
semigroup and card(T ) ≥ 2. On the other hand, every nonempty subset M of T is
an ideal of S, (M ×M)∪ idS is a congruence, and it follows easily that card(T ) = 2
and ωS = (T × T ) ∪ idS . Clearly, ωS ⊆ tS . Conversely, if (a, b) ∈ tS and a 6= b,
then ({a, b} × {a, b}) ∪ idS is a congruence of S. Thus ωS = tS = (T × T ) ∪ idS .
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Now assume that T = {0, a} where a 6= 0, and that tS = (T × T ) ∪ idS . Let
r 6= idS be a congruence of S and let (x, y) ∈ r, x 6= y. If xz 6= yz for some
z ∈ S, then the elements xz and yz belong to T and we see that (a, 0) ∈ r.
Similarly, zx 6= zy implies (a, 0) ∈ r. If xz = yz and zx = zy for all z ∈ S,
then (x, y) ∈ tS = (T × T ) ∪ idS . This proves (a, 0) ∈ r in any case, so that S is
subdirectly irreducible. �

4.2 Corollary. Let S be a subdirectly irreducible A-semigroup containing at least
three elements. Then Z(S) = S2, ωS = tS, σ(S) = card(S) − 2 and every proper
homomorphic image of S is a Z-semigroup. �

4.3 Theorem. An A-semigroup S is a subsemigroup of a subdirectly irreducible
A-semigroup if and only if S2 contains at most two elements.

Proof. The direct implication follows from 4.1. Let S be an A-semigroup such that
S2 ⊆ {0, 1}, where 0 is the absorbing element of S (and 1 is some other element);
let S be not subdirectly irreducible. Put K = S−{0, 1}. Let f be a bijection of K
onto a set M with S ∩M = ∅. Put G = S ∪M and define multiplication on G in
the following way:

(i) S is a subsemigroup of G;
(ii) x · f(x) = f(x) · x = 1 and f(x) · f(x) = 0 for all x ∈ K;

(iii) f(x) · y = y · f(x) = 0 and f(x) · f(y) = 1 for all x, y ∈ K, x 6= y;
(iv) z · 0 = 0 · z = z · 1 = 1 · z = 0 for all z ∈ G.

It is easy to check that G is an A-semigroup. Of course, S is a subsemigroup
of G. We have G2 = {0, 1}, so that, according to 4.1, it remains to show that
tG = ({a, b} × {a, b}) ∪ idG.

Let (a, b) ∈ tG, a 6= b. We are going to show that a, b ∈ {0, 1}. If a, b ∈ M , then
0 = aa = ab = 1, a contradiction. Therefore, we can assume that a ∈ S.

Suppose a ∈ K. If b /∈ M , then 1 = a · f(a) = b · f(a) = 0, a contradiction. Thus
b ∈ M and we have b = f(c) for some c ∈ K. If there exists an element d of K
different from both a and c, then 0 = a · f(d) = b · f(d) = 1, a contradiction. Thus
K = {a, c}. If a = c, then b = f(a) and 1 = a · f(a) = b · f(a) = 0, a contradiction.
If ac = 0, then 0 = ac = bc = 1, which is not true; if ca = 0, we get a contradiction
similarly. Thus ac = 1 = ca. Similarly aa = 0, and S is subdirectly irreducible by
4.1, a contradiction.

This proves that a ∈ {0, 1}. In this case, xb = 0 = bx for every x ∈ G and
b ∈ {0, 1}. The rest is clear. �

4.4 Corollary. Every Z-semigroup is a subsemigroup of a (commutative and uni-
potent) subdirectly irreducible A-semigroup. �

4.5 Remark. The subdirectly irreducible A-semigroup G constructed in the proof
of 4.3 is commutative (resp. unipotent), provided that S is commutative (resp.
unipotent). Hence, the analogue of 4.3 remains true for commutative (resp. unipo-
tent) A-semigroups.
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CHAPTER IV

IDEMPOTENT LEFT DISTRIBUTIVE

SEMIGROUPS AND THEIR VARIETIES

IV.1 BASIC PROPERTIES OF IDEMPOTENT

LEFT DISTRIBUTIVE SEMIGROUPS

1.1 Proposition. The following conditions are equivalent for an idempotent semi-
group S:

(i) S is middle semimedial.
(ii) S is medial.

(iii) S is distributive.

Proof. (i) implies (ii). We have abcd = abcd·abcd = a·b·cd·a·bcd = a·cd·b·a·bcd =
a · c · d · bab · c · d = a · c · bab · d · c · d = a · c · ba · bd · c · d = a · c · bd · ba · c · d =
acb · d · b · ac · d = acb · d · ac · b · d = acbd · acbd = acbd for all a, b, c, d ∈.

(ii) implies (iii). We have abc = aabc = abac and cba = cbaa = caba for all
a, b, c ∈ S.

(iii) implies (i). We have abca = abcba = acba for all a, b, c ∈ S. �

1.2 Proposition. The pairwise nonisomorphic DI-semigroups D(1), D(2), D(3),
D(9) and D(10) are (up to isomorphism) the only subdirectly irreducible DI-semi-
groups. Moreover, D(9) is right but not left permutable and D(10) is left but not
right permutable.

Proof. See I.3.4. �

1.3 Proposition. Let S be a rectangular band, i.e., an idempotent semigroup sat-
isfying the identity x ≈ xyx. Then:

(i) S is a DI-semigroup.
(ii) S/pS is an LZ-semigroup and S/qS is an RZ-semigroup.

(iii) S ≃ S/pS × S/qS.

Proof. (i) We have abcd = aca · bcd = a · cabc · d = acd = a · cbc · d = ac · bdb · cd =
acb · dbcd = acbd for all a, b, c, d ∈ S. Thus S is medial, and hence distributive
by 1.1.

(ii) By (i), xy = xzxy = xzy for all x, y, z ∈ S and it follows that (y, zy) ∈ qS
and S/qS is an RZ-semigroup. Quite similarly, S/pS is an LZ-semigroup.

(iii) Since S is idempotent, we have tS = pS ∩ qS = idS . On the other hand, by
(ii), a/p = ab/p and b/q = ab/q for all a, b ∈ S. �

1.4 Proposition. Let S be a subdirectly irreducible LDI-semigroup. Then either
S is a DI-semigroup (and so S is isomorphic to one of D(1), D(2), D(3), D(9),
D(10)) or S is an idempotent LDR1-semigroup such that pS = idS.

Proof. See I.3.3 and 1.2. �
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IV.2 VARIETIES OF IDEMPOTENT LD-SEMIGROUPS

2.1 Notation. Consider the following varieties of idempotent semigroups:

I0 . . . trivial semigroups;

I1 . . . semigroups satisfying xy ≈ x;

I2 . . . semilattices;

I3 . . . semigroups satisfying xy ≈ y;

I4 . . . left permutable idempotent semigroups;

I5 . . . rectangular bands (idempotent semigroups satisfying x ≈ xyx);

I6 . . . right permutable idempotent semigroups;

I7 . . . normal bands (idempotent medial semigroups or DI-semigroups, see 1.1);

I8 . . . idempotent LDR1-semigroups (idempotent semigroups satisfying xy ≈
xyx);

I9 = I . . . LDI-semigroups.

2.2 Theorem. The ten pairwise different varieties I0, . . . , I9 are just all subvari-
eties of the variety I of LDI-semigroups. We have

I0 ⊂ I1 ⊂ I4 ⊂ I8 ⊂ I9, I1 ⊂ I5 ⊂ I7, I2 ⊂ I6 ⊂ I7,

I0 ⊂ I2 ⊂ I4 ⊂ I7 ⊂ I9, I0 ⊂ I3 ⊂ I5, I3 ⊂ I6

and there are no other inclusions (except those that follow by transitivity). The
lattice of subvarieties of I is given in Fig. 2.

Proof. All the non-sharp versions of the indicated inclusions are clear (use 1.1 and
1.3).

No nontrivial RZ-semigroup is in I8. Therefore, I3 6⊆ I8.

