JAROSLAV JEŽEK AND TOMÁŠ KEPKA

SELFDISTRIBUTIVE GROUPOIDS

PART D1

LEFT DISTRIBUTIVE SEMIGROUPS

PRAGUE AND CAEN
$1999-2000$

LIST OF CONTENTS

I. GENERAL THEORY OF LEFT DISTRIBUTIVE SEMIGROUPS 1
I. 1 Basic properties of left distributive semigroups 1
I. 2 Examples of left distributive semigroups 5
I. 3 Basic facts on subdirectly irreducible left distributive semigroups 6
II. FREE LEFT DISTRIBUTIVE SEMIGROUPS 9
II. 1 Construction of free left distributive semigroups 9
II. 2 Auxiliary results on number-theoretic functions 11
II. 3 The number of elements of a free left distributive semigroup 11
III. A-SEMIGROUPS AND THEIR VARIETIES 14
III. 1 Basic properties of A-semigroups 14
III. 2 Varieties of A-semigroups 14
III. 3 Free A-semigroups 16
III. 4 Subdirectly irreducible A-semigroups 16
IV. IDEMPOTENT LD-SEMIGROUPS AND THEIR VARIETIES 18
IV. 1 Basic properties of idempotent left distributive semigroups 18
IV. 2 Varieties of idempotent LD-semigroups 19
IV. 3 Subdirectly irreducible idempotent LDR_{1}-semigroups 20
IV. 4 Subdirectly irreducible semigroups in \mathcal{I}_{8} 22
V. THE LATTICE OF VARIETIES OF LD-SEMIGROUPS 26
V. 1 The subvarieties of $\mathcal{T} \cap \mathcal{R}$ 26
V. 2 The varieties $S_{i, j}, R_{i, j}$ and $T_{i, j}$ 27
V. 3 Auxiliary results 28
V. 4 The lattice of subvarieties of \mathcal{T} 32
V. 5 Auxiliary results 33
V. 6 The lattice of subvarieties of \mathcal{R} 35
V. 7 The lattice of subvarieties of \mathcal{L} 37
REFERENCES 40
LIST OF SYMBOLS 41
INDEX 42

ACKNOWLEDGEMENT

This research was partly supported by the Grant Agency of the Czech Republic, grant \#201/99/0263.

CHAPTER I

GENERAL THEORY OF LEFT DISTRIBUTIVE SEMIGROUPS

I. 1 BASIC PROPERTIES OF LEFT DISTRIBUTIVE SEMIGROUPS

1.1 Proposition. Let S be an $L D$-semigroup. Then, for all $x, y, z \in S$:
(i) $x y z=x y x z=x y^{2} z$.
(ii) $x^{n} y=x^{2} y$ for every $n \geq 2$.
(iii) $(x y)^{n}=x y^{n}=x y^{2}=(x y)^{2}$ for every $n \geq 2$.
(iv) $x^{n}=x^{3}$ for every $n \geq 3$.

Proof. (i) $x y z=x y x z=x y x y z=x y^{2} z$ by repeated use of the left distributive law.
(ii) For $n \geq 3, x^{n} y=x x^{n-2} x y=x x^{n-2} y=x^{n-1} y$.
(iii) For $n \geq 3,(x y)^{n}=x y^{n}=x y x y^{n-1}=x y x y y^{n-2}=x y x y^{n-2}=x y^{n-1}$.
(iv) For $n \geq 4, x^{n}=x x x x^{n-3}=x x x^{n-3}=x^{n-1}$.
1.2 Proposition. Let S be an LD-semigroup. Then:
(i) $\operatorname{Id}(S)$ is a left ideal of S and $x^{3}, x y^{2}, x y x \in \operatorname{Id}(S)$ for all $x, y \in S$.
(ii) S is elastic.
(iii) For every $n \geq 3, o_{n, S}=o_{3, S}$.

Proof. (i) First, $x y^{2} \in \operatorname{Id}(S)$ by 1.1(iii) and $(x y x)^{2}=x y x^{2}=x y x$. Now, $\operatorname{Id}(S)$ is a left ideal of S (see also A1.II.1.5(i)).
(ii) Every semigroup is elastic.
(iii) This is an immediate consequence of 1.1(iv).
1.3 Proposition. The following conditions are equivalent for an $L D$-semigroup S :
(i) $\operatorname{Id}(S)$ is an ideal of S.
(ii) $S^{3} \subseteq \operatorname{Id}(S)$.
(iii) S satisfies the (semigroup) identity $x^{2} y \approx x^{2} y^{2}$.

If these conditions are satisfied, then $S / \operatorname{Id}(S)$ is an A-semigroup.
Proof. (i) implies (ii). $x y z=x y^{2} z$ by 1.1(i), and $x y^{2} \in \operatorname{Id}(S)$ by 1.2(i).
(ii) implies (iii). Since $x^{2} y \in \operatorname{Id}(S)$, we have $x^{2} y=x^{2} y \cdot x^{2} y=x^{2} y^{2}$.
(iii) implies (i). By $1.2(\mathrm{i}), \operatorname{Id}(S)$ is a left ideal. Let $x \in S$ and $a \in \operatorname{Id}(S)$. Then $a x=a^{2} x=a^{2} x^{2}=a^{2} x \cdot a^{2} x=(a x)^{2}$. Thus $\operatorname{Id}(S)$ is a right ideal.
1.4 Definition. An LD-semigroup satisfying the equivalent conditions of 1.3 will be called an $L D R$-semigroup.
1.5 Proposition. The following conditions are equivalent for an $L D$-semigroup S :
(i) $S^{2} \subseteq \operatorname{Id}(S)$.
(ii) $\operatorname{Id}(S)$ is an ideal of S and $S / \operatorname{Id}(S)$ is a Z-semigroup.
(iii) S satisfies the identity $x y \approx x y^{2}$.
(iv) S / q_{S} is idempotent.

If these conditions are satisfied, then S is an LDR-semigroup.
Proof. Easy.
1.6 Definition. By an $L D R_{1}$-semigroup we mean a semigroup satisfying $x y \approx x y x$. (Clearly, every LDR_{1}-semigroup is left distributive.)
1.7 Proposition. Every $L D R_{1}$-semigroup satisfies the equivalent conditions of 1.5 (hence it is an $L D R$-semigroup).
Proof. Let S be an LDR_{1}-semigroup. By 1.2(i), $x y=x y x \in \operatorname{Id}(S)$ for all $x, y \in S$. Thus $S^{2} \subseteq \operatorname{Id}(S)$.
1.8 Proposition. Let S be an LD-semigroup. Then:
(i) p_{S} is a congruence of S.
(ii) S / p_{S} is an $L D R_{1}$-semigroup.

Proof. (i) This is true for every semigroup.
(ii) We have $x y \cdot z=x y x \cdot z$ for all $x, y, z \in S$.
1.9 Proposition. The following conditions are equivalent for an $L D$-semigroup S :
(i) $o_{2, S}$ is an endomorphism of S.
(ii) $o_{3, S}$ is an endomorphism of S.
(iii) S satisfies the identity $x y^{2} \approx x^{2} y^{2}$.
(iv) S is left semimedial.

Proof. By 1.1(ii) and 1.1(iii) we have $(x y)^{3}=x y^{3}=x y^{2}=(x y)^{2}$ and $x^{3} y^{3}=x^{2} y^{2}$ for all $x, y \in S$. Now it is clear that the first three conditions are equivalent.

If (iii) is satisfied, then $x x \cdot y z=x^{2} y z=x^{2} y^{2} z=x y^{2} z=x y z=x y \cdot x z$ (use 1.1). Conversely, if S is left semimedial, then $x^{2} y^{2}=x y x y=x y^{2}$.
1.10 Definition. Every LD-semigroup satisfying the equivalent conditions of 1.9 will be called an $L D T$-semigroup.
1.11 Proposition. Let S be an LDT-semigroup. Then:
(i) $o_{3, S}$ is a homomorphism of S onto $\operatorname{Id}(S)$.
(ii) Every block of $\operatorname{ker}\left(o_{3, S}\right)$ is an A-semigroup.

Proof. Easy.
1.12 Proposition. The following conditions are equivalent for an LD-semigroup S :
(i) S satisfies the identity $x y \approx x^{2} y$.
(ii) S / p_{S} is idempotent.

Proof. Easy.
1.13 Definition. Every LD-semigroup satisfying the equivalent conditions of 1.12 will be called an $L D T_{1}$-semigroup.
1.14 Proposition. Let S be an $L D T_{1}$-semigroup. Then:
(i) S is an LDT-semigroup.
(ii) o_{S} is a homomorphism of S onto $\operatorname{Id}(S)$.
(iii) Every block of $\operatorname{ker}\left(o_{S}\right)$ is a Z-semigroup.

Proof. Easy.
1.15 Proposition. Let S be an $L D$-semigroup. Then S / q_{S} is an $L D T_{1}$-semigroup.

Proof. We have $z x y=z x^{2} y$ for all $x, y, z \in S$.
1.16 Proposition. The following conditions are equivalent for an LD-semigroup S :
(i) S satisfies the identity $x^{2} y \approx x y^{2}$ (i.e., S is delightful).
(ii) S satisfies the identities $x^{2} y \approx x y^{2}$ and $x y z \approx x^{2} y z$ (i.e., S is strongly delightful).
(iii) S is an $L D R T$-semigroup. (I.e., both $L D R$ and $L D T$.)

Proof. (i) implies (ii). We have $x^{2} y z=x y^{2} z=x y z$ by 1.1(i).
(ii) implies (iii). We have $x^{2} y=x \cdot x^{2} y=x^{2} y^{2}$ by 1.1(ii), so that S is an LDR-semigroup. Similarly, $x y^{2}=x y^{2} \cdot y=x^{2} y^{2}$ by 1.1(iii), so that S is an LDTsemigroup.
(iii) implies (i). This follows immediately from the definitions.
1.17 Proposition. Let S be an LDRT-semigroup. Then:
(i) $\operatorname{Id}(S)$ is an ideal of S and $S / \operatorname{Id}(S)$ is an A-semigroup.
(ii) $o_{3, S}$ is a homomorphism of S onto $\operatorname{Id}(S)$ and every block of $\operatorname{ker}\left(o_{3, S}\right)$ is an A-semigroup.
(iii) $\operatorname{ker}\left(o_{3, S}\right) \cap \equiv_{\operatorname{Id}(S)}=\operatorname{id}_{S}$ and S is a subdirect product of $\operatorname{Id}(S)$ and $S / \operatorname{Id}(S)$.

Proof. For (i) see 1.3; for (ii) see 1.11; (iii) is clear.
1.18 Proposition. Let S be an $L D R_{1}$-semigroup. Then there exists a congruence r of S such that S / r is commutative and every block of r containing at least two elements is a subsemigroup of S and an LZ-semigroup.
Proof. Define r by $(a, b) \in r$ iff either $a=b$ or $a=c b$ and $b=d a$ for some $c, d \in S$. Clearly, r is an equivalence and $(a, b) \in r$ implies $(a x, b x) \in r$ for any $x \in S$. On the other hand, using the left distributive law, one can see that $(a, b) \in r$ also implies $(x a, x b) \in r$. So, r is a congruence of S. Since S is an LDR_{1}-semigroup, we have $a b=a b a, b a=b a b$ and $(a b, b a) \in r$ for all $a, b \in S$. Thus S / r is commutative.

Now, let A be a block of r and $a, b \in A, a \neq b$. We have $a=c b$ and $b=d a$ for some elements c, d. Then $a b=a d a=a d=c b d=c d a d=c d a=c b=a$. Further, $(a, b) \in r$ implies $(a a, a b) \in r$, so that $(a a, a) \in r$, and we get $a a \in A$. If $a \neq a a$, then $a=a^{3}$ according to the previous observation, so that $a \in \operatorname{Id}(S)$ by 1.2(i), a contradiction.
1.19 Proposition. The following conditions are equivalent for an LD-semigroup S :
(i) S is right semimedial.
(ii) S is middle semimedial.
(iii) S is medial.
(iv) S / p_{S} is right permutable.
(v) S / q_{S} is left permutable.