No nontrivial semilattice is in I5. Therefore, I2 6⊆ I5.

No nontrivial LZ-semigroup is in I6. Therefore, I1 6⊆ I6.

We have D(20) ∈ I8 − I7. This completes the inclusions part of the proof.

Now let V be a variety of LDI-semigroups determined (in I) by a single identity
u ≈ v.

Assume first that V ⊆ I7. The variety V is generated by its subdirectly irre-
ducible members. Using 1.2, we easily conclude that V is one of the varieties I0,
I1, I2, I3, I4, I5, I6, I7.

Let V ⊆ I8. We can restrict ourselves to the case when u = x1 . . . xn and
v = y1 . . . ym where x1, . . . , xn are pairwise different and also y1, . . . , ym are pairwise
different. If var(u) 6= var(v), then V ⊆ I5 and, in fact, V is either I0 or I1.
So, assume that var(u) = var(v). Then n = m and there is a permutation p of
{1, 2, . . . , n} such that yi = xp(i). If p(1) 6= 1, then V is either I0 or I2. Let
p(1) = 1, p 6= id, and let 2 ≤ k ≤ n − 1 be the smallest number with p(k) 6= k.
Using the substitution x1, . . . , xk−1 → x, xk → y and xk+1, . . . , xn → z, we can
show that the identity xyz ≈ xzy is satisfied in V , and so V ⊆ I4. Thus V is either
I0 or I1 or I2 or I4.

Assume, finally, that V 6⊆ I7 and V 6⊆ I8. By 1.4, every subdirectly irreducible
member of V is either in I7 or in I8. Consequently, V = I9. �
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I0

I1

I4

I7

I9

I8

I6

I3I2

I5

Fig. 2

IV.3 SUBDIRECTLY IRREDUCIBLE

IDEMPOTENT LDR1-SEMIGROUPS

3.1 Remark. According to 1.4, there exist (up to isomorphism) only two sub-
directly irreducible LDI-semigroups that are not LDR1-semigroups, namely, D(2)
and D(10).

3.2 Proposition. Let S be a subdirectly irreducible LDR1I-semigroup such that
qS = idS. Then just one of the following two cases takes place:

(i) S ≃ D(1);
(ii) S possesses at least three elements, among them a neutral element e, such

that T = S − {e} is a subsemigroup of S, qT 6= idT and T is a subdirectly
irreducible LDR1I-semigroup possessing no neutral element.

Proof. See I.3.2. �

3.3 Proposition. Let T be a nontrivial semigroup and e be an element not be-
longing to T . Then T{e} is a subdirectly irreducible LDR1I-semigroup if and only
if T is a subdirectly irreducible LDR1I-semigroup possessing no neutral element.

Proof. See I.2.8(iv). �
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3.4 Proposition. Let T be a nontrivial semigroup and o be an element not be-
longing to T . Then T [o] is a subdirectly irreducible LDR1I-semigroup if and only if
T is a subdirectly irreducible LDR1I-semigroup possessing no absorbing element.

Proof. Easy. �

3.5 Proposition. Let S be a subdirectly irreducible LDR1I-semigroup possessing
an absorbing element o. Then just one of the following two cases takes place:

(i) S ≃ D(1);
(ii) S contains at least three elements, T = S − {o} is a subsemigroup of S, T

is a subdirectly irreducible LDR1I-semigroup and T contains no absorbing
element.

Proof. Assume that card(S) ≥ 3 and that (a, b) ∈ ωS , a 6= b, a 6= o. Let u ∈ T ;
put I = {x ∈ S : xu = o} and J = Su. Then both I and J are ideals of S and
card(J) ≥ 2; we have o, u ∈ J . Consequently, ωS ⊆ (J × J) ∪ idS and a = vu for
some v ∈ S. We have a = vu = vuu = au, and so a /∈ I. Thus ωS 6⊆ (I × I) ∪ idS ,
card(I) = 1 and I = {o}. We have proved that T is a subsemigroup of S and the
rest is clear from 3.4. �

3.6 Definition. A subdirectly irreducible LDR1I-semigroup S will be called pri-
mary if S contains no neutral element and no absorbing element either.

3.7 Theorem. Let S be a subdirectly irreducible LDR1I-semigroup. Then just one
of the following five cases takes place:

(i) S ≃ D(1).
(ii) S is primary.

(iii) S contains at least three elements, among them a neutral element e, no
absorbing element, T = S − {e} is a subsemigroup of S = T{e} and T is a
primary subdirectly irreducible LDR1I-semigroup.

(iv) S contains at least three elements, among them an absorbing element o, no
neutral element, T = S − {o} is a subsemigroup of S = T [o] and T is a
primary subdirectly irreducible LDR1I-semigroup.

(v) S contains at least four elements, among them both a neutral element e and
an absorbing element o, T = S−{e, o} is a subsemigroup of S = (T{e})[o] =
(T [o]){e} and T is a primary subdirectly irreducible LDR1I-semigroup.

Proof. Combine 3.2, 3.3, 3.4 and 3.5 �

3.8 Notation. For a semigroup S, let LA(S) denote the set of left absorbing
elements of S, i.e., LA(S) = {a ∈ S : aS = {a}}. If L = LA(S) is nonempty, then
L is an ideal of S and L = Int(S). Moreover, L is equal to the intersection of all
left ideals of S and every nonempty subset of L is a right ideal of S.

3.9 Lemma. Let S be an idempotent semigroup and I be a right ideal of S. Then
I ⊆ LA(S) iff I is an LZ-semigroup.

Proof. If I is an LZ-semigroup and if a ∈ I and x ∈ S, then ax ∈ I and ax =
a · ax = a. �
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IV.4 SUBDIRECTLY IRREDUCIBLE SEMIGROUPS IN I8

4.1 Remark. Recall that I8 is the variety of LDR1I-semigroups, i.e., the variety of
idempotent semigroups satisfying xyx ≈ xy. The aim of this section is to prove that
every semigroup from I8 can be embedded into a subdirectly irreducible semigroup
from I8. This is a special case of a more general result by Goralč́ık and Koubek
[GorK,?]. The proof contained in [GorK,?] contains several inaccuracies, making it
almost unreadable.

4.2 Definition. We fix two distinct elements α, β. A semigroup S ∈ I8 will be
called admissible if {α, β} ⊆ LA(S) and sα = sβ ∈ {α, β} for all s ∈ S − LA(S).

An admissible semigroup S ∈ I8 will be called reductive if for every pair u, v of
distinct elements of S there exists an element s ∈ LA(S) with us 6= vs.

4.3 Proposition. Every semigroup S ∈ I8 containing neither α nor β can be
extended to an admissible semigroup in I8.

Proof. Put T = S ∪ {α, β} and define multiplication on T as follows: S is a sub-
semigroup of T ; αs = α and βs = β for all s ∈ T ; sα = sβ = α for all s ∈ S. It is
easy to see that T ∈ I8, LA(T ) = {α, β} and T is admissible. �

4.4 Proposition. Every admissible semigroup S ∈ I8 can be extended to a reduc-
tive admissible semigroup in I8.

Proof. Take an element e /∈ S and put R = S{e}. Let x → x′ be a bijection of R
onto a set R′ with R ∩R′ = {α, β}, such that α′ = α and β′ = β. Put T = S ∪R′

and define multiplication on T as follows:

(i) S is a subsemigroup of T ;
(ii) st′ = (st)′ for s, t ∈ S;

(iii) se′ = s′ for s ∈ S;
(iv) s′w = s′ for s ∈ S, w ∈ T ;
(v) e′w = e′ for w ∈ T .

It is easy to see that the multiplication is correctly defined, T ∈ I8, LA(T ) = R′,
and T is admissible. It remains to prove that T is reductive. Let s, t ∈ T , s 6= t. If
s, t ∈ S, then se′ = s′ 6= t′ = te′. If s, t ∈ R′, then ss = s 6= t = ts. Finally, if s ∈ S
and t ∈ R′ − {α, β}, then sα 6= t = tα. �

4.5 Notation. In the next lemmas we suppose that S ∈ I8 is a given admissible
reductive semigroup and c, d is a pair of distinct elements of LA(S) with d /∈ {α, β}.

Take two distinct elements x, y not belonging to S and denote by Z the LZ-
semigroup with the underlying set {x, y}. Denote by F the free product of S and
Z in I8, so that S and Z are disjoint subsemigroups of F , F is generated by S ∪Z
and for any A ∈ I8, any pair of homomorphisms S → A, Z → A can be extended
to a homomorphism F → A.

By a canonical form of an element u ∈ F we mean an expression u = u1 . . . un,
where

(i) 1 ≤ n ≤ 3,
(ii) if n = 2, then either u1 ∈ Z, u2 ∈ S or u1 ∈ S, u2 ∈ Z,

(iii) if n = 3, then u1 ∈ S, u2 ∈ Z, u3 ∈ S and u1u3 6= u1.

Observe that for n = 3, u1 ∈ S −LA(S) (in particular, if n = 3, then u1 /∈ {α, β}).
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4.6 Lemma. Every element of F can be expressed in a canonical form.

Proof. As this is clear for the elements of S ∪ Z, it is sufficient to show that the
set of the elements expressible in a canonical form is a subsemigroup of F . For this
sake, it is certainly sufficient to show that if u = u1 . . . un canonically, then each of
the elements ux, uy and us (for s ∈ S) also has a canonical form. This can be done
easily by considering the possible cases. For example, xsy = xsxy = xsx = xs.
Also, if st = s, then sxt = sxst = sxs = sx. �

4.7 Lemma. Let u = u1 . . . un and u = v1 . . . vm be two canonical expressions of
the same element u ∈ F . Then n = m and either u1 = v1, . . . , un = vn or else
n = 3, u1 = v1, u2 = v2 and u1u3 = v1v3.

Proof. Denote by h1 the homomorphism of F onto the two-element semilattice
{0, 1} (where 01 = 0) such that h1(S) = {1} and h1(Z) = {0}; define h2 similarly,
but setting h2(S) = {0} and h2(Z) = {1}. Clearly, h1(u1 . . . un) = 0 iff Z ∩
{u1, . . . , un} 6= ∅; also, h2(u1 . . . un) = 0 iff S ∩ {u1, . . . , un} 6= ∅. From this it
follows that it is sufficient to consider the case when n ≥ 2 and m ≥ 2.

For every e ∈ LA(S) denote by he the homomorphism of F into S extending
the identity on S and the constant homomorphism of Z onto {e}. If u1 ∈ S, then
he(u1 . . . un) = u1e. If v1 ∈ Z, then he(v1 . . . vm) = e. So, if u1 ∈ S and v1 ∈ Z,
then u1e = e for any e ∈ LA(S); in particular, u1α = α and u1β = β, contradicting
the admissibility of S. We conclude that u1, v1 either belong both to S or belong
both to Z. In the case when u1, v1 ∈ S, we get u1e = v1e for all e ∈ LA(S), so that
u1 = v1 by the reductivity of S.

Denote by h3 the homomorphism of F into Z{1} extending the constant homo-
morphism of S onto {1} and the identity on Z. If u1 = v1 ∈ S, then h3(u1 . . . un) =
u2 and h3(v1 . . . vm) = v2, so that u2 = v2. If u1, v1 ∈ Z, then h3(u1 . . . un) = u1

and h3(v1 . . . vm) = v1, so that u1 = v1.
So far we have proved that u1 = v1 and if u1 = v1 ∈ S, then u2 = v2.
Denote by h4 the homomorphism of F into S{1} extending the identity on S and

the constant homomorphism of Z onto {1}. If u1 = v1 ∈ Z, then h4(u1 . . . un) = u2

and h4(v1 . . . vm) = v2. So, u2 = v2.
Let s, t, t′ be elements of S. If sx = sxt, then xsx = xsxt, i.e., xs = xst and

hence s = st, so that sxt is not a canonical form. If sxt = sxt′, then (similarly)
st = st′. �

4.8 Notation. We have seen that every element u ∈ F can be expressed canoni-
cally, u = u1 . . . un, and u1 is uniquely determined by u; we say that u begins with
u1.

Denote by R the relation, containing the following pairs of elements of F :

(α, xc), (β, yc), (xα, xβ), (yα, yβ), (α, αx), (α, αy), (β, βx), (β, βy), (xd, yd).

Denote by ρ the congruence of F generated by R.
Put Aα = {s ∈ S : sα = α} and Aβ = {s ∈ S : sβ = β}.
Put Bα = {α} ∪ {xs : s ∈ S − {d}} ∪AαZS (notice that AαZ ⊆ AαZS).
Put Bβ = {β} ∪ {ys : s ∈ S − {d}} ∪AβZS.
For s ∈ LA(S) − {α, β} put Bs = {s, sx, sy}.
For s ∈ S − LA(S) put Bs = {s}.
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4.9 Lemma. Let (v, w) ∈ R ∪R−1 and let p, q be two elements of F{1} such that
pvq ∈ Bα (or pvq ∈ Bβ). Then pwq ∈ Bα (or pwq ∈ Bβ, respectively).

Proof. Let pvq ∈ Bα (the other case is similar). Consider first the case pvq = α.
Then clearly p, q ∈ S{1}, v ∈ {α, β}, w ∈ {xc, yc, αx, αy}. If p 6= 1, then α =
pv = pα, so that p ∈ Aα and pwq ∈ AαZS. If p = 1, then α = vq = v, so that
w ∈ {xc, αx} and we have either pwq = xcq = xc or pwq = αxq = αx; in both
cases, pwq ∈ Bα.

Let pvq ∈ {xs : s ∈ S−{d}}∪AαZS. If p /∈ S{1}, it follows easily from 4.7 that
p, and then also pwq belong to {xs : s ∈ S − {d}} ∪AαZS. So, let p ∈ S{1}.

Let p ∈ S. Then pvq ∈ AαZS; since v either begins with an element of Z
or belongs to {α, β, αx, αy, βx, βy}, we get p ∈ Aα. If w either begins with an
element of Z or is one of the elements αx, αy, βx, βy, we get pwq ∈ AαZS. So,
let w ∈ {α, β}. Then pw = α. If q ∈ S{1}, we get pwq = α ∈ Bα. Otherwise,
pwq = αq ∈ AαZS ⊆ Bα.

Finally, let p = 1. Then pvq = vq, so that v does not begin with y and v /∈
{xd, β, βx, βy}. Hence both v and w belong to {α, xc, xα, xβ, αx, αy}. But then
pwq = wq ∈ Bα. �

4.10 Lemma. Let (v, w) ∈ R∪R−1 and let p, q be two elements of F{1} such that
pvq ∈ Bs, where s ∈ S − {α, β}. Then pwq ∈ Bs.

Proof. Consider first the case pvq = s. Then p, v, q ∈ S{1}, v ∈ {α, β}, s =
pv /∈ {α, β}, so by the admissibility of S we get p = s ∈ LA(S) − {α, β}. Hence
pwq = swq ∈ {s, sx, sy} = Bs.

It remains to consider the case s ∈ LA(S) − {α, β}, pvq ∈ {sx, sy}.
Let p /∈ S{1}. It follows easily from 4.7 and from s ∈ LA(S) that p = pvq. Then

pwq = pvq ∈ Bs.
Let p ∈ S{1}. If v begins with either x or y, then from pvq ∈ {sx, sy} we get

p = s and then pwq = swq ∈ {s, sx, sy}. So, let v ∈ {α, β, αx, αy, βx, βy}. Then
either pα or pβ does not belong to {α, β}, so p ∈ LA(S) and we again obtain p = s
and pwq = swq ∈ {s, sx, sy}. �

4.11 Lemma. Let (s, t) ∈ ρ ∩ (S × S). Then s = t.

Proof. Since (s, t) ∈ ρ, there is a finite sequence s0, . . . , sn of elements of F such
that s0 = s, sn = t and for every i = 1, . . . , n we have si−1 = pvq, si = pwq for
some p, q ∈ F{1} and (v, w) ∈ R ∪R−1. It remains to use 4.9 and 4.10. �

4.12 Lemma. Every congruence of F containing ρ and containing the pair (c, d)
contains (α, β).

Proof. Let ∼ be a congruence containing ρ and (c, d). We have α ∼ xc ∼ xd ∼
yd ∼ yc ∼ β. �

4.13 Proposition. Let S be a reductive admissible semigroup from I8 and let
c, d ∈ S, c 6= d. Then S can be extended to an admissible semigroup T ∈ I8 such
that (α, β) ∈ θc,d, where θc,d is the congruence of T generated by (c, d).