Proof. (i) implies (iii). $x y u v=x y u^{2} v=x u y u v=x u y v$.
(ii) implies (iii). $x y u v=x y u x v=x u y x v=x u y v$.
1.20 Proposition. The following conditions are equivalent for a semigroup S :
(i) S is a medial $L D R$-semigroup.
(ii) S is a medial LDRT-semigroup.
(iii) S is a D-semigroup.

Proof. (i) implies (iii). $x y z=x y x z=x x y z=x^{2} y^{2} z=x^{2} y^{2} z^{2}=x^{2} y z^{2}=x^{2} z y z=$ xzyz.
(iii) implies (ii). $x y u v=x u y u v=x u y v, x x y=x y x y=x^{2} y^{2}$ and $x y y=x y x y=$ $x^{2} y^{2}$.
1.21 Proposition. The following conditions are equivalent for a semigroup S :
(i) S is an $L D$-semigroup and $\operatorname{card}(\operatorname{Id}(S))=1$.
(ii) S is an A-semigroup.

Proof. (i) implies (ii). Let $\operatorname{Id}(S)=\{0\}$. By 1.2(i), 0 is a right absorbing element of S and $x y^{2}=0=x y x$ for all $x, y \in S$. Now, $0 x=0 x 0 x=0 x^{2}=0$ and hence $x y z=x y x z=0 z=0$ for all $x, y, z \in S$.
1.22 Proposition. Let S be an LD-semigroup, $C=\mathcal{C}_{l}(S)$ and $D=S-C$. Then:
(i) Every element of C is a left neutral element of S.
(ii) If C is nonempty, then $q_{S}=\mathrm{id}_{S}, S$ is an $L D T_{1}$-semigroup and C is an RZ-semigroup.
(iii) If D is nonempty, then D is a prime ideal of S.
(iv) If C is nonempty and S is an $L D R_{1}$-semigroup, then $C=\{e\}$ is a singleton and e is a neutral element of S.

Proof. (i) For $a \in C$ and $x \in S$, aax =aaax implies $x=a x$.
(ii) $C \neq \emptyset$ implies immediately that $q_{S}=\mathrm{id}_{S}$, and then S is an LDT_{1}-semigroup by 1.15. Further, C is a subsemigroup of S (see also A1.II.4.1(i)) and C is an RZ-semigroup by (i).
(iii) Since S is a semigroup, D is a left ideal of S. Let $a \in D$ and $x \in S$. Then $a u=a v$ for some $u, v \in S, u \neq v$, and we have $a x u=a x a u=a x a v=a x v$. Hence $a x \in D$ and we see that D is an ideal. Finally, if $a b \in D$, then $a b u=a b v, u \neq v$, and therefore either $a \in D$ or $b \in D$.
(iv) We have $a x=a x a$ and $x=x a$ for all $a \in C$ and $x \in S$. The rest is clear by (i).

I. 2 EXAMPLES OF LEFT DISTRIBUTIVE SEMIGROUPS

2.1 Example. There are (up to isomorphism) precisely four two-element LDsemigroups. They are:

$$
D(1), D(2), D(3), D(4)
$$

(see A1.IV.4). The first three of them are idempotent; the last one is not.
2.2 Example. There are (up to isomorphism) precisely sixteen three-element LDsemigroups. They are:

$$
D(7), \ldots, D(14), D(20), D(24), \ldots, D(28), D(36), D(46)
$$

(see A1.IV.10). All of them, except $D(20)$ and $D(28)$, are distributive. The idempotent ones are $D(7), \ldots, D(14)$ and $D(20)$.
2.3 Example. The following table shows the numbers of isomorphism types of at most five-element LD-semigroups and LDI-semigroups:

	1	2	3	4	5
$L D S$	1	4	16	93	682
$L D I S$	1	3	9	38	179

2.4 Example. Consider the following five-element groupoid S :

S	0	1	2	3	4
0	1	1	3	4	4
1	1	1	4	4	4
2	2	2	2	2	2
3	3	3	3	3	3
4	4	4	4	4	4

This groupoid is an LDR_{1}-semigroup; it is not an LDT-semigroup and it does not satisfy the identity $x y x \approx x^{2} y x$.
2.5 Example. Consider the following four-element groupoid S :

S	0	1	2	3
0	2	3	2	2
1	1	1	1	1
2	2	2	2	2
3	3	3	3	3

This groupoid is an LDR_{1}-semigroup; it is not an LDT-semigroup; it is subdirectly irreducible and satisfies $x^{2} \approx x^{2} y$.
2.6 Example. Consider the following two three-element LD-semigroups:

$D(20)$	0	1	2
0	0	0	0
1	1	1	1
2	0	1	2

$D(28)$	0	1	2
0	0	0	0
1	0	1	2
2	0	0	0

$D(20)$ is an idempotent LDR_{1}-semigroup; it is not medial. $D(28)$ is an $\mathrm{LDT}_{1^{-}}$ semigroup; it is medial and satisfies $x y^{2} \approx y x^{2}$. Moreover, $\operatorname{Id}(D(28))$ is not an ideal and $D(28)$ is not an LDR-semigroup.
2.7 Example. Let f be a transformation of a nonempty set S and define multuplication on S by $x y=f(y)$ for all $x, y \in S$. Then S becomes a D-semigroup.
2.8 Proposition. Let S be an LD-semigroup and $e \notin S$. Then:
(i) $S[e]$ is an $L D$-semigroup.
(ii) $S\{e]$ is an $L D$-semigroup.
(iii) $S[e\}$ is an $L D$-semigroup iff S is an LZ-semigroup.
(iv) $S\{e\}$ is an $L D$-semigroup iff S is an idempotent $L D R_{1}$-semigroup.

Proof. Easy (see A1.IV.1.9).
2.9 Proposition. Let S be a D-semigroup and $e \notin S$. Then:
(i) $S[e]$ is a D-semigroup.
(ii) $S\{e]$ (resp. $S[e\}$) is a D-semigroup iff S is an $R Z$-semigroup (resp. LZsemigroup).
(iii) $S\{e\}$ is a D-semigroup iff S is a semilattice.

Proof. Use 2.8.

I. 3 BASIC FACTS ON SUBDIRECTLY IRREDUCIBLE LEFT DISTRIBUTIVE SEMIGROUPS

3.1 Proposition. Let S be a subdirectly irreducible LD-semigroup. Then just one of the following two cases takes place:
(i) $\mathcal{C}_{l}(S) \neq \emptyset, q_{S}=\operatorname{id}_{S}$ and S is an $L D T_{1}$-semigroup.
(ii) $\mathcal{C}_{l}(S)=\emptyset$ and $q_{S} \neq \operatorname{id}_{S}$.

Proof. Suppose first $\mathcal{C}_{l}(S)=\emptyset$. Then, for every $x \in S, L_{x}$ is not injective, so that $\omega_{S} \subseteq q_{x, S}$; but then $\omega_{S} \subseteq q_{S}$. On the other hand, if $\mathcal{C}_{l}(S) \neq \emptyset$, then (i) is true by 1.22(ii).
3.2 Proposition. Let S be a subdirectly irreducible LD-semigroup such that $C=$ $\mathcal{C}_{l}(S) \neq \emptyset$; put $D=S-C$. Then just one of the following five cases takes place:
(i) $S \simeq D(1)$.
(ii) $S \simeq D(2)$.
(iii) $S \simeq D(10)$.
(iv) S is neither idempotent nor an $L D R$-semigroup and $\operatorname{card}(D) \geq 2$ (then $p_{S} \neq \mathrm{id}_{S}$.)
(v) S is an idempotent $L D R_{1}$-semigroup, $\operatorname{card}(D) \geq 2, p_{S}=\operatorname{id}_{S}, C=\{e\}$ for a neutral element e of S, D is subdirectly irreducible and $p_{D}=\operatorname{id}_{D} \neq q_{D}$.

Proof. By 3.1, $q_{S}=\operatorname{id}_{S}$ and S is an LDT_{1}-semigroup. By 1.22, either $D=\emptyset$ or D is a prime ideal of S. Let $(a, b) \in \omega_{S}, a \neq b$. Obviously, $D=\{x \in S: x a=x b\}$. If $D=\emptyset$, then S is an RZ-semigroup by 1.22 (ii) and one can readily see that $S \simeq D(2)$ in that case.

Next assume that $D=\{0\}$ is a singleton. Then 0 is an absorbing element of S, C is an RZ-semigroup and it is easy to see that $s \cup \operatorname{id}_{S}$ is a congruence of S for any congruence s of C. If $\operatorname{card}(C)=1$, then $S \simeq D(1)$. If $\operatorname{card}(C) \geq 2$, then $a, b \in C$, $C \simeq D(2)$ and $S \simeq D(10)$.

Finally, assume that $\operatorname{card}(D) \geq 2$. Since D is an ideal, \equiv_{D} is a congruence of S and thus a, b both belong to D. Then $a a=a b$ and $b a=b b$.

Let $p_{S} \neq \operatorname{id}_{S}$. Then $(a, b) \in p_{S}, a b=b b$, and therefore $a a=b b$. It follows that either $a a \neq a$ or $b b \neq b$ and we see that S is not idempotent. Suppose that S is an LDR-semigroup. Then $\operatorname{Id}(S)$ is an ideal and, since either $a \notin \operatorname{Id}(S)$ or $b \notin \operatorname{Id}(S)$, we must have $\operatorname{card}(\operatorname{Id}(S))=1$ by the subdirect irreducibility. Then, by $1.21, S$ is an A-semigroup and thus $C=\emptyset$, a contradiction.

Let $p_{S}=\operatorname{id}_{S}$. Then, by $1.8, S$ is an LDR_{1}-semigroup; S is idempotent by 1.22 (ii) and 1.17 (iii). The rest is clear from $1.22(\mathrm{iv})$.
3.3 Proposition. Let S be a subdirectly irreducible delightful LD-semigroup (see 1.16). Then just one of the following four cases takes place:
(i) $S \simeq D(2)$.
(ii) $S \simeq D(10)$.
(iii) S is an idempotent $L D R_{1}$-semigroup with $p_{S}=\operatorname{id}_{S}$.
(iv) S is an A-semigroup.

Proof. With respect to 1.16 (iii) and 1.17 (iii), we can assume that S is idempotent. Further, with respect to 3.1 and 3.2 , we can assume that $q_{S} \neq \operatorname{id}_{S}$. Let $(a, b) \in \omega_{S}$, $a \neq b$. We have $(a, b) \in q_{S}$, so that $a=a a=a b$ abd $b=b b=b a$. Thus $a b \neq b a$ and $(a, b) \notin p_{S}$. But then $p_{S}=\operatorname{id}_{S}$ and S is an LDR_{1}-semigroup by 1.8(ii).
3.4 Proposition. Let S be a subdirectly irreducible D-semigroup. Then just one of the following two cases takes place:
(i) S is idempotent and S is isomorphic to one of the five distributive semigroups $D(1), D(2), D(3), D(9)$ and $D(10)$.
(ii) S is an A-semigroup.

Proof. With respect to 3.3 , we can assume that S is an idempotent LDR_{1}-semigroup, i.e., S satisfies $x y \approx x y x$. Dually, using the right hand form of 3.3 , we can assume that S satisfies $x y \approx y x y$. However, then S is commutative, i.e., it is a semilattice. A subdirectly irreducible semilattice is isomorphic to $D(1)$.
3.5 Remark. Let S be a subdirectly irreducible LD-semigroup. We have either $t_{S} \neq \mathrm{id}_{S}$ or $t_{S}=\mathrm{id}_{S}$.

If $t_{S} \neq \mathrm{id}_{S}$, then $t_{S}=\omega_{S}=\{(a, b),(b, a)\}$ for some $a, b \in S, a \neq b$. Then $a^{2}=a b=b a=b^{2}$, and so either $a \notin \operatorname{Id}(S)$ or $b \notin \operatorname{Id}(S)$.

If $t=\mathrm{id}_{S}$, then either $p_{S}=\mathrm{id}_{S}$ and S is an LDR_{1}-semigroup, or else $q_{S}=\mathrm{id}_{S}$ and S is an LDT_{1}-semigroup. In the latter case, 3.2 applies.
3.6 Proposition. The groupoids $D(1), D(2), D(3)$ and $D(4)$ are (up to isomorphism) the only (congruence) simple LD-semigroups.
Proof. The result follows easily from A1.II.7.4.