Proof. Since S is reductive, it is sufficient to consider the case {c, d} ⊆ LA(S). If
{c, d} = {α, β}, we can put T = S. So, we can assume that d /∈ {α, β}.

Let us keep the notation introduced in 4.5 and 4.8. Denote by T the semigroup
F/ρ, in which we identify (or replace) every element s/ρ (for s ∈ S) with s (this
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is possible according to 4.11). So, T is an extension of S. We have T ∈ I8, since
F ∈ I8.

We have {α, β} ⊆ LA(T ): this follows from (αx, α) ∈ ρ, (αy, α) ∈ ρ, (βx, β) ∈ ρ
and (βy, β) ∈ ρ.

Let s ∈ LA(S). Then (α, αx) ∈ ρ implies (sα, sαx) ∈ ρ, i.e., (s, sx) ∈ ρ.
Similarly, (s, sy) ∈ ρ. From this it follows that (s, st) ∈ ρ for any t ∈ F , so that
s ∈ LA(T ). This proves LA(S) ⊆ LA(T ). Now it is easy to see that LA(T ) also
contains all the elements sx/ρ, sy/ρ, xs/ρ and ys/ρ with s ∈ LA(S).

Let u = u1 . . . un (canonically) be an element of F such that u/ρ ∈ T −  L(T ).
We have ui /∈ LA(S) for all i.

We have (α, xc) ∈ ρ, so that (xα, xxc) ∈ ρ, i.e., (xα, xc) ∈ ρ and hence (α, xα) ∈
ρ. Hence also (α, xβ) ∈ ρ. Similarly, (β, yα) ∈ ρ and (β, yβ) ∈ ρ. This shows
that if ui ∈ {x, y}, then (uiα)/ρ = (uiβ)/ρ ∈ {α, β}. If ui ∈ S − LA(S), then
uiα = uiβ ∈ {α, β} by the admissibility of S. Now it is easy to see that (uα)/ρ =
(uβ)/ρ ∈ {α, β}.

We see that T is admissible. The rest follows from 4.12. �

4.14 Proposition. Let S be an admissible semigroup from I8. Then S can be
extended to an admissible semigroup T ∈ I8 such that for any c, d ∈ S with c 6= d,
the congruence of T generated by (c, d) contains (α, β).

Proof. By 4.4 and 4.14, for every admissible semigroup S ∈ I8 and every c, d ∈
S with c 6= d there exists an admissible semigroup Tc,d ∈ I8 such that (α, β)
belongs to the congruence of Tc,d generated by (c, d). The result follows by a
standard argument using transfinite construction; observe that the union of a chain
of admissible semigroups from I8 is an admissible semigroup from I8. �

4.15 Theorem. Every semigroup S ∈ I8 can be extended to a subdirectly irre-
ducible semigroup from I8.

Proof. By 4.3, it is enough to consider the case when S is admissible. Define a
countable chain of admissible semigroups S0, S1, . . . as follows: S0 = S; Si+1 is
an extension of Si claimed by 4.14. The union of this chain is the desired semi-
group. �
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CHAPTER V

THE LATTICE OF VARIETIES

OF LEFT DISTRIBUTIVE SEMIGROUPS

V.1 THE SUBVARIETIES OF T ∩ R

1.1 Notation. We denote by L the variety of LD-semigroups, by I the variety of
idempotent LD-semigroups (so that I = I9), by R the variety of LDR-semigroups
and by T the variety of LDT-semigroups.

1.2 Lemma. T ∩R = A∨I and every subvariety of T ∩R is equal to Ai ∨Ij for
some 0 ≤ i ≤ 5 and 0 ≤ j ≤ 9.

Proof. By I.1.17, every semigroup in T ∩R is a subdirect product of an A-semigroup
and an idempotent LD-semigroup. Now, use Theorems III.2.2 and IV.2.2. �

1.3 Lemma. For j /∈ {0, 2} we have A2 ∨ Ij = A4 ∨ Ij and A3 ∨ Ij = A5 ∨ Ij.

Proof. Let G be the free semigroup in A3∨Ij over two generators x and y. Clearly,
xy 6= yx in G and xy, yx /∈ Id(G). From this it follows that G/Id(G) /∈ A3 and
hence (A3 ∨ Ij)∩A5 6⊆ A3. Consequently, (A3 ∨ Ij)∩A5 = A5, which means that
A3 ∨ Ij = A5 ∨ Ij . One can prove A2 ∨ Ij = A4 ∨ Ij similarly. �

1.4 Lemma. Let either i /∈ {2, 3} or j ∈ {0, 2}. Then a semigroup S belongs to
Ai ∨ Ij if and only if S ∈ T ∩ R, Id(S) ∈ Ij and S/Id(S) ∈ Ai.

Proof. Denote by V the class of all semigroups S with this property. It is easy to
see that V is a variety, and hence V = Ai ∨ Ij . �

1.5 Lemma. Let (i, j) and (k, l) be two ordered pairs from {0, . . . , 5}× {0, . . . , 9}.
Then Ai ∨ Ij ⊆ Ak ∨ Il if and only if Ij ⊆ Il and one of the following three cases
takes place: either Ai ⊆ Ak or l /∈ {0, 2}, i = 4, k = 2 or l /∈ {0, 2}, i = 5, k = 3.

Proof. Apply 1.2, 1.3 and 1.4. �

1.6 Lemma. The variety T ∩ R has the following 44 subvarieties:

L0 = A0 ∨ I0 = A0 = I0,
L1 = A0 ∨ I1 = I1,

· · ·
L9 = A0 ∨ I9 = I9,
L10 = A1 ∨ I0 = A1,
L11 = A1 ∨ I1,

· · ·
L19 = A1 ∨ I9,
L20 = A2 ∨ I0,
L21 = A2 ∨ I1 = A4 ∨ I1,
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L22 = A2 ∨ I2,
L23 = A2 ∨ I3 = A4 ∨ I3,

· · ·
L29 = A2 ∨ I9 = A4 ∨ I9,
L30 = A3 ∨ I0,
L31 = A3 ∨ I1 = A5 ∨ I1,
L32 = A3 ∨ I2,
L33 = A3 ∨ I3 = A5 ∨ I3,

· · ·
L39 = A3 ∨ I9 = A5 ∨ I9 = T ∩ R,
L40 = A4 ∨ I0,
L41 = A4 ∨ I2,
L42 = A5 ∨ I0,
L43 = A5 ∨ I2.

Proof. It follows from 1.5. �

V.2 THE VARIETIES Si,j, Ri,j and Ti,j

2.1 Notation. We denote by M(u1 ≈ v1, . . . ) the variety of LD-semigroups satis-
fying u1 ≈ v1, . . . . Put

S1 = M(x2 ≈ x3, xy2 ≈ xyx),
S2 = M(x2 ≈ x3),
S3 = M(xy2 ≈ xyx),
S4 = L (the variety of all LD-semigroups),
Si,j = {S ∈ Si : Id(S) ∈ Ij} for 1 ≤ i ≤ 4 and 0 ≤ j ≤ 9,
R1 = M(xy ≈ xyx),
R2 = M(xy ≈ xy2),
R3 = M(x2 ≈ x3, xy2 ≈ xyx, x2y ≈ x2y2) = R∩ S1,
R4 = M(x2 ≈ x3, x2y ≈ x2y2) = R∩ S2,
R5 = M(x2y ≈ x2y2, xy2 ≈ xyx) = R∩ S3,
R6 = M(x2y ≈ x2y2) = R,
Ri,j = Ri ∩ S4,j for 1 ≤ i ≤ 6 and 0 ≤ j ≤ 9,
T1 = M(xy ≈ x2y),
T2 = M(x2 ≈ x3, xy2 ≈ x2y2) = T ∩ S2,
T3 = M(xy2 ≈ x2y2) = T ,
Ti,j = Ti ∩ S4,j for 1 ≤ i ≤ 3 and 0 ≤ j ≤ 9.

2.2 Lemma. The following are true:

(i) Si,j is a subvariety of L and Si,j ∩ I = Ij.
(ii) S1 = S2 ∩ S3 and S2 ∨ S3 ⊆ S4.

(iii) A5 ⊆ S3,j ⊆ S4,j , A5 6⊆ S1,j and A5 6⊆ S2,j.
(iv) S1,j = S2,j ∩ S3,j, S1,0 = S2,0 = A4 and S3,0 = S4,0 = A5.
(v) R1 = R2 ∩R3, R3 = R4 ∩R5, R2 ⊆ R4 and R4 ∨R5 ⊆ R6.

(vi) T1 ⊆ T2 ⊆ T3.

Proof. It is easy. �
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V.3 AUXILIARY RESULTS

3.1 Notation. Let X be a countably infinite set of variables. As before, we denote
by F the free semigroup over X; the elements of F will be called words. Recall
that F is a subset of F, and every word is equivalent to a unique word from F with
respect to the equational theory of LD-semigroups.

We denote by W1 the set of the words t such that f(t) ∈ Id(S) for all LD-
semigroups S and all homomorphisms f of F into S. Denote by W2 the subsemi-
group of F generated by {x3 : x ∈ X}. Clearly, W2 ⊆ W1.

The first variable in a word t will be denoted by o(t). Denote by var(t) the set
of variables occurring in t.

3.2 Lemma. Let r, s be two words with o(r) 6= o(s) and let x be a variable such
that x 6= o(r). Then M(xr ≈ xs) ⊆ T .

Proof. Let y be a variable not occurring in xrs. Denote by y1 the first variable in s.
Consider the substitution f with f(x) = f(y1) = x and f(z) = y for all variables
z /∈ {x, y1}. Applying f to the equation xry ≈ xsy (which is a consequence of
xr ≈ xs), it is easy to see that either xy2 ≈ x2y or xy2 ≈ x2y2 is a consequence of
xr ≈ xs. However, M(xy2 ≈ x2y) = T ∩ R and M(xy2 ≈ x2y2) = T . �

3.3 Lemma. Let r, s be two words.

(i) If o(r) 6= o(s), then M(r ≈ s) ⊆ T .
(ii) If o(r) 6= o(s) = x and s starts with x2 (i.e., either s = x2 or s = x2t for

some t), then M(xr ≈ s) ⊆ T .
(iii) If x, y, z are variables and y 6= z, then M(xyr ≈ xzs) ⊆ T .

Proof. (i) Let x be a variable not occurring in rs. Then M(r ≈ s) ⊆ M(xr ≈ xs) ⊆
T by 3.2.

(ii) This follows from 3.2.
(iii) Let u be a variable not occurring in xyzrs. Consider the substitution f

with f(x) = f(z) = x and f(v) = y for all variables v /∈ {x, z}. Applying f to the
equation xyru ≈ xzsu, it is easy to see that either xy2 ≈ x2y or xy2 ≈ x2y2 is a
consequence of xyr ≈ xzs. �

3.4 Lemma. Let r, s be two words.

(i) If x is a variable not occurring in r and if s /∈ {x, x2} and s 6= tx for any
word t with x /∈ var(t), then M(rx ≈ s) ⊆ R.

(ii) If var(r) 6= var(s), then M(r ≈ s) ⊆ R.

Proof. (i) Consider the substitution f with f(x) = y and f(v) = x for all variables
v 6= x. Applying f to rx ≈ s, we see that the equation rx ≈ s has a consequence
t ≈ u, where

t ∈ {xy, x2y}

and
u ∈ {x, x2, x3, y3, xyx, x2yx, xy2, x2y2, yx, yx2, y2x, y2x2}.

Every one of these 24 equations implies x2y = x2y2.
(ii) By symmetry, we can assume that there is a variable x ∈ var(s) − var(r). If

s = x, then M(r ≈ s) is the trivial variety. In the opposite case we have sx /∈ {x, x2}
and M(r ≈ s) ⊆ M(rx ≈ sx) ⊆ R by (i). �
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3.5 Lemma. Let V be a variety of LD-semigroups. If V ∩ I ⊆ I6, then V ⊆ T .
If V ∩ I ⊆ I5, then V ⊆ R.

Proof. First, let V ∩ I ⊆ I6. Then abc = bac for all a, b, c ∈ Id(S), for any S ∈ V .
Consequently, V ⊆ M(x2yz2 ≈ y2xz2) ⊆ T by 3.3(i).

Now, let V ∩ I ⊆ I5. Then V ⊆ M(x3 ≈ x2yx2) ⊆ R by 3.4(ii). �

3.6 Lemma. The following are true:

(i) Let r, s be two words such that o(r) 6= o(s) and var(r) 6= var(s). Then
M(r ≈ s) ⊆ T ∩R.

(ii) Let V be a variety of LD-semigroups such that V ∩I ⊆ I3. Then V ⊆ T ∩R.

Proof. Use 3.3(i), 3.4(ii) and 3.5. �

3.7 Lemma. Let r, s be two words.

(i) If r, s ∈ W2, then M(r ≈ s) = S4,j for some j.
(ii) If r, s ∈ W1, then M(r ≈ s) ∩ T = T3,j for some j.

(iii) If r ∈ W1, then either M(r ≈ s) ∩ T ⊆ R or M(r ≈ s) ∩ T = T3,j or
M(r ≈ s) ∩ T = T2,j for some j.

Proof. Put V = M(r ≈ s) and let V ∩ I = Ij . Then V ⊆ S4,j and V ∩ T ⊆ T3,j .
(i) Let S ∈ S4,j and let f be a homomorphism of F into S. Then f(W2) ⊆ Id(S)

and hence f(r) = f(s). Thus S ∈ V and V = S4,j .
(ii) Let S ∈ T3,j and let f be a homomorphism of F into S. Denote by g the

substitution with g(x) = x3 for all variables x. Put h(a) = a3 for all a ∈ S, so that
h is an endomorphism of S. We have g(F) = W2 and h(S) = Id(S). Moreover,
Id(S) ∈ Ij ⊆ V ∩ T and fg(F) ⊆ Id(S). Consequently, fg(r) = fg(s). On the
other hand, it is easy to see that fg = hf . Therefore hf(r) = hf(s). But both
f(r) and f(s) belong to Id(S), and so f(r) = f(s).

(iii) By the construction of free LD-semigroups given in II.1.1 we can assume
that s = xi

1x2 . . . xn where n ≥ 1, x1, . . . , xn are pairwise different variables and
i ≤ 2. Put U = M(s ≈ s3). Clearly, V ∩T = U ∩T ∩M(r ≈ s3). Since the words r
and s3 belong to W1, we have M(r ≈ s3)∩T = T3,k for some k. If n = 1 and i = 1,
then U = I and V ∩ T = Ik. If n = 1 and i = 2, then U = S2 and V ∩ T = T2,k.
Let n ≥ 2. Then

U = M(xi
1x2 . . . xn ≈ xi

1x2 . . . xn−1x
2
n) ⊆ R

by 3.4(i). �

3.8 Lemma. Let x, y be two variables and r, s be two words with x /∈ var(rs). Let
V = M(xyr ≈ xys). If either V ⊆ R or xyr, xys ∈ W1, then either V = S4,j or
V = R6,j for some j.