CHAPTER II

FREE LEFT DISTRIBUTIVE SEMIGROUPS

II. 1 CONSTRUCTION OF FREE LEFT DISTRIBUTIVE SEMIGROUPS

1.1 Construction. Let X be a nonempty set. Denote by \mathbf{F} the (absolutely) free semigroup over X. Denote by F the union of the following four pairwise disjoint subsets A, B, C, D of \mathbf{F} :

$$
\begin{aligned}
A= & \left\{x^{i}: x \in X, 1 \leq i \leq 3\right\} \\
B= & \left\{x^{i} y^{j}: x, y \in X, x \neq y, 1 \leq i, j \leq 2\right\} \\
C= & \left\{x_{1}^{i} x_{2} \ldots x_{n-1} x_{n}^{j}: x_{1}, \ldots, x_{n} \in X \text { pairwise different, } n \geq 3,1 \leq i, j \leq 2\right\} \\
D= & \left\{x_{1}^{i} x_{2} \ldots x_{n-1} x_{n} x_{k}: x_{1}, \ldots, x_{n} \in X \text { pairwise different, } n \geq 2,1 \leq k<n,\right. \\
& 1 \leq i \leq 2\}
\end{aligned}
$$

For every element u of \mathbf{F}, (uniquely) expressed as $u=x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ where $n \geq 1$, $x_{i} \in X, k_{i} \geq 1$ and $x_{1} \neq x_{2} \neq x_{3} \neq \cdots \neq x_{n}$, we define an element $f(u)$ of F as follows:
(i) If $n=1$, let $f(u)=x_{1}^{k}$ where $k=\min \left(3, k_{1}\right)$.
(ii) If $n=2$, let $f(u)=x_{1}^{k} x_{2}^{l}$ where $k=\min \left(2, k_{1}\right)$ and $l=\min \left(2, k_{2}\right)$.
(iii) If $n \geq 3$ and $x_{n} \notin\left\{x_{1}, \ldots, x_{n-1}\right\}$, let $f(u)=x_{1}^{k} y_{1} \ldots y_{m} x_{n}^{l}$ where $k=$ $\min \left(2, k_{1}\right), l=\min \left(2, k_{n}\right)$ and (by induction on $\left.i\right) y_{i}$ is the first member of x_{1}, \ldots, x_{n-1} not contained in $\left\{x_{1}, y_{1}, \ldots, y_{i-1}\right\}$.
(iv) If $n \geq 3$ and $x_{n} \in\left\{x_{1}, \ldots, x_{n-2}\right\}$, let $f(u)=x_{1}^{k} y_{1} \ldots y_{m} x_{n}$ where $k=$ $\min \left(2, k_{1}\right)$ and (by induction on i) y_{i} is the first member of x_{1}, \ldots, x_{n-1} not contained in $\left\{x_{1}, y_{1}, \ldots, y_{i-1}\right\}$.
It is easy to see that $f(u) \in F$ in any case. Also, it is easy to see that $f(u)=u$ for $u \in F$. Let us define a binary operation $*$ on F in this way: $u * v=f(u v)$ for any $u, v \in F$. We are going to prove that $F(*)$ is a free LD-semigroup over X.
1.2 Lemma. Let $u \in \mathbf{F}$. The identity $u \approx f(u)$ is satisfied in any LD-semigroup.

Proof. It is easy; use I.1.1, I.1.2 and, of course, the left distributive law.
1.3 Lemma. Let $u, v \in F$ and $u \neq v$. Then there is an LD-semigroup not satisfying $u \approx v$.

Proof. Suppose that $u \approx v$ is satisfied in all LD-semigroups. Since every LZsemigroup is left distributive, the words u, v have the same first letters. Similarly, every RZ-semigroup is left distributive and hence u, v have the same last letters. Furthermore, every semilattice is distributive and we conclude that the set of letters
occurring in u coincides with the set of letters occurring in v. Now, we distinguish the following cases.

Case 1: $u=x^{i}$ and $v=x^{j}$. The LD-semigroup $D(28)$ (see I.2.6) satisfies neither $x \approx x^{2}$ nor $x \approx x^{3}$. The LD-semigroup $D(46)$ (see A1.IV.8.1) does not satisfy $x^{2} \approx x^{3}$. Using these observations, we conclude that $i=j$. Hence $u=v$, a contradiction.

Case 2: $u=x^{i} y^{j}$ and $v=x^{k} y^{l}$. The LD-semigroup S from I.2.4 satisfies none of the identities $x y \approx x^{2} y, x y \approx x^{2} y^{2}, x y^{2} \approx x^{2} y^{2}$ and $x y^{2} \approx x^{2} y$. The LD-semigroup $D(28)$ satisfies neither $x y \approx x y^{2}$ nor $x^{2} y \approx x^{2} y^{2}$. Consequently, $i=k, j=l$ and $u=v$, a contradiction.

Case 3: $u=x_{1}^{i} x_{2} \ldots x_{n-1} x_{n}^{j} \in C$ and $v=x_{p(1)}^{k} x_{p(2)} \ldots x_{p(n-1)} x_{p(n)}^{l} \in C$ for a permutation p of $\{1, \ldots, n\}$ with $p(1)=1$ and $p(n)=n$. If $n \geq 4$, then every idempotent LD-semigroup satisfying $u \approx v$ is medial. However, $D(20)$ (see I.2.6) is a non-medial LDI-semigroup. Consequently, $n=3$. It is easy to see that either $x y^{2} \approx x^{2} y^{2}$ or $x^{2} y \approx x^{2} y^{2}$ is a consequence of $u \approx v$, and we get a contradiction by Case 2.

Case 4: $u=x_{1}^{i} x_{2} \ldots x_{n-1} x_{n}^{j} \in C$ and $v=x_{p(1)}^{k} x_{p(2)} \ldots x_{p(n-1)} x_{p(n)} x_{p(k)} \in D$ for a permutation p of $\{1, \ldots, n\}$ with $p(1)=1$ and $p(k)=n$. One can easily check that every LDI-semigroup satisfying $u \approx v$ is distributive. However, $D(20)$ is not distributive, a contradiction.

Case 5: $u=x_{1}^{i} x_{2} \ldots x_{n-1} x_{n} x_{k} \in D$ and $v=x_{p(1)}^{j} x_{p(2)} \ldots x_{p(n-1)} x_{p(n)} x_{p(l)} \in D$ for a permutation p of $\{1, \ldots, n\}$ with $p(1)=1$ and $p(l)=k$. Since $D(20)$ is not middle semimedial, we have $p(2)=2, \ldots, p(n)=n$. However, the LD-semigroup from I.2.4 does not satisfy $x y x \approx x^{2} y x$. Thus $i=j$ and $u=v$, a contradiction.
1.4 Theorem. For a nonempty set X, the groupoid $F(*)$ constructed in 1.1 is a free $L D$-semigroup over X.
Proof. Denote by \sim the set of the ordered pairs (u, v) of elements of \mathbf{F} such that the equation $u \approx v$ is satisfied in all LD-semigroups. So, \sim is a (fully invariant) congruence of \mathbf{F} and \mathbf{F} / \sim is a free LD-semigroup over X. We know (by 1.2) that $f(u) \sim u$ for any $u \in \mathbf{F}$, so that (by 1.3) $u \sim v$ iff $f(u)=f(v)$ for any $u, v \in \mathbf{F}$ and \sim is just the kernel of f. Now, f is a homomorphism of \mathbf{F} onto $F(*)$: if $u, v \in \mathbf{F}$, then both $f(u v)$ and $f(u) * f(v)$ belong to F and are congruent modulo \sim with $u v$. The result follows from the homomorphism theorem. (In particular, the operation * is associative; this is not immediate from the definition.)
1.5 Corollary. Every finitely generated LD-semigroup is finite. The variety of LD-semigroups is locally finite.
1.6 Remark. Proceeding similarly, one can construct free LDI-semigroups. In that case we get words of two types only: words of the form $x_{1} \ldots x_{n}$ for $n \geq 1$ and words of the form $x_{1} x_{2} \ldots x_{n} x_{k}$ for $n \geq 2$ and $1 \leq k<n$, where (in both cases) x_{1}, \ldots, x_{n} are pairwise distinct letters.
1.7 Remark. By I.1.20, every D-semigroup is a medial LDRT-semigroup. The words in a free D -semigroup are of the following types only: $x, x^{2}, x^{3}, x y, x^{2} y$, $x y x, x_{1} x_{2} \ldots x_{m}$ and $x_{1} x_{2} \ldots x_{m} x_{1}(m \geq 3)$. Of course,

$$
x_{1} \ldots x_{m} \sim x_{1} x_{p(2)} \ldots x_{p(m-1)} x_{m} \text { and } x_{1} x_{2} \ldots x_{m} x_{1} \sim x_{1} x_{q(2)} \ldots x_{q(m)} x_{1}
$$

for any permutation p of $\left\{x_{2}, \ldots, x_{m-1}\right\}$ and any permutation q of $\left\{x_{2}, \ldots, x_{m}\right\}$.

II. 2 AUXILIARY RESULTS ON NUMBER-THEORETIC FUNCTIONS

2.1 Definition. Put
(i) $a(n, m)=n(n-1) \ldots(n-m)$,
(ii) $a(n)=\sum_{m=0}^{n} a(n, m)$,
(iii) $b(n)=\sum_{m=0}^{n} m a(n, m)$
for all nonnegative integers n, m.
2.2 Lemma. Let $n, m \geq 0$. Then:
(i) $a(n+1, m+1)=(n+1) a(n, m)$.
(ii) $a(n+1)=(n+1)(a(n)+1)$.
(iii) $b(n+1)=(n+1)(a(n)+b(n))$.
(iv) $b(n)=(n-2) a(n)+n$.

Proof. By induction on n.
2.3 Lemma. For every $n \geq 1, a(n)+c(n)+1=n$!e, where $(n+1)^{-1}<c(n)<n^{-1}$ and $\mathbf{e}=\sum_{k=0}^{\infty} 1 /(k!)$.
Proof. Indeed, $n!\mathbf{e}-1=2 n!+3 \cdot 4 \cdot \ldots \cdot n+4 \cdot 5 \cdot \ldots \cdot n+\cdots+(n-1) n+n+c(n)=$ $a(n)+c(n)$, where $c(n)=1 /(n+1)+1 /(n+1)(n+2)+1 /(n+1)(n+2)(n+3)+\ldots$. Clearly, $1 /(n+1)<c(n)<1 / n$.
2.4 Lemma. For every $n \geq 1$, $n a(n)=[n n!\mathbf{e}]-n$ (here, for a positive real number $r,[r]$ means the entire part of r).
Proof. By 2.3, $n a(n)=[n n!\mathbf{e}]-n-n c(n)+u$, where $0<u<1$. Then $-1<$ $u-n c(n)<(n+1)^{-1}$ and, since $u-n c(n)$ is a whole number, we must have $u-n c(n)=0$.

II. 3 THE NUMBER OF ELEMENTS OF A FREE LEFT DISTRIBUTIVE SEMIGROUP

3.1 Theorem. The cardinality $f_{1}(n)$ of the free $L D$-semigroup of rank n and the cardinality $f_{2}(n)$ of the free LDI-semigroup of rank n are given by

$$
\begin{aligned}
& f_{1}(n)=2[n!n \mathbf{e}]-n \\
& f_{2}(n)=[n!(n-1) \mathbf{e}]+1
\end{aligned}
$$

Proof. By 1.4, 2.1 and 2.2 we have $f_{1}(n)=4 a(n)+2 b(n)-n=n+2 n a(n)$. In order to compute $f_{1}(n)$, it remains to use 2.4. The other formula is clear from 1.6.

3.2 Remark.

(i) $f_{1}(n)=\varepsilon(n)(n+1)$!, where $\varepsilon(n) \rightarrow 2 \mathbf{e}$. Moreover, $f_{1}(n) / f_{2}(n) \rightarrow 2$.
(ii) Let S be a finitely generated LD-semigroup and $n=\sigma(S)$ (see A1.I.1.5). If $n=0$, then $\operatorname{card}(S)=1$. If $n \geq 1$, then

$$
n \leq \operatorname{card}(S) \leq 2[n!n \mathbf{e}]-n
$$

3.3 Remark.

(i) The cardinality $f_{3}(n)$ of the free idempotent LDR_{1}-semigroup of rank n is given by

$$
f_{3}(n)=[n!\mathbf{e}]-1 .
$$

(ii) The cardinality $f_{4}(n)$ of the free DI-semigroup of rank n is given by

$$
f_{4}(n)=n(n+1) 2^{n-2}
$$

(iii) The cardinality $f_{5}(n)$ (resp. $f_{6}(n)$) of the free LDI-semigroup satisfying $x y z \approx x z y$ (resp. $x y z \approx y x z$) of rank n is given by

$$
f_{5}(n)=f_{6}(n)=n 2^{n-1}
$$

(iv) The cardinality $f_{7}(n)$ of the free semilattice of rank n is given by

$$
f_{7}(n)=2^{n}-1
$$

(v) The cardinality $f_{8}(n)$ of the free idempotent semigroup satisfying $x \approx x y x$ of rank n is given by

$$
f_{8}(n)=n^{2}
$$

(vi) The cardinality $f_{9}(n)$ (resp. $f_{10}(n)$) of the free LZ-semigroup (resp. RZsemigroup) of rank n is given by

$$
f_{9}(n)=f_{10}(n)=n
$$

3.4 Remark. Denote by $f_{11}(n)$ the cardinality of the free D-semigroup of rank n. According to 1.7, $\left.f_{11}(n)=3 n+2 n(n-1)+n(n-1)\binom{n-2}{1}+\cdots+\binom{n-2}{n-2}\right)+$ $n\left(\binom{n-1}{1}+\cdots+\binom{n-1}{n-1}\right)$. After easy calculation, we find that

$$
f_{11}(n)=n(n+1)\left(1+2^{n-2}\right)
$$

3.5 Remark. Denote by $f_{12}(n)$ (resp. $f_{13}(n), f_{14}(n), f_{15}(n), f_{16}(n)$) the cardinality of the free A-semigroup (resp. free unipotent A-semigroup, free commutative A-semigroup, free unipotent commutative A-semigroup, free Z-semigroup) of rank n. Then

$$
\begin{aligned}
& f_{12}(n)=n^{2}+n+1 \\
& f_{13}(n)=n^{2}+1 \\
& f_{14}(n)=\left(n^{2}+3 n+2\right) / 2 \\
& f_{15}(n)=\left(n^{2}+n+2\right) / 2 \\
& f_{16}(n)=n+1
\end{aligned}
$$

3.6 Table.

	1	2	3	4	5	6	7	8
$f_{1}(n)$	3	18	93	516	3255	23478	191793	1753608
$f_{2}(n)$	1	6	33	196	1305	9786	82201	762208
$f_{3}(n)$	1	4	15	64	325	1956	13694	109600
$f_{4}(n)$	1	6	24	80	240	672	1792	4608
$f_{5,6}(n)$	1	4	12	32	80	192	448	1024
$f_{7}(n)$	1	3	7	15	31	63	127	255
$f_{8}(n)$	1	4	9	16	25	36	49	64
$f_{9,10}(n)$	1	2	3	4	5	6	7	8
$f_{11}(n)$	3	12	36	100	270	714	1848	4680
$f_{12}(n)$	3	7	13	21	31	43	57	73
$f_{13}(n)$	2	5	10	17	26	37	50	65
$f_{14}(n)$	3	6	10	15	21	28	36	45
$f_{15}(n)$	2	4	7	11	16	22	29	37
$f_{16}(n)$	2	3	4	5	6	7	8	9

CHAPTER III

A-SEMIGROUPS AND THEIR VARIETIES

III.1 BASIC PROPERTIES OF A-SEMIGROUPS

1.1. An A-semigroup is a groupoid satisfying $x \cdot y z \approx u v \cdot w$. It is apparent that A-semigroups are nothing else than semigroups nilpotent of class at most 3 . Thus every A-semigroup S contains an absorbing element $0\left(=0_{S}\right)$ such that $x y z=0$ for all $x, y, z \in S$.
1.2 Proposition. Let S be an A-semigroup and $Z(S)=\{a \in S: S a=0=a S\}$. Then:
(i) $0, S^{2}$ and $Z(S)$ are ideals of S.
(ii) $\operatorname{Id}(S)=\operatorname{Int}(S)=\{0\}=S^{3} \subseteq S^{2} \subseteq Z(S) \subseteq S$.
(iii) $S^{2}, Z(S), S / S^{2}$ and $S / Z(S)$ are Z-semigroups.
(iv) $Z(S) \times Z(S) \subseteq t_{S}$.
(v) $\sigma(S)=\operatorname{card}\left(S-S^{2}\right)$.

Proof. Easy.

III. 2 VARIETIES OF A-SEMIGROUPS

2.1 Notation. Denote by \mathcal{A}_{0} the variety of trivial groupoids, by \mathcal{A}_{1} the variety of Z-semigroups, by \mathcal{A}_{2} the variety of commutative unipotent A-semigroups, by \mathcal{A}_{3} the variety of commutative A -semigroups, by \mathcal{A}_{4} the variety of unipotent A -semigroups and by $\mathcal{A}=\mathcal{A}_{5}$ the variety of A -semigroups.
2.2 Theorem. The varieties $\mathcal{A}_{0}, \mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}, \mathcal{A}_{4}$ and \mathcal{A}_{5} are pairwise different varieties of A-semigroups and there are no other varieties of A-semigroups. We have

$$
\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \mathcal{A}_{3} \subset A_{5}, \quad \mathcal{A}_{2} \subset \mathcal{A}_{4} \subset \mathcal{A}_{5}
$$

and there are no other inclusions except those which follow by transitivity. The lattice of varieties of A-semigroups is given in Fig. 1.

Proof. Let V be a variety of A-semigroups determined by an identity $u \approx v$, where u, v are two semigroup words of lengths k and l, respectively. If $k \geq 3$ and $l \geq 3$, then $V=\mathcal{A}_{5}$. If $k \geq 3$ and $l=2$, then V is either \mathcal{A}_{4} or \mathcal{A}_{1}. If $k \geq 3$ and $l=1$, then $V=\mathcal{A}_{0}$. If $k=l=2$, then V is either \mathcal{A}_{5} or \mathcal{A}_{4} or \mathcal{A}_{3} or \mathcal{A}_{1}. If $k=2$ and $l=1$, then $V=\mathcal{A}_{0}$. Finally, if $k=l=1$, then V is either \mathcal{A}_{5} or \mathcal{A}_{0}. Hence every one-based variety of A -semigroups can be found among $\mathcal{A}_{0}, \ldots, \mathcal{A}_{5}$. Since

Fig. 1
this collection is closed under intersection (we have $\mathcal{A}_{3} \cap \mathcal{A}_{4}=\mathcal{A}_{2}$), it follows that there are no other subvarieties of \mathcal{A}.

All the inclusions are clear. The groupoid T given by

T	0	1	2	3
0	0	0	0	0
1	0	0	3	0
2	0	3	0	0
3	0	0	0	0

is in \mathcal{A}_{2} but not in \mathcal{A}_{1}. The groupoid $D(46)$ (see A1.IV.8.1) is in \mathcal{A}_{3} but not in \mathcal{A}_{4}, and the groupoid S given by

S	0	1	2	3	4
0	0	0	0	0	0
1	0	0	3	0	0
2	0	4	0	0	0
3	0	0	0	0	0
4	0	0	0	0	0

is in \mathcal{A}_{4} but not in \mathcal{A}_{3}.

III. 3 FREE A-SEMIGROUPS

3.1 Construction. Let X be a nonempty set and let $f: X \times X \rightarrow Y$ be a bijective mapping, where $X \cap Y=\emptyset$. Let 0 be an element not belonging to $X \cup Y$. Define a multiplication on $F=X \cup Y \cup\{0\}$ by $x y=f(x, y)$ for $x, y \in X$ and $x y=0$ otherwise. Then F becomes a free A-semigroup over the set X.
3.2 Proposition. An A-semigroup S is a free A-semigroup if and only if it satisfies the following four conditions:
(i) S is nontrivial;
(ii) If $x, y, u, v \in S$ are such that $x y=u v \neq 0$, then $x=u$ and $y=v$;
(iii) If $x, y \in S-Z(S)$, then $x y \neq 0$;
(iv) $Z(S)=S^{2}$.

Proof. Easy.
3.3 Proposition. An A-semigroup S is a subsemigroup of a free A-semigroup if and only if it satisfies the conditions 3.2(ii) and 3.2(iii).

Proof. The direct implication is clear from 3.2 (if $S \subseteq F$, then $S-Z(S) \subseteq F-$ $Z(F))$. Now, assume that S satisfies both 3.2 (ii) and 3.2 (iii) and put $A=S-Z(S)$ and $B=Z(S)-S^{2}$. It follows from 3.2(iii) that $S=A \cup B \cup A^{2} \cup\{0\}$ is a disjoint union. Further, let C be a set such that $C \cap S=\emptyset$ and $\operatorname{card}(C)=\operatorname{card}(B)$, and let $g: B \rightarrow C$ be a bijection. Put $X=A \cup C$ and define a mapping $h: S \rightarrow F$ (where F is as in 3.1) as follows: $h(a)=a$ for every $a \in A ; h(b)=g(b)^{2}$ for every $b \in B ; h(x y)=x y$ for all $x, y \in A ; h(0)=0$. It follows from 3.2(ii) that h is well defined and, by 3.2 (iii), h is an injective homomorphism of S onto the free A-semigroup F.
3.4 Corollary. Every Z-semigroup is a subsemigroup of a free A-semigroup.
3.5 Remark. The A-semigroup T from the proof of 2.2 is not a subsemigroup of any free A-semigroup.
3.6 Remark. The number of elements of a free semigroup in any subvariety of \mathcal{A} has been computed in II.3.5.

III. 4 SUBDIRECTLY IRREDUCIBLE A-SEMIGROUPS

4.1 Proposition. Let S be an A-semigroup containing at least three elements. Then S is subdirectly irreducible if and only if the subsemigroup $T=S^{2}$ contains precisely two elements and $t_{S}=(T \times T) \cup \mathrm{id}_{S}$.

Proof. Let S be subdirectly irreducible. As one can see easily, every subdirectly irreducible Z-semigroup contains only two elements. Consequently, S is not a Zsemigroup and $\operatorname{card}(T) \geq 2$. On the other hand, every nonempty subset M of T is an ideal of $S,(M \times M) \cup \operatorname{id}_{S}$ is a congruence, and it follows easily that $\operatorname{card}(T)=2$ and $\omega_{S}=(T \times T) \cup \mathrm{id}_{S}$. Clearly, $\omega_{S} \subseteq t_{S}$. Conversely, if $(a, b) \in t_{S}$ and $a \neq b$, then $(\{a, b\} \times\{a, b\}) \cup \operatorname{id}_{S}$ is a congruence of S. Thus $\omega_{S}=t_{S}=(T \times T) \cup \mathrm{id}_{S}$.

Now assume that $T=\{0, a\}$ where $a \neq 0$, and that $t_{S}=(T \times T) \cup \mathrm{id}_{S}$. Let $r \neq \operatorname{id}_{S}$ be a congruence of S and let $(x, y) \in r, x \neq y$. If $x z \neq y z$ for some $z \in S$, then the elements $x z$ and $y z$ belong to T and we see that $(a, 0) \in r$. Similarly, $z x \neq z y$ implies $(a, 0) \in r$. If $x z=y z$ and $z x=z y$ for all $z \in S$, then $(x, y) \in t_{S}=(T \times T) \cup \mathrm{id}_{S}$. This proves $(a, 0) \in r$ in any case, so that S is subdirectly irreducible.
4.2 Corollary. Let S be a subdirectly irreducible A-semigroup containing at least three elements. Then $Z(S)=S^{2}, \omega_{S}=t_{S}, \sigma(S)=\operatorname{card}(S)-2$ and every proper homomorphic image of S is a Z-semigroup.
4.3 Theorem. An A-semigroup S is a subsemigroup of a subdirectly irreducible A-semigroup if and only if S^{2} contains at most two elements.