Proof. Put r = u1 . . . un and s = v1 . . . vm (ui, vi ∈ X).
Let V ⊆ R. It is enough to show that a semigroup S ∈ R satisfies xyr ≈ xys

if and only if Id(S) satisfies xyr ≈ xys. The direct implication is clear. Let Id(S)
satisfy xyr ≈ xys. In S we have

xyr =xy2r = (xy)2r = (xy)2r2 = (xy)3y3r3 = (xy)3y3u3
1 . . . u

3
n

=(xy)3y3v31 . . . v
3
m = xys.
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Let xyr, xys ∈ W1. Then V = M(xyu3
1 . . . u

3
n ≈ xyv31 . . . v

3
m). If x = y, then the

result follows from 3.7(i). Hence suppose that x 6= y and put Ij = V ∩ I. Then
Ij satisfies yu1 . . . un ≈ yv1 . . . vm and V ⊆ S4,j . Conversely, let S ∈ S4,j . Then S
satisfies y3u3

1 . . . u
3
n ≈ y3v31 . . . v

3
m and hence S ∈ V . �

3.9 Lemma. Let i, j ≤ 2 ≤ n, let x1, . . . , xn be pairwise different variables and let
p be a permutation of {1, . . . , n} such that p(1) 6= 1. Put

r = xi
1x2 . . . xn, s = xj

p(1)xp(2) . . . xp(n)

and V = M(r ≈ s). Then either V ⊆ T ∩R or V = T3,6.

Proof. By 3.3(i), V ⊆ T . If p(n) 6= n, then V ⊆ R by 3.4(i). So, we can assume
that p(n) = n. Then n ≥ 3, I1 6⊆ V , V ∩ I = I6 and we get V ⊆ T3,6. Conversely,
let S ∈ T3,6 and a1, . . . , an ∈ S. Then

a31 . . . a
3
n−1a

3
n−1 = a3p(1) . . . a

3
p(n−1)a

3
n−1

and

a1 . . . an =a21a2 . . . an = a31a
3
2 . . . a

3
n−1a

3
n−1an = a3p(1) . . . a

3
p(n−1)a

3
n−1an

=ap(1) . . . ap(n−1)an−1an = ap(1) . . . ap(n−1)an. �

3.10 Lemma. Let r, s be two words such that o(r) 6= o(s) and let V = M(r ≈ s).
Then either V ⊆ T ∩R or V = T2,j or V = T3,j for some j.

Proof. By 3.3(i) we have V ⊆ T and by 3.6(i) we can assume that var(r) = var(s).
Taking into account 3.7(iii), we may restrict ourselves to the case r, s ∈ F − W1.
Then r = xi

1x2 . . . xn and s = yk1y2 . . . ym. We have n = m and there is a permuta-
tion p of {1, . . . , n} with p(1) 6= 1, such that y1 = xp(1), . . . , yn = xp(n). The result
now follows from 3.9. �

3.11 Lemma. Let i ≤ 2, 3 ≤ n, let x1, . . . , xn be pairwise distinct variables and
let p be a permutation of {2, . . . , n} such that p(2) 6= 2. Put r = x1x2 . . . xn,
s = xi

1xp(2) . . . xp(n) and V = M(r ≈ s). Then:

(i) V ⊆ T .
(ii) If p(n) 6= n, then V ⊆ T ∩R.

(iii) If p(n) = n, then V = T3,7.

Proof. (i) Use 3.3(iii).
(ii) Use (i) and 3.4(i).
(iii) It is easy to see that V ∩ I = I7 and V ⊆ T3,7. Conversely, let S ∈ T3,7 and

let a1, . . . , an be elements of S. Then

a1 . . . an = a31 . . . a
3
n−1a

3
1an = a31a

3
p(2) . . . a

3
p(n−1)a

3
1an

= a21ap(2) . . . ap(n−1)an. �
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3.12 Lemma. Let n ≥ 3, let x1, . . . , xn be pairwise different variables and let
p be a non-identical permutation of {1, . . . , n} such that p(1) = 1. Put V =
M(x2

1x2 . . . xn ≈ x2
1xp(2) . . . xp(n)). Then:

(i) If p(n) 6= n, then V = R6,4.
(ii) If p(n) = n, then V = S4,7.

Proof. If p(n) 6= n, then V ⊆ R according to 3.4(i). The rest is similar to 3.11. �

3.13 Lemma. Let i, k, q, t ≤ 2 ≤ n, let x1, . . . , xn be pairwise distinct variables
and let p be a permutation of {1, . . . , n}. Put

V = M(xi
1x2 . . . xn−1x

k
n ≈ xq

p(1)xp(2) . . . xp(n−1)x
t
p(n)).

Then either V ⊆ T ∩R or V = S4,j or V = Tm,j or V = R6,j for some m and j.

Proof. The result can be put together from the following nine cases.
(i) Let p(1) 6= 1. Then we can apply 3.10.
(ii) Let p(1) = 1, k = t = 1 and i = q = 2. This case is clear from 3.12.
(iii) Let p(1) = 1, p(2) 6= 2, k = t = 1 and i+q ≤ 3. In this case we can use 3.11.
(iv) Let p(1) = 1, p(2) = 2, k = t = 1 and i = q = 1. If p is the identical

permutation, then V = L. Hence assume that p is non-identical. Then n ≥ 4. If
p(n) 6= n, then V ⊆ R by 3.4(i), V ∩ I = I4 and it is easy to see that V = R6,4.
Now, let p(n) = n. Then V ∩ I = I7 and V ⊆ S4,7. Conversely, if S ∈ S4,7 and if
a1, . . . , an are elements of S, then

a1 . . . an = a1a
3
2 . . . a

3
n−1a

3
2a

3
n = a1a

3
2a

3
p(3) . . . a

3
p(n−1)a

3
2an

= a1a2ap(3) . . . ap(n−1)an

and S ∈ V .
(v) Let p(1) = 1, p(2) = 2, k = t = 1, i = 1 and q = 2. We have V ⊆ T by

3.3(ii). If p(n) 6= n, then V ⊆ T ∩ R follows from 3.4(i). Let p(n) = n and n ≥ 3.
Then it is easy to see that V = T ∩ M(x2

1x2 . . . xn ≈ x2
1x2xp(3) . . . xp(n)). If p is

non-identical, then V = T3,7 by 3.12; if p is the identity, then V = T3,9.
(vi) Let p(1) = 1, k = t = 2, i = 2 and q = 1. Then V ⊆ T by 3.3(ii) and we

can use 3.7(ii).
(vii) Let p(1) = 1, k = t = 2 and i = q = 1. If p(2) = 2, then the result

follows from 3.8. If p(2) 6= 2, then n ≥ 3, V ⊆ T by 3.3(iii) and the result follows
from 3.7(ii).

(viii) Let p(1) = 1, k = t = 2 and i = q = 2. In this case, it is possible to
use 3.7(i).

(ix) Let p(1) = 1, k = 2 and t = 1. If p(n) 6= n, then V ⊆ R by 3.4(i). If
p(n) = n, then the inclusion V ⊆ R is obvious. Hence we have

V = R∩ M(xi
1x2 . . . xn−1x

2
n ≈ xq

1xp(2) . . . xp(n−1)x
2
p(n)).

The result is now clear from (vi), (vii) and (viii). �

3.14 Lemma. Let r, s be two words and let V = M(r ≈ s). Then either V ⊆ T ∩R
or V = Ti,j for some i and j.

Proof. According to 3.4(ii) and 3.7(iii), we can assume that var(r) = var(s) and
r, s ∈ F −W1. However, then 3.13 can be applied. �
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V.4 THE LATTICE OF SUBVARIETIES OF T

4.1 Lemma. The following are true:

(i) T1,j ∩ A = A1, T2,j ∩ A = A4, T3,j ∩ A = A5 and T1,j ∩ I = T2,j ∩ I =
T3,j ∩ I = Ij for every 0 ≤ j ≤ 9.