Proof. The direct implication follows from 4.1. Let S be an A-semigroup such that $S^{2} \subseteq\{0,1\}$, where 0 is the absorbing element of S (and 1 is some other element); let S be not subdirectly irreducible. Put $K=S-\{0,1\}$. Let f be a bijection of K onto a set M with $S \cap M=\emptyset$. Put $G=S \cup M$ and define multiplication on G in the following way:
(i) S is a subsemigroup of G;
(ii) $x \cdot f(x)=f(x) \cdot x=1$ and $f(x) \cdot f(x)=0$ for all $x \in K$;
(iii) $f(x) \cdot y=y \cdot f(x)=0$ and $f(x) \cdot f(y)=1$ for all $x, y \in K, x \neq y$;
(iv) $z \cdot 0=0 \cdot z=z \cdot 1=1 \cdot z=0$ for all $z \in G$.

It is easy to check that G is an A-semigroup. Of course, S is a subsemigroup of G. We have $G^{2}=\{0,1\}$, so that, according to 4.1, it remains to show that $t_{G}=(\{a, b\} \times\{a, b\}) \cup \operatorname{id}_{G}$.

Let $(a, b) \in t_{G}, a \neq b$. We are going to show that $a, b \in\{0,1\}$. If $a, b \in M$, then $0=a a=a b=1$, a contradiction. Therefore, we can assume that $a \in S$.

Suppose $a \in K$. If $b \notin M$, then $1=a \cdot f(a)=b \cdot f(a)=0$, a contradiction. Thus $b \in M$ and we have $b=f(c)$ for some $c \in K$. If there exists an element d of K different from both a and c, then $0=a \cdot f(d)=b \cdot f(d)=1$, a contradiction. Thus $K=\{a, c\}$. If $a=c$, then $b=f(a)$ and $1=a \cdot f(a)=b \cdot f(a)=0$, a contradiction. If $a c=0$, then $0=a c=b c=1$, which is not true; if $c a=0$, we get a contradiction similarly. Thus $a c=1=c a$. Similarly $a a=0$, and S is subdirectly irreducible by 4.1, a contradiction.

This proves that $a \in\{0,1\}$. In this case, $x b=0=b x$ for every $x \in G$ and $b \in\{0,1\}$. The rest is clear.
4.4 Corollary. Every Z-semigroup is a subsemigroup of a (commutative and unipotent) subdirectly irreducible A-semigroup.
4.5 Remark. The subdirectly irreducible A-semigroup G constructed in the proof of 4.3 is commutative (resp. unipotent), provided that S is commutative (resp. unipotent). Hence, the analogue of 4.3 remains true for commutative (resp. unipotent) A-semigroups.

CHAPTER IV

IDEMPOTENT LEFT DISTRIBUTIVE SEMIGROUPS AND THEIR VARIETIES

IV. 1 BASIC PROPERTIES OF IDEMPOTENT LEFT DISTRIBUTIVE SEMIGROUPS

1.1 Proposition. The following conditions are equivalent for an idempotent semigroup S :
(i) S is middle semimedial.
(ii) S is medial.
(iii) S is distributive.

Proof. (i) implies (ii). We have $a b c d=a b c d \cdot a b c d=a \cdot b \cdot c d \cdot a \cdot b c d=a \cdot c d \cdot b \cdot a \cdot b c d=$ $a \cdot c \cdot d \cdot b a b \cdot c \cdot d=a \cdot c \cdot b a b \cdot d \cdot c \cdot d=a \cdot c \cdot b a \cdot b d \cdot c \cdot d=a \cdot c \cdot b d \cdot b a \cdot c \cdot d=$ $a c b \cdot d \cdot b \cdot a c \cdot d=a c b \cdot d \cdot a c \cdot b \cdot d=a c b d \cdot a c b d=a c b d$ for all $a, b, c, d \in$.
(ii) implies (iii). We have $a b c=a a b c=a b a c$ and $c b a=c b a a=c a b a$ for all $a, b, c \in S$.
(iii) implies (i). We have $a b c a=a b c b a=a c b a$ for all $a, b, c \in S$.
1.2 Proposition. The pairwise nonisomorphic DI-semigroups $D(1), D(2), D(3)$, $D(9)$ and $D(10)$ are (up to isomorphism) the only subdirectly irreducible DI-semigroups. Moreover, $D(9)$ is right but not left permutable and $D(10)$ is left but not right permutable.
Proof. See I.3.4.
1.3 Proposition. Let S be a rectangular band, i.e., an idempotent semigroup satisfying the identity $x \approx x y x$. Then:
(i) S is a DI-semigroup.
(ii) S / p_{S} is an $L Z$-semigroup and S / q_{S} is an $R Z$-semigroup.
(iii) $S \simeq S / p_{S} \times S / q_{S}$.

Proof. (i) We have $a b c d=a c a \cdot b c d=a \cdot c a b c \cdot d=a c d=a \cdot c b c \cdot d=a c \cdot b d b \cdot c d=$ $a c b \cdot d b c d=a c b d$ for all $a, b, c, d \in S$. Thus S is medial, and hence distributive by 1.1 .
(ii) By (i), $x y=x z x y=x z y$ for all $x, y, z \in S$ and it follows that $(y, z y) \in q_{S}$ and S / q_{S} is an RZ-semigroup. Quite similarly, S / p_{S} is an LZ-semigroup.
(iii) Since S is idempotent, we have $t_{S}=p_{S} \cap q_{S}=\operatorname{id}_{S}$. On the other hand, by (ii), $a / p=a b / p$ and $b / q=a b / q$ for all $a, b \in S$.
1.4 Proposition. Let S be a subdirectly irreducible LDI-semigroup. Then either S is a DI-semigroup (and so S is isomorphic to one of $D(1), D(2), D(3), D(9)$, $D(10))$ or S is an idempotent $L D R_{1}$-semigroup such that $p_{S}=\mathrm{id}_{S}$.

Proof. See I.3.3 and 1.2.

IV. 2 VARIETIES OF IDEMPOTENT LD-SEMIGROUPS

2.1 Notation. Consider the following varieties of idempotent semigroups:
$\mathcal{I}_{0} \ldots$ trivial semigroups;
$\mathcal{I}_{1} \ldots$ semigroups satisfying $x y \approx x$;
$\mathcal{I}_{2} \ldots$ semilattices;
$\mathcal{I}_{3} \ldots$ semigroups satisfying $x y \approx y$;
$\mathcal{I}_{4} \ldots$ left permutable idempotent semigroups;
$\mathcal{I}_{5} \ldots$ rectangular bands (idempotent semigroups satisfying $x \approx x y x$);
$\mathcal{I}_{6} \ldots$ right permutable idempotent semigroups;
$\mathcal{I}_{7} \ldots$ normal bands (idempotent medial semigroups or DI-semigroups, see 1.1);
$\mathcal{I}_{8} \ldots$ idempotent LDR_{1}-semigroups (idempotent semigroups satisfying $x y \approx$ $x y x)$;
$\mathcal{I}_{9}=\mathcal{I} \ldots$ LDI-semigroups.
2.2 Theorem. The ten pairwise different varieties $\mathcal{I}_{0}, \ldots, \mathcal{I}_{9}$ are just all subvarieties of the variety \mathcal{I} of LDI-semigroups. We have

$$
\begin{array}{lll}
\mathcal{I}_{0} \subset \mathcal{I}_{1} \subset \mathcal{I}_{4} \subset \mathcal{I}_{8} \subset \mathcal{I}_{9}, & \mathcal{I}_{1} \subset \mathcal{I}_{5} \subset \mathcal{I}_{7}, & \mathcal{I}_{2} \subset \mathcal{I}_{6} \subset \mathcal{I}_{7} \\
\mathcal{I}_{0} \subset \mathcal{I}_{2} \subset \mathcal{I}_{4} \subset \mathcal{I}_{7} \subset \mathcal{I}_{9}, & \mathcal{I}_{0} \subset \mathcal{I}_{3} \subset \mathcal{I}_{5}, & \mathcal{I}_{3} \subset \mathcal{I}_{6}
\end{array}
$$

and there are no other inclusions (except those that follow by transitivity). The lattice of subvarieties of \mathcal{I} is given in Fig. 2.

Proof. All the non-sharp versions of the indicated inclusions are clear (use 1.1 and 1.3).

No nontrivial RZ-semigroup is in \mathcal{I}_{8}. Therefore, $\mathcal{I}_{3} \nsubseteq \mathcal{I}_{8}$.
No nontrivial semilattice is in \mathcal{I}_{5}. Therefore, $\mathcal{I}_{2} \nsubseteq \mathcal{I}_{5}$.
No nontrivial LZ-semigroup is in \mathcal{I}_{6}. Therefore, $\mathcal{I}_{1} \nsubseteq \mathcal{I}_{6}$.
We have $D(20) \in \mathcal{I}_{8}-\mathcal{I}_{7}$. This completes the inclusions part of the proof.
Now let V be a variety of LDI-semigroups determined (in \mathcal{I}) by a single identity $u \approx v$.

Assume first that $V \subseteq \mathcal{I}_{7}$. The variety V is generated by its subdirectly irreducible members. Using 1.2 , we easily conclude that V is one of the varieties \mathcal{I}_{0}, $\mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}, \mathcal{I}_{4}, \mathcal{I}_{5}, \mathcal{I}_{6}, \mathcal{I}_{7}$.

Let $V \subseteq \mathcal{I}_{8}$. We can restrict ourselves to the case when $u=x_{1} \ldots x_{n}$ and $v=y_{1} \ldots y_{m}$ where x_{1}, \ldots, x_{n} are pairwise different and also y_{1}, \ldots, y_{m} are pairwise different. If $\operatorname{var}(u) \neq \operatorname{var}(v)$, then $V \subseteq \mathcal{I}_{5}$ and, in fact, V is either \mathcal{I}_{0} or \mathcal{I}_{1}. So, assume that $\operatorname{var}(u)=\operatorname{var}(v)$. Then $n=m$ and there is a permutation p of $\{1,2, \ldots, n\}$ such that $y_{i}=x_{p(i)}$. If $p(1) \neq 1$, then V is either \mathcal{I}_{0} or \mathcal{I}_{2}. Let $p(1)=1, p \neq \mathrm{id}$, and let $2 \leq k \leq n-1$ be the smallest number with $p(k) \neq k$. Using the substitution $x_{1}, \ldots, x_{k-1} \rightarrow x, x_{k} \rightarrow y$ and $x_{k+1}, \ldots, x_{n} \rightarrow z$, we can show that the identity $x y z \approx x z y$ is satisfied in V, and so $V \subseteq \mathcal{I}_{4}$. Thus V is either \mathcal{I}_{0} or \mathcal{I}_{1} or \mathcal{I}_{2} or \mathcal{I}_{4}.

Assume, finally, that $V \nsubseteq \mathcal{I}_{7}$ and $V \nsubseteq \mathcal{I}_{8}$. By 1.4, every subdirectly irreducible member of V is either in \mathcal{I}_{7} or in \mathcal{I}_{8}. Consequently, $V=\mathcal{I}_{9}$.

Fig. 2

IV. 3 SUBDIRECTLY IRREDUCIBLE IDEMPOTENT LDR ${ }_{1}$-SEMIGROUPS

3.1 Remark. According to 1.4, there exist (up to isomorphism) only two subdirectly irreducible LDI-semigroups that are not LDR_{1}-semigroups, namely, $D(2)$ and $D(10)$.
3.2 Proposition. Let S be a subdirectly irreducible $L D R_{1}$ I-semigroup such that $q_{S}=\mathrm{id}_{S}$. Then just one of the following two cases takes place:
(i) $S \simeq D(1)$;
(ii) S possesses at least three elements, among them a neutral element e, such that $T=S-\{e\}$ is a subsemigroup of $S, q_{T} \neq \mathrm{id}_{T}$ and T is a subdirectly irreducible $L D R_{1} I$-semigroup possessing no neutral element.

Proof. See I.3.2.
3.3 Proposition. Let T be a nontrivial semigroup and e be an element not belonging to T. Then $T\{e\}$ is a subdirectly irreducible $L D R_{1} I$-semigroup if and only if T is a subdirectly irreducible $L D R_{1}$ I-semigroup possessing no neutral element.

Proof. See I.2.8(iv).
3.4 Proposition. Let T be a nontrivial semigroup and o be an element not belonging to T. Then $T[o]$ is a subdirectly irreducible $L D R_{1}$ I-semigroup if and only if T is a subdirectly irreducible $L D R_{1} I$-semigroup possessing no absorbing element.
Proof. Easy.
3.5 Proposition. Let S be a subdirectly irreducible $L D R_{1}$ I-semigroup possessing an absorbing element o. Then just one of the following two cases takes place:
(i) $S \simeq D(1)$;
(ii) S contains at least three elements, $T=S-\{o\}$ is a subsemigroup of S, T is a subdirectly irreducible $L D R_{1}$ I-semigroup and T contains no absorbing element.

Proof. Assume that $\operatorname{card}(S) \geq 3$ and that $(a, b) \in \omega_{S}, a \neq b, a \neq o$. Let $u \in T$; put $I=\{x \in S: x u=o\}$ and $J=S u$. Then both I and J are ideals of S and $\operatorname{card}(J) \geq 2$; we have $o, u \in J$. Consequently, $\omega_{S} \subseteq(J \times J) \cup \operatorname{id}_{S}$ and $a=v u$ for some $v \in S$. We have $a=v u=v u u=a u$, and so $a \notin I$. Thus $\omega_{S} \nsubseteq(I \times I) \cup \operatorname{id}_{S}$, $\operatorname{card}(I)=1$ and $I=\{o\}$. We have proved that T is a subsemigroup of S and the rest is clear from 3.4.
3.6 Definition. A subdirectly irreducible $\mathrm{LDR}_{1} \mathrm{I}$-semigroup S will be called primary if S contains no neutral element and no absorbing element either.
3.7 Theorem. Let S be a subdirectly irreducible $L D R_{1} I$-semigroup. Then just one of the following five cases takes place:
(i) $S \simeq D(1)$.
(ii) S is primary.
(iii) S contains at least three elements, among them a neutral element e, no absorbing element, $T=S-\{e\}$ is a subsemigroup of $S=T\{e\}$ and T is a primary subdirectly irreducible $L D R_{1}$ I-semigroup.
(iv) S contains at least three elements, among them an absorbing element o, no neutral element, $T=S-\{o\}$ is a subsemigroup of $S=T[o]$ and T is a primary subdirectly irreducible $L D R_{1}$ I-semigroup.
(v) S contains at least four elements, among them both a neutral element e and an absorbing element o, $T=S-\{e, o\}$ is a subsemigroup of $S=(T\{e\})[o]=$ $(T[o])\{e\}$ and T is a primary subdirectly irreducible $L D R_{1} I$-semigroup.

Proof. Combine 3.2, 3.3, 3.4 and 3.5
3.8 Notation. For a semigroup S, let $\mathrm{LA}(S)$ denote the set of left absorbing elements of S, i.e., $\mathrm{LA}(S)=\{a \in S: a S=\{a\}\}$. If $L=\mathrm{LA}(S)$ is nonempty, then L is an ideal of S and $L=\operatorname{Int}(S)$. Moreover, L is equal to the intersection of all left ideals of S and every nonempty subset of L is a right ideal of S.
3.9 Lemma. Let S be an idempotent semigroup and I be a right ideal of S. Then $I \subseteq \mathrm{LA}(S)$ iff I is an LZ-semigroup.

Proof. If I is an LZ-semigroup and if $a \in I$ and $x \in S$, then $a x \in I$ and $a x=$ $a \cdot a x=a$.

IV. 4 SUBDIRECTLY IRREDUCIBLE SEMIGROUPS IN \mathcal{I}_{8}

4.1 Remark. Recall that \mathcal{I}_{8} is the variety of LDR_{1} I-semigroups, i.e., the variety of idempotent semigroups satisfying $x y x \approx x y$. The aim of this section is to prove that every semigroup from \mathcal{I}_{8} can be embedded into a subdirectly irreducible semigroup from \mathcal{I}_{8}. This is a special case of a more general result by Goralčík and Koubek [GorK,?]. The proof contained in [GorK,?] contains several inaccuracies, making it almost unreadable.
4.2 Definition. We fix two distinct elements α, β. A semigroup $S \in \mathcal{I}_{8}$ will be called admissible if $\{\alpha, \beta\} \subseteq \mathrm{LA}(S)$ and $s \alpha=s \beta \in\{\alpha, \beta\}$ for all $s \in S-\mathrm{LA}(S)$.

An admissible semigroup $S \in \mathcal{I}_{8}$ will be called reductive if for every pair u, v of distinct elements of S there exists an element $s \in \operatorname{LA}(S)$ with $u s \neq v s$.
4.3 Proposition. Every semigroup $S \in \mathcal{I}_{8}$ containing neither α nor β can be extended to an admissible semigroup in \mathcal{I}_{8}.
Proof. Put $T=S \cup\{\alpha, \beta\}$ and define multiplication on T as follows: S is a subsemigroup of $T ; \alpha s=\alpha$ and $\beta s=\beta$ for all $s \in T ; s \alpha=s \beta=\alpha$ for all $s \in S$. It is easy to see that $T \in \mathcal{I}_{8}, \mathrm{LA}(T)=\{\alpha, \beta\}$ and T is admissible.
4.4 Proposition. Every admissible semigroup $S \in \mathcal{I}_{8}$ can be extended to a reductive admissible semigroup in \mathcal{I}_{8}.
Proof. Take an element $e \notin S$ and put $R=S\{e\}$. Let $x \rightarrow x^{\prime}$ be a bijection of R onto a set R^{\prime} with $R \cap R^{\prime}=\{\alpha, \beta\}$, such that $\alpha^{\prime}=\alpha$ and $\beta^{\prime}=\beta$. Put $T=S \cup R^{\prime}$ and define multiplication on T as follows:
(i) S is a subsemigroup of T;
(ii) $s t^{\prime}=(s t)^{\prime}$ for $s, t \in S$;
(iii) $s e^{\prime}=s^{\prime}$ for $s \in S$;
(iv) $s^{\prime} w=s^{\prime}$ for $s \in S, w \in T$;
(v) $e^{\prime} w=e^{\prime}$ for $w \in T$.

It is easy to see that the multiplication is correctly defined, $T \in \mathcal{I}_{8}, \mathrm{LA}(T)=R^{\prime}$, and T is admissible. It remains to prove that T is reductive. Let $s, t \in T, s \neq t$. If $s, t \in S$, then $s e^{\prime}=s^{\prime} \neq t^{\prime}=t e^{\prime}$. If $s, t \in R^{\prime}$, then $s s=s \neq t=t s$. Finally, if $s \in S$ and $t \in R^{\prime}-\{\alpha, \beta\}$, then $s \alpha \neq t=t \alpha$.
4.5 Notation. In the next lemmas we suppose that $S \in \mathcal{I}_{8}$ is a given admissible reductive semigroup and c, d is a pair of distinct elements of $\mathrm{LA}(S)$ with $d \notin\{\alpha, \beta\}$.

Take two distinct elements x, y not belonging to S and denote by Z the LZsemigroup with the underlying set $\{x, y\}$. Denote by F the free product of S and Z in \mathcal{I}_{8}, so that S and Z are disjoint subsemigroups of F, F is generated by $S \cup Z$ and for any $A \in \mathcal{I}_{8}$, any pair of homomorphisms $S \rightarrow A, Z \rightarrow A$ can be extended to a homomorphism $F \rightarrow A$.

By a canonical form of an element $u \in F$ we mean an expression $u=u_{1} \ldots u_{n}$, where
(i) $1 \leq n \leq 3$,
(ii) if $n=2$, then either $u_{1} \in Z, u_{2} \in S$ or $u_{1} \in S, u_{2} \in Z$,
(iii) if $n=3$, then $u_{1} \in S, u_{2} \in Z, u_{3} \in S$ and $u_{1} u_{3} \neq u_{1}$.

Observe that for $n=3, u_{1} \in S-L A(S)$ (in particular, if $n=3$, then $u_{1} \notin\{\alpha, \beta\}$).
4.6 Lemma. Every element of F can be expressed in a canonical form.

Proof. As this is clear for the elements of $S \cup Z$, it is sufficient to show that the set of the elements expressible in a canonical form is a subsemigroup of F. For this sake, it is certainly sufficient to show that if $u=u_{1} \ldots u_{n}$ canonically, then each of the elements $u x, u y$ and $u s$ (for $s \in S$) also has a canonical form. This can be done easily by considering the possible cases. For example, $x s y=x s x y=x s x=x s$. Also, if $s t=s$, then $s x t=s x s t=s x s=s x$.
4.7 Lemma. Let $u=u_{1} \ldots u_{n}$ and $u=v_{1} \ldots v_{m}$ be two canonical expressions of the same element $u \in F$. Then $n=m$ and either $u_{1}=v_{1}, \ldots, u_{n}=v_{n}$ or else $n=3, u_{1}=v_{1}, u_{2}=v_{2}$ and $u_{1} u_{3}=v_{1} v_{3}$.
Proof. Denote by h_{1} the homomorphism of F onto the two-element semilattice $\{0,1\}$ (where $01=0$) such that $h_{1}(S)=\{1\}$ and $h_{1}(Z)=\{0\}$; define h_{2} similarly, but setting $h_{2}(S)=\{0\}$ and $h_{2}(Z)=\{1\}$. Clearly, $h_{1}\left(u_{1} \ldots u_{n}\right)=0$ iff $Z \cap$ $\left\{u_{1}, \ldots, u_{n}\right\} \neq \emptyset$; also, $h_{2}\left(u_{1} \ldots u_{n}\right)=0$ iff $S \cap\left\{u_{1}, \ldots, u_{n}\right\} \neq \emptyset$. From this it follows that it is sufficient to consider the case when $n \geq 2$ and $m \geq 2$.

For every $e \in \mathrm{LA}(S)$ denote by h_{e} the homomorphism of F into S extending the identity on S and the constant homomorphism of Z onto $\{e\}$. If $u_{1} \in S$, then $h_{e}\left(u_{1} \ldots u_{n}\right)=u_{1} e$. If $v_{1} \in Z$, then $h_{e}\left(v_{1} \ldots v_{m}\right)=e$. So, if $u_{1} \in S$ and $v_{1} \in Z$, then $u_{1} e=e$ for any $e \in \operatorname{LA}(S)$; in particular, $u_{1} \alpha=\alpha$ and $u_{1} \beta=\beta$, contradicting the admissibility of S. We conclude that u_{1}, v_{1} either belong both to S or belong both to Z. In the case when $u_{1}, v_{1} \in S$, we get $u_{1} e=v_{1} e$ for all $e \in \operatorname{LA}(S)$, so that $u_{1}=v_{1}$ by the reductivity of S.

Denote by h_{3} the homomorphism of F into $Z\{1\}$ extending the constant homomorphism of S onto $\{1\}$ and the identity on Z. If $u_{1}=v_{1} \in S$, then $h_{3}\left(u_{1} \ldots u_{n}\right)=$ u_{2} and $h_{3}\left(v_{1} \ldots v_{m}\right)=v_{2}$, so that $u_{2}=v_{2}$. If $u_{1}, v_{1} \in Z$, then $h_{3}\left(u_{1} \ldots u_{n}\right)=u_{1}$ and $h_{3}\left(v_{1} \ldots v_{m}\right)=v_{1}$, so that $u_{1}=v_{1}$.

So far we have proved that $u_{1}=v_{1}$ and if $u_{1}=v_{1} \in S$, then $u_{2}=v_{2}$.
Denote by h_{4} the homomorphism of F into $S\{1\}$ extending the identity on S and the constant homomorphism of Z onto $\{1\}$. If $u_{1}=v_{1} \in Z$, then $h_{4}\left(u_{1} \ldots u_{n}\right)=u_{2}$ and $h_{4}\left(v_{1} \ldots v_{m}\right)=v_{2}$. So, $u_{2}=v_{2}$.

Let s, t, t^{\prime} be elements of S. If $s x=s x t$, then $x s x=x s x t$, i.e., $x s=x s t$ and hence $s=s t$, so that $s x t$ is not a canonical form. If $s x t=s x t^{\prime}$, then (similarly) $s t=s t^{\prime}$.
4.8 Notation. We have seen that every element $u \in F$ can be expressed canonically, $u=u_{1} \ldots u_{n}$, and u_{1} is uniquely determined by u; we say that u begins with u_{1}.