(ii) T1,j = A1 ∨ Ij, T2,j = A4 ∨ Ij and T3,j = A5 ∨ Ij for j ∈ {0, 1, 3, 5}.

Proof. Use 1.5 and 3.5. �

4.2 Lemma. Let 1 ≤ i, j ≤ 3 and 0 ≤ p, q ≤ 9. Then Ti,p ∩ Tj,q = Tr,s for some
r, s. Moreover, Ti,p ⊆ Tj,q if and only if i ≤ j and Ip ⊆ Iq.

Proof. It is easy. �

4.3 Lemma. The varieties Ti,j (1 ≤ i ≤ 3, 0 ≤ j ≤ 9) are pairwise distinct.

Proof. Use 4.2. �

4.4 Lemma. Let V be a subvariety of T . Then either V is contained in T ∩R or
V = Ti,j for some i and j.

Proof. If V ⊆ R, then V ⊆ T ∩ R. So, let V 6⊆ R. Then, by 3.14, V is the
intersection of some varieties Ti,j , so that V = Ti,j for some i, j by 4.2. �

4.5 Proposition. The variety T has the following 62 subvarieties:

L0, . . . , L43,
L44 = T1,2,
L45 = T2,2,
L46 = T3,2,
L47 = T1,4,
L48 = T2,4,
L49 = T3,4,
L50 = T1,6,
L51 = T2,6,
L52 = T3,6,
L53 = T1,7,
L54 = T2,7,
L55 = T3,7,
L56 = T1,8,
L57 = T2,8,
L58 = T3,8,
L59 = T1,9,
L60 = T2,9,
L61 = T3,9 = T .

We have L44, . . . , L61 6⊆ L43 = T ∩R. We have Ti,p ⊆ Tj,q if and only if i ≤ j and
Ip ⊆ Iq. We have Am ∨In ⊆ Tr,s if and only if In ⊆ Is and either r = 3 or r = 2,
m ∈ {0, 1, 2, 4} or r = 1, m ∈ {0, 1}.

Proof. Let V be a subvariety of T such that V 6⊆ R. By 4.4 and 4.1(ii), V = Ti,j

where i ∈ {1, 2, 3} and j ∈ {2, 4, 6, 7, 8, 9}. Conversely, if i and j are such numbers,
then T1,2 ⊆ Ti,j and hence Ti,j 6⊆ R. The rest is easy. �
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V.5 AUXILIARY RESULTS

5.1 Lemma. Let i, j, k ≤ 2, n ≥ 0, x, x1, . . . , xn be pairwise distinct variables and
let p be a permutation of {1, . . . , n}. Put

V = M(xix1 . . . xn−1x
j
n ≈ xkxp(1) . . . xp(n)x).

Then either V ⊆ T or V = Sr,s or V = Rt,q for some t and q.

Proof. We distinguish six cases.
(i) n = 0. Then either S = L or V = S2,9 or V = I.
(ii) n ≥ 1 and i = j = k = 2. Then 3.7(i) can be applied.
(iii) n ≥ 1, i = k = 2 and j = 1. By 3.4(i), V ⊆ R and then clearly V = R ∩ U

where
U = M(xix1 . . . xn−1x

2
n ≈ x2xp(1) . . . xp(n)x).

But U = S4,s for some s and V = R6,s.
(iv) n ≥ 1 and i + k = 3. By 3.3(ii), V ⊆ T .
(v) n ≥ 1, i = k = 1 and j = 2. If p(1) 6= 1, then V ⊆ T due to 3.3(iii). Now we

can assume that p(1) = 1. Consider first the case when p is the identity. Then it is
easy to see that V ⊆ S3,8. Conversely, if S ∈ S3,8 and a, b1, . . . , bn ∈ S, then

ab1 . . . b
2
n = a(b1 . . . bn)2 = ab1 . . . bna

and S ∈ V . Now, let p be non-identical. Using similar arguments as in the last
case, we see that V = S3,4.

(vi) n ≥ 1 and i = j = k = 1. Then V ⊆ R,

V = R∩ M(xx1 . . . xn−1x
2
n ≈ xxp(1) . . . xp(n)x)

and either V = R5,8 or V = R5,4 by (v). �

5.2 Lemma. Let i, j ≤ 2, n ≥ 0, x, x1, . . . , xn be pairwise distinct variables and
let p be a permutation of {1, . . . , n}. Put

V = M(xix1 . . . xnx ≈ xjxp(1) . . . xp(n)x).

Then either V ⊆ T or V = S4,9 or V = S4,7.

Proof. It is similar to the proof of 5.1. �

5.3 Lemma. Let i, j, k ≤ 2 ≤ n, 1 ≤ q < n, x, x1, . . . , xn be pairwise distinct
variables and lep p be a permutation of {1, . . . , n}. Put

V = M(xix1 . . . xn−1x
j
n ≈ xkxp(1) . . . xp(n)xp(q)).

Then either V ⊆ T or V = S4,r or V = R6,r for some r.

Proof. We distinguish five cases.
(i) i = j = k = 2. In this case we can use 3.7(i).
(ii) i = k = 2 and j = 1. Clearly, V ⊆ R and we can use 3.8.
(iii) i + k = 3. Then V ⊆ T .
(iv) i = k = 1 and p(1) 6= 1. Then V ⊆ T by 3.2.
(v) i = k = 1 and p(1) = 1. If j = 2, then we can use 3.8. If j = 1, then V ⊆ R

and we can again use 3.8. �
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5.4 Lemma. Let i, j ≤ 2 ≤ n, 1 ≤ r, s < n, x, x1, . . . , xn be pairwise distinct
variables and let p be a permutation of {1, . . . , n}. Put

V = M(xix1 . . . xnxr ≈ xjxp(1) . . . xp(n)xp(s)).

Then either V ⊆ T or V = S4,q or V = S6,q for some q.

Proof. It is similar to the proof of 5.3.

5.5 Lemma. Let i, j ≤ 2 ≤ n, 1 ≤ k < n, x, x1, . . . , xn be pairwise distinct
variables and let p be a permutation of {1, . . . , n}. Put

V = M(xix1 . . . xnx ≈ xjxp(1) . . . xp(n)xp(k)).

Then either V ⊆ T or V = Sr,s for some r, s or V = Rt,s for some t, s.

Proof. Clearly, V ∩ I = I8 and

V ⊆ M(x3
p(k) . . . x

3
p(n)x

3
p(k) ≈ x3

p(k) . . . x
3
p(n)).

Consequently, V ⊆ U where

U = M(xix1 . . . xnx ≈ xjxp(1) . . . xp(n))

and V = U ∩ S4,8. The result now follows from 5.1. �

5.6 Lemma. Let r, s be two words such that var(r) = var(s) and o(r) = o(s). Put
V = M(r ≈ s). Then either V ⊆ T ∩ R or V = Ti,j orV = Rp,q or V = Sn,m for
some i, j, p, q, n,m.

Proof. We can assume that r, s ∈ F . The result then follows from 3.13 and 5.1,
. . . , 5.5. �

5.7 Lemma. Let r, s be two words such that var(r) 6= var(s) and let V = M(r ≈ s).
Then either V = T ∩ R or V = R6,j or V = R4,j for some j.

Proof. By 3.4(ii), V ⊆ R and we can assume that o(r) = o(s); denote this variable
by x. Recall that o(w) is the first variable in a word w. The last variable in w will
be denoted by ō(w). We distinguish nine cases.

(i) r = x2p and s = x2q where p, q are two words with o(p) 6= x 6= o(q). Then
V = R6,j by 3.7(i).

(ii) r = xip and s = x2q where p, q are two words with o(p) 6= x 6= o(q) and
i + j = 3. Then V ⊆ T ∩R by 3.3(ii).

(iii) r = xp and s = xq where p, q are two words with o(p) = o(q) 6= x and
ō(p) 6= x 6= ō(q). Then we can assume that x /∈ var(pq) and the result follows from
3.8.