Denote by R the relation, containing the following pairs of elements of F :

$$
(\alpha, x c),(\beta, y c),(x \alpha, x \beta),(y \alpha, y \beta),(\alpha, \alpha x),(\alpha, \alpha y),(\beta, \beta x),(\beta, \beta y),(x d, y d)
$$

Denote by ρ the congruence of F generated by R.
Put $A_{\alpha}=\{s \in S: s \alpha=\alpha\}$ and $A_{\beta}=\{s \in S: s \beta=\beta\}$.
Put $B_{\alpha}=\{\alpha\} \cup\{x s: s \in S-\{d\}\} \cup A_{\alpha} Z S$ (notice that $A_{\alpha} Z \subseteq A_{\alpha} Z S$).
Put $B_{\beta}=\{\beta\} \cup\{y s: s \in S-\{d\}\} \cup A_{\beta} Z S$.
For $s \in \operatorname{LA}(S)-\{\alpha, \beta\}$ put $B_{s}=\{s, s x, s y\}$.
For $s \in S-\mathrm{LA}(S)$ put $B_{s}=\{s\}$.
4.9 Lemma. Let $(v, w) \in R \cup R^{-1}$ and let p, q be two elements of $F\{1\}$ such that $p v q \in B_{\alpha}$ (or $p v q \in B_{\beta}$). Then $p w q \in B_{\alpha}$ (or $p w q \in B_{\beta}$, respectively).
Proof. Let $p v q \in B_{\alpha}$ (the other case is similar). Consider first the case $p v q=\alpha$. Then clearly $p, q \in S\{1\}, v \in\{\alpha, \beta\}, w \in\{x c, y c, \alpha x, \alpha y\}$. If $p \neq 1$, then $\alpha=$ $p v=p \alpha$, so that $p \in A_{\alpha}$ and $p w q \in A_{\alpha} Z S$. If $p=1$, then $\alpha=v q=v$, so that $w \in\{x c, \alpha x\}$ and we have either $p w q=x c q=x c$ or $p w q=\alpha x q=\alpha x$; in both cases, $p w q \in B_{\alpha}$.

Let $p v q \in\{x s: s \in S-\{d\}\} \cup A_{\alpha} Z S$. If $p \notin S\{1\}$, it follows easily from 4.7 that p, and then also $p w q$ belong to $\{x s: s \in S-\{d\}\} \cup A_{\alpha} Z S$. So, let $p \in S\{1\}$.

Let $p \in S$. Then $p v q \in A_{\alpha} Z S$; since v either begins with an element of Z or belongs to $\{\alpha, \beta, \alpha x, \alpha y, \beta x, \beta y\}$, we get $p \in A_{\alpha}$. If w either begins with an element of Z or is one of the elements $\alpha x, \alpha y, \beta x, \beta y$, we get $p w q \in A_{\alpha} Z S$. So, let $w \in\{\alpha, \beta\}$. Then $p w=\alpha$. If $q \in S\{1\}$, we get $p w q=\alpha \in B_{\alpha}$. Otherwise, $p w q=\alpha q \in A_{\alpha} Z S \subseteq B_{\alpha}$.

Finally, let $p=1$. Then $p v q=v q$, so that v does not begin with y and $v \notin$ $\{x d, \beta, \beta x, \beta y\}$. Hence both v and w belong to $\{\alpha, x c, x \alpha, x \beta, \alpha x, \alpha y\}$. But then $p w q=w q \in B_{\alpha}$.
4.10 Lemma. Let $(v, w) \in R \cup R^{-1}$ and let p, q be two elements of $F\{1\}$ such that $p v q \in B_{s}$, where $s \in S-\{\alpha, \beta\}$. Then $p w q \in B_{s}$.
Proof. Consider first the case $p v q=s$. Then $p, v, q \in S\{1\}, v \in\{\alpha, \beta\}, s=$ $p v \notin\{\alpha, \beta\}$, so by the admissibility of S we get $p=s \in \operatorname{LA}(S)-\{\alpha, \beta\}$. Hence $p w q=s w q \in\{s, s x, s y\}=B_{s}$.

It remains to consider the case $s \in \mathrm{LA}(S)-\{\alpha, \beta\}, p v q \in\{s x, s y\}$.
Let $p \notin S\{1\}$. It follows easily from 4.7 and from $s \in \operatorname{LA}(S)$ that $p=p v q$. Then $p w q=p v q \in B_{s}$.

Let $p \in S\{1\}$. If v begins with either x or y, then from $p v q \in\{s x, s y\}$ we get $p=s$ and then $p w q=s w q \in\{s, s x, s y\}$. So, let $v \in\{\alpha, \beta, \alpha x, \alpha y, \beta x, \beta y\}$. Then either $p \alpha$ or $p \beta$ does not belong to $\{\alpha, \beta\}$, so $p \in \operatorname{LA}(S)$ and we again obtain $p=s$ and $p w q=s w q \in\{s, s x, s y\}$.
4.11 Lemma. Let $(s, t) \in \rho \cap(S \times S)$. Then $s=t$.

Proof. Since $(s, t) \in \rho$, there is a finite sequence s_{0}, \ldots, s_{n} of elements of F such that $s_{0}=s, s_{n}=t$ and for every $i=1, \ldots, n$ we have $s_{i-1}=p v q, s_{i}=p w q$ for some $p, q \in F\{1\}$ and $(v, w) \in R \cup R^{-1}$. It remains to use 4.9 and 4.10.
4.12 Lemma. Every congruence of F containing ρ and containing the pair (c, d) contains (α, β).

Proof. Let \sim be a congruence containing ρ and (c, d). We have $\alpha \sim x c \sim x d \sim$ $y d \sim y c \sim \beta$.
4.13 Proposition. Let S be a reductive admissible semigroup from \mathcal{I}_{8} and let $c, d \in S, c \neq d$. Then S can be extended to an admissible semigroup $T \in \mathcal{I}_{8}$ such that $(\alpha, \beta) \in \theta_{c, d}$, where $\theta_{c, d}$ is the congruence of T generated by (c, d).
Proof. Since S is reductive, it is sufficient to consider the case $\{c, d\} \subseteq \operatorname{LA}(S)$. If $\{c, d\}=\{\alpha, \beta\}$, we can put $T=S$. So, we can assume that $d \notin\{\alpha, \beta\}$.

Let us keep the notation introduced in 4.5 and 4.8. Denote by T the semigroup F / ρ, in which we identify (or replace) every element s / ρ (for $s \in S$) with s (this
is possible according to 4.11). So, T is an extension of S. We have $T \in \mathcal{I}_{8}$, since $F \in \mathcal{I}_{8}$.

We have $\{\alpha, \beta\} \subseteq \mathrm{LA}(T)$: this follows from $(\alpha x, \alpha) \in \rho,(\alpha y, \alpha) \in \rho,(\beta x, \beta) \in \rho$ and $(\beta y, \beta) \in \rho$.

Let $s \in \operatorname{LA}(S)$. Then $(\alpha, \alpha x) \in \rho$ implies $(s \alpha, s \alpha x) \in \rho$, i.e., $(s, s x) \in \rho$. Similarly, $(s, s y) \in \rho$. From this it follows that $(s, s t) \in \rho$ for any $t \in F$, so that $s \in \mathrm{LA}(T)$. This proves $\mathrm{LA}(S) \subseteq \mathrm{LA}(T)$. Now it is easy to see that $\mathrm{LA}(T)$ also contains all the elements $s x / \rho, s y / \rho, x s / \rho$ and $y s / \rho$ with $s \in \operatorname{LA}(S)$.

Let $u=u_{1} \ldots u_{n}$ (canonically) be an element of F such that $u / \rho \in T-\mathrm{£}(T)$. We have $u_{i} \notin \mathrm{LA}(S)$ for all i.

We have $(\alpha, x c) \in \rho$, so that $(x \alpha, x x c) \in \rho$, i.e., $(x \alpha, x c) \in \rho$ and hence $(\alpha, x \alpha) \in$ ρ. Hence also $(\alpha, x \beta) \in \rho$. Similarly, $(\beta, y \alpha) \in \rho$ and $(\beta, y \beta) \in \rho$. This shows that if $u_{i} \in\{x, y\}$, then $\left(u_{i} \alpha\right) / \rho=\left(u_{i} \beta\right) / \rho \in\{\alpha, \beta\}$. If $u_{i} \in S-\operatorname{LA}(S)$, then $u_{i} \alpha=u_{i} \beta \in\{\alpha, \beta\}$ by the admissibility of S. Now it is easy to see that $(u \alpha) / \rho=$ $(u \beta) / \rho \in\{\alpha, \beta\}$.

We see that T is admissible. The rest follows from 4.12.
4.14 Proposition. Let S be an admissible semigroup from \mathcal{I}_{8}. Then S can be extended to an admissible semigroup $T \in \mathcal{I}_{8}$ such that for any $c, d \in S$ with $c \neq d$, the congruence of T generated by (c, d) contains (α, β).
Proof. By 4.4 and 4.14, for every admissible semigroup $S \in \mathcal{I}_{8}$ and every $c, d \in$ S with $c \neq d$ there exists an admissible semigroup $T_{c, d} \in \mathcal{I}_{8}$ such that (α, β) belongs to the congruence of $T_{c, d}$ generated by (c, d). The result follows by a standard argument using transfinite construction; observe that the union of a chain of admissible semigroups from \mathcal{I}_{8} is an admissible semigroup from \mathcal{I}_{8}.
4.15 Theorem. Every semigroup $S \in \mathcal{I}_{8}$ can be extended to a subdirectly irreducible semigroup from \mathcal{I}_{8}.

Proof. By 4.3, it is enough to consider the case when S is admissible. Define a countable chain of admissible semigroups S_{0}, S_{1}, \ldots as follows: $S_{0}=S ; S_{i+1}$ is an extension of S_{i} claimed by 4.14. The union of this chain is the desired semigroup.

CHAPTER V
 THE LATTICE OF VARIETIES OF LEFT DISTRIBUTIVE SEMIGROUPS

V. 1 THE SUBVARIETIES OF $\mathcal{T} \cap \mathcal{R}$

1.1 Notation. We denote by \mathcal{L} the variety of LD-semigroups, by \mathcal{I} the variety of idempotent LD-semigroups (so that $\mathcal{I}=\mathcal{I}_{9}$), by \mathcal{R} the variety of LDR-semigroups and by \mathcal{T} the variety of LDT-semigroups.
1.2 Lemma. $\mathcal{T} \cap \mathcal{R}=\mathcal{A} \vee \mathcal{I}$ and every subvariety of $\mathcal{T} \cap \mathcal{R}$ is equal to $\mathcal{A}_{i} \vee \mathcal{I}_{j}$ for some $0 \leq i \leq 5$ and $0 \leq j \leq 9$.
Proof. By I.1.17, every semigroup in $\mathcal{T} \cap \mathcal{R}$ is a subdirect product of an A-semigroup and an idempotent LD-semigroup. Now, use Theorems III.2.2 and IV.2.2.
1.3 Lemma. For $j \notin\{0,2\}$ we have $\mathcal{A}_{2} \vee \mathcal{I}_{j}=\mathcal{A}_{4} \vee \mathcal{I}_{j}$ and $\mathcal{A}_{3} \vee \mathcal{I}_{j}=\mathcal{A}_{5} \vee \mathcal{I}_{j}$.

Proof. Let G be the free semigroup in $\mathcal{A}_{3} \vee \mathcal{I}_{j}$ over two generators x and y. Clearly, $x y \neq y x$ in G and $x y, y x \notin \operatorname{Id}(G)$. From this it follows that $G / \operatorname{Id}(G) \notin \mathcal{A}_{3}$ and hence $\left(\mathcal{A}_{3} \vee \mathcal{I}_{j}\right) \cap \mathcal{A}_{5} \nsubseteq \mathcal{A}_{3}$. Consequently, $\left(\mathcal{A}_{3} \vee \mathcal{I}_{j}\right) \cap \mathcal{A}_{5}=\mathcal{A}_{5}$, which means that $\mathcal{A}_{3} \vee \mathcal{I}_{j}=\mathcal{A}_{5} \vee \mathcal{I}_{j}$. One can prove $\mathcal{A}_{2} \vee \mathcal{I}_{j}=\mathcal{A}_{4} \vee \mathcal{I}_{j}$ similarly.
1.4 Lemma. Let either $i \notin\{2,3\}$ or $j \in\{0,2\}$. Then a semigroup S belongs to $\mathcal{A}_{i} \vee \mathcal{I}_{j}$ if and only if $S \in \mathcal{T} \cap \mathcal{R}, \operatorname{Id}(S) \in \mathcal{I}_{j}$ and $S / \operatorname{Id}(S) \in \mathcal{A}_{i}$.