(iv) r = xp and s = xq where p, q are two words with x 6= o(p) 6= o(q) 6= x. Then
V ⊆ T ∩R by 3.3(iii).

(v) r = xp and s = xq where p, q are two words with o(p) = o(q) 6= x and
ō(p) 6= x = ō(q). We can assume that p = x1 . . . xn, x /∈ var(p), q = y1 . . . ymx,
x1 = y1, x 6= yi. Then V ∩ I = I1 and it is easy to see that V = R6,1.

(vi) r = xp and s = xq where p, q are two words with o(p) = o(q) 6= x = ō(p) =
ō(q). We can assume that p = x1 . . . xnx, q = y1 . . . ymx, x1 = y1. Then V ∩I = I5
and V = R6,5.

(vii) r = x. Then V ⊆ I.
(viii) r = x3 and s = xiq where q is a word with o(q) 6= x. If i = 1, then

V ⊆ T ∩R by 3.3(ii). If i = 2, then 3.7(i) can be used.
(ix) r = x2 and s = xiq where q is a word with o(q) 6= x. Then V ⊆ S2 and

V = M(x3 ≈ s) ∩ S2. The result now follows from (viii). �
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5.8 Proposition. Let r, s be two words and let V = M(r ≈ s). Then either
V ⊆ R ∩ T or V = Ri,j or V = Ti,j or V = Si,j for some i, j.

Proof. Apply 3.3, 5.6 and 5.7. �

V.6 THE LATTICE OF SUBVARIETIES OF R

6.1 Lemma. The following are true:

(i) R1,j ∩A = R2,j ∩A = A1, R3,j ∩A = R4,j ∩A = A4, R5,j ∩A = R6,j ∩A =
A5, R1,j ∩ I = R3,j ∩ I = R5,j ∩ I = Ij ∩ I8 and R2,j ∩ I = R4,j ∩ I =
R6,j ∩ I = Ij for every 0 ≤ j ≤ 9.

(ii) R2,j = A1 ∨ Ij, R4,j = A4 ∨ Ij, R6,j = A5 ∨ Ij for every j ∈ {0, 2, 3, 6}.
(iii) R1,0 = R1,3 = A1 ∨ I0, R1,2 = R1,6 = A1 ∨ I2, R3,0 = R3,3 = A4 ∨ I0,

R3,2 = R3,6 = A4 ∨ I2, R5,0 = R5,3 = A5 ∨ I0 and R5,2 = R5,6 = A5 ∨ I2.
(iv) R1,j = R2,j, R3,j = R4,j and R5,j = R6,j for every j ∈ {1, 4, 8}.
(v) Ri,k = Ri,j for i ∈ {1, 3, 5} and (k, j) ∈ {(1, 5), (4, 7), (8, 9)}.

Proof. (i) is easy. In order to prove (ii), it is sufficient to show that R6,6 ∈ T ∩ R.
Let S ∈ R6,6. We have x2y = x2y2 and efg = feg for all elements x, y ∈ S and all
idempotents e, f, g ∈ S. Hence x2y2 = xx3y3y3 = xy3x3y3 = xy2.

(iii) follows from (ii). In order to prove (iv), it is sufficient to show that R5,8 =
R6,8. Let S ∈ R6,8. We have x2y = x2y2 and efe = ef for all elements x, y ∈ S
and all idempotents e, f ∈ S. Hence xyx = xy3x3 = xy3x3y3 = xy2.

In order to prove (v), it is sufficient to show that R5,8 = R5,9. Let S ∈ R5,9. We
have x2y = x2y2 and xy2 = xyx for all elements x, y ∈ S. Then efe = ef2 = ef
for all idempotents e, f ∈ S. �

6.2 Lemma. Let 1 ≤ i, j ≤ 6 and 0 ≤ r, s ≤ 9. Then Ri,r ∩ Rj,s = Rp,q for some
p and q.

Proof. It is easy. �

6.3 Proposition. We have the following inclusions between the varieties Ri,j:

(i) Ri,j ⊆ Rp,q if Ri ⊆ Rp and Ij ⊆ Iq;
(ii) Ri,j ⊆ Rp,q if Ri,j = Rp,q as described in 6.1.

There are no other inclusions except those that follow by transitivity from these two
cases.

Proof. The other inclusions would imply incorrect inclusions between subvarieties
of T ∩ R (intersect both sides with T ). �

6.4 Proposition. The variety R has the following 62 subvarieties:

L0, . . . , L43,
L62 = R1,1 = R2,1 = R1,5,
L63 = R3,1 = R4,1 = R3,5,
L64 = R5,1 = R6,1 = R5,5,
L65 = R1,4 = R2,4 = R1,7,
L66 = R3,4 = R4,4 = R2,7,
L67 = R5,4 = R6,4 = R5,7,
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L68 = R2,5,
L69 = R4,5,
L70 = R6,5,
L71 = R2,7,
L72 = R4,7,
L73 = R6,7,
L74 = R1,8 = R2,8 = R1,9,
L75 = R3,8 = R4,8 = R3,9,
L76 = R5,8 = R6,8 = R5,9,
L77 = R2,9,
L78 = R4,9,
L79 = R6,9 = R.

Proof. Let V be a subvariety of R such that V 6⊆ T . It follows from 5.8 and 6.2
that V = Ri,j for some 1 ≤ i ≤ 6 and 0 ≤ j ≤ 9. According to 6.1, V is one of the
varieties L62, . . . , L79. Example I.2.5 shows that L62 6⊆ T . �

V.7 THE LATTICE OF SUBVARIETIES OF L

7.1 Lemma. The following are true:

(i) S1,j ∩ A = S2,j ∩ A = A4, S3,j ∩ A = S4,j ∩ A = A5, S1,j ∩ I = S3,j ∩ I =
Ij ∩ I8, S2,j ∩ I = S4,j ∩ I = Ij for every 0 ≤ j ≤ 9.

(ii) S1,0 = S2,0 = S1,3 = A4 ∨ I0, S3,0 = S4,0 = S3,3 = A5 ∨ I0, S2,3 = A4 ∨ I3
and S4,3 = A5 ∨ I3.

(iii) S3 ∩ T = T3,8.
(iv) S1,2 = S2,2 = S1,6 = T2,2, S3,2 = S4,2 = S3,6 = T3,2, S2,6 = T2,6 and

S4,6 = T3,6.
(v) S1,1 = S2,1 = R3,1, S3,1 = S4,1 = R5,1, S1,5 = R3,1, S3,5 = R5,1, S2,5 =

R4,5 and S4,5 = R6,5.

Proof. It is easy. �

7.2 Lemma. Let 0 ≤ i ≤ 9 and Ij = Ii ∩ I8. Then S1,i = S1,j and S3,i = S3,j.

Proof. It is easy. �

7.3 Lemma. Let i ∈ {0, 1, 2, 4, 8}. Then S1,i = S2,i and S3,i = S4,i.

Proof. It is easy. �

7.4 Lemma. Let 1 ≤ i, j ≤ 4 and 0 ≤ r, s ≤ 9. Then Si,r ∩ Sj,s = Sp,q for some p
and q.

Proof. It is easy. �

7.5 Proposition. We have the following inclusions between the varieties Si,j:

(i) Si,j ⊆ Sp,q if Si ⊆ Sp and Ij ⊆ Iq;
(ii) Si,j ⊆ Sp,q if Si,j = Sp,q according to 7.1, 7.2 or 7.3.

There are no other inclusions except those that follow by transitivity from these two
cases.

Proof. It is easy. �
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7.6 Theorem. The variety L has the following 88 subvarieties:

L0, . . . , L79,
L80 = S1,4,
L81 = S3,4,
L82 = S2,7,
L83 = S4,7,
L84 = S1,8,
L85 = S3,8,
L86 = S2,9,
L87 = S4,9 = L.

Proof. Apply 5.8 and 7.1,. . . ,7.5. �

The lattice of varieties of LD-semigroups is pictured in Fig. 3. An element labeled
i in the picture represents the variety Li (i = 0, . . . , 87).
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