Proof. Denote by V the class of all semigroups S with this property. It is easy to see that V is a variety, and hence $V=\mathcal{A}_{i} \vee \mathcal{I}_{j}$.
1.5 Lemma. Let (i, j) and (k, l) be two ordered pairs from $\{0, \ldots, 5\} \times\{0, \ldots, 9\}$. Then $\mathcal{A}_{i} \vee \mathcal{I}_{j} \subseteq \mathcal{A}_{k} \vee \mathcal{I}_{l}$ if and only if $\mathcal{I}_{j} \subseteq \mathcal{I}_{l}$ and one of the following three cases takes place: either $\mathcal{A}_{i} \subseteq \mathcal{A}_{k}$ or $l \notin\{0,2\}, i=4, k=2$ or $l \notin\{0,2\}, i=5, k=3$.

Proof. Apply 1.2, 1.3 and 1.4.
1.6 Lemma. The variety $\mathcal{T} \cap \mathcal{R}$ has the following 44 subvarieties:

$$
\begin{aligned}
L_{0} & =\mathcal{A}_{0} \vee \mathcal{I}_{0}=\mathcal{A}_{0}=\mathcal{I}_{0}, \\
L_{1} & =\mathcal{A}_{0} \vee \mathcal{I}_{1}=\mathcal{I}_{1}, \\
& \ldots \\
L_{9}= & \mathcal{A}_{0} \vee \mathcal{I}_{9}=\mathcal{I}_{9}, \\
L_{10}= & \mathcal{A}_{1} \vee \mathcal{I}_{0}=\mathcal{A}_{1}, \\
L_{11} & =\mathcal{A}_{1} \vee \mathcal{I}_{1}, \\
& \ldots \\
L_{19}= & \mathcal{A}_{1} \vee \mathcal{I}_{9}, \\
L_{20}= & \mathcal{A}_{2} \vee \mathcal{I}_{0}, \\
L_{21}= & \mathcal{A}_{2} \vee \mathcal{I}_{1}=\mathcal{A}_{4} \vee \mathcal{I}_{1},
\end{aligned}
$$

$$
\begin{aligned}
L_{22} & =\mathcal{A}_{2} \vee \mathcal{I}_{2}, \\
L_{23} & =\mathcal{A}_{2} \vee \mathcal{I}_{3}=\mathcal{A}_{4} \vee \mathcal{I}_{3}, \\
& \cdots \\
L_{29} & =\mathcal{A}_{2} \vee \mathcal{I}_{9}=\mathcal{A}_{4} \vee \mathcal{I}_{9}, \\
L_{30} & =\mathcal{A}_{3} \vee \mathcal{I}_{0}, \\
L_{31} & =\mathcal{A}_{3} \vee \mathcal{I}_{1}=\mathcal{A}_{5} \vee \mathcal{I}_{1}, \\
L_{32} & =\mathcal{A}_{3} \vee \mathcal{I}_{2}, \\
L_{33} & =\mathcal{A}_{3} \vee \mathcal{I}_{3}=\mathcal{A}_{5} \vee \mathcal{I}_{3}, \\
& \cdots \\
L_{39} & =\mathcal{A}_{3} \vee \mathcal{I}_{9}=\mathcal{A}_{5} \vee \mathcal{I}_{9}=\mathcal{T} \cap \mathcal{R}, \\
L_{40} & =\mathcal{A}_{4} \vee \mathcal{I}_{0}, \\
L_{41} & =\mathcal{A}_{4} \vee \mathcal{I}_{2}, \\
L_{42} & =\mathcal{A}_{5} \vee \mathcal{I}_{0}, \\
L_{43} & =\mathcal{A}_{5} \vee \mathcal{I}_{2} .
\end{aligned}
$$

Proof. It follows from 1.5.

V. 2 THE VARIETIES $S_{i, j}, R_{i, j}$ And $T_{i, j}$

2.1 Notation. We denote by $\mathrm{M}\left(u_{1} \approx v_{1}, \ldots\right)$ the variety of LD-semigroups satisfying $u_{1} \approx v_{1}, \ldots$ Put

$$
\begin{aligned}
& S_{1}=\mathrm{M}\left(x^{2} \approx x^{3}, x y^{2} \approx x y x\right), \\
& S_{2}=\mathrm{M}\left(x^{2} \approx x^{3}\right), \\
& S_{3}=\mathrm{M}\left(x y^{2} \approx x y x\right), \\
& S_{4}=\mathcal{L}(\text { the variety of all LD-semigroups }), \\
& S_{i, j}=\left\{S \in S_{i}: \operatorname{Id}(S) \in \mathcal{I}_{j}\right\} \text { for } 1 \leq i \leq 4 \text { and } 0 \leq j \leq 9, \\
& R_{1}=\mathrm{M}(x y \approx x y x), \\
& R_{2}=\mathrm{M}\left(x y \approx x y^{2}\right), \\
& R_{3}=\mathrm{M}\left(x^{2} \approx x^{3}, x y^{2} \approx x y x, x^{2} y \approx x^{2} y^{2}\right)=\mathcal{R} \cap S_{1}, \\
& R_{4}=\mathrm{M}\left(x^{2} \approx x^{3}, x^{2} y \approx x^{2} y^{2}\right)=\mathcal{R} \cap S_{2}, \\
& R_{5}=\mathrm{M}\left(x^{2} y \approx x^{2} y^{2}, x y^{2} \approx x y x\right)=\mathcal{R} \cap S_{3}, \\
& R_{6}=\mathrm{M}\left(x^{2} y \approx x^{2} y^{2}\right)=\mathcal{R}, \\
& R_{i, j}=R_{i} \cap S_{4, j} \text { for } 1 \leq i \leq 6 \text { and } 0 \leq j \leq 9, \\
& T_{1}=\mathrm{M}\left(x y \approx x^{2} y\right), \\
& T_{2}=\mathrm{M}\left(x^{2} \approx x^{3}, x y^{2} \approx x^{2} y^{2}\right)=\mathcal{T} \cap S_{2}, \\
& T_{3}=\mathrm{M}\left(x y^{2} \approx x^{2} y^{2}\right)=\mathcal{T}, \\
& T_{i, j}=T_{i} \cap S_{4, j} \text { for } 1 \leq i \leq 3 \text { and } 0 \leq j \leq 9 .
\end{aligned}
$$

2.2 Lemma. The following are true:
(i) $S_{i, j}$ is a subvariety of \mathcal{L} and $S_{i, j} \cap \mathcal{I}=\mathcal{I}_{j}$.
(ii) $S_{1}=S_{2} \cap S_{3}$ and $S_{2} \vee S_{3} \subseteq S_{4}$.
(iii) $\mathcal{A}_{5} \subseteq S_{3, j} \subseteq S_{4, j}, \mathcal{A}_{5} \nsubseteq S_{1, j}$ and $\mathcal{A}_{5} \nsubseteq S_{2, j}$.
(iv) $S_{1, j}=S_{2, j} \cap S_{3, j}, S_{1,0}=S_{2,0}=\mathcal{A}_{4}$ and $S_{3,0}=S_{4,0}=\mathcal{A}_{5}$.
(v) $R_{1}=R_{2} \cap R_{3}, R_{3}=R_{4} \cap R_{5}, R_{2} \subseteq R_{4}$ and $R_{4} \vee R_{5} \subseteq R_{6}$.
(vi) $T_{1} \subseteq T_{2} \subseteq T_{3}$.

Proof. It is easy.

V. 3 AUXILIARY RESULTS

3.1 Notation. Let X be a countably infinite set of variables. As before, we denote by \mathbf{F} the free semigroup over X; the elements of \mathbf{F} will be called words. Recall that F is a subset of \mathbf{F}, and every word is equivalent to a unique word from F with respect to the equational theory of LD-semigroups.

We denote by W_{1} the set of the words t such that $f(t) \in \operatorname{Id}(S)$ for all LDsemigroups S and all homomorphisms f of \mathbf{F} into S. Denote by W_{2} the subsemigroup of \mathbf{F} generated by $\left\{x^{3}: x \in X\right\}$. Clearly, $W_{2} \subseteq W_{1}$.

The first variable in a word t will be denoted by $o(t)$. Denote by $\operatorname{var}(t)$ the set of variables occurring in t.
3.2 Lemma. Let r, s be two words with $o(r) \neq o(s)$ and let x be a variable such that $x \neq o(r)$. Then $\mathrm{M}(x r \approx x s) \subseteq \mathcal{T}$.
Proof. Let y be a variable not occurring in $x r s$. Denote by y_{1} the first variable in s. Consider the substitution f with $f(x)=f\left(y_{1}\right)=x$ and $f(z)=y$ for all variables $z \notin\left\{x, y_{1}\right\}$. Applying f to the equation $x r y \approx x s y$ (which is a consequence of $x r \approx x s$), it is easy to see that either $x y^{2} \approx x^{2} y$ or $x y^{2} \approx x^{2} y^{2}$ is a consequence of $x r \approx x s$. However, $\mathrm{M}\left(x y^{2} \approx x^{2} y\right)=\mathcal{T} \cap \mathcal{R}$ and $\mathrm{M}\left(x y^{2} \approx x^{2} y^{2}\right)=\mathcal{T}$.
3.3 Lemma. Let r, s be two words.
(i) If $o(r) \neq o(s)$, then $\mathrm{M}(r \approx s) \subseteq \mathcal{T}$.
(ii) If $o(r) \neq o(s)=x$ and s starts with x^{2} (i.e., either $s=x^{2}$ or $s=x^{2} t$ for some $t)$, then $\mathrm{M}(x r \approx s) \subseteq \mathcal{T}$.
(iii) If x, y, z are variables and $y \neq z$, then $\mathrm{M}(x y r \approx x z s) \subseteq \mathcal{T}$.

Proof. (i) Let x be a variable not occurring in $r s$. Then $\mathrm{M}(r \approx s) \subseteq \mathrm{M}(x r \approx x s) \subseteq$ \mathcal{T} by 3.2.
(ii) This follows from 3.2.
(iii) Let u be a variable not occurring in xyzrs. Consider the substitution f with $f(x)=f(z)=x$ and $f(v)=y$ for all variables $v \notin\{x, z\}$. Applying f to the equation $x y r u \approx x z s u$, it is easy to see that either $x y^{2} \approx x^{2} y$ or $x y^{2} \approx x^{2} y^{2}$ is a consequence of $x y r \approx x z s$.
3.4 Lemma. Let r, s be two words.
(i) If x is a variable not occurring in r and if $s \notin\left\{x, x^{2}\right\}$ and $s \neq t x$ for any word t with $x \notin \operatorname{var}(t)$, then $\mathrm{M}(r x \approx s) \subseteq \mathcal{R}$.
(ii) If $\operatorname{var}(r) \neq \operatorname{var}(s)$, then $\mathrm{M}(r \approx s) \subseteq \mathcal{R}$.

Proof. (i) Consider the substitution f with $f(x)=y$ and $f(v)=x$ for all variables $v \neq x$. Applying f to $r x \approx s$, we see that the equation $r x \approx s$ has a consequence $t \approx u$, where

$$
t \in\left\{x y, x^{2} y\right\}
$$

and

$$
u \in\left\{x, x^{2}, x^{3}, y^{3}, x y x, x^{2} y x, x y^{2}, x^{2} y^{2}, y x, y x^{2}, y^{2} x, y^{2} x^{2}\right\}
$$

Every one of these 24 equations implies $x^{2} y=x^{2} y^{2}$.
(ii) By symmetry, we can assume that there is a variable $x \in \operatorname{var}(s)-\operatorname{var}(r)$. If $s=x$, then $\mathrm{M}(r \approx s)$ is the trivial variety. In the opposite case we have $s x \notin\left\{x, x^{2}\right\}$ and $\mathrm{M}(r \approx s) \subseteq \mathrm{M}(r x \approx s x) \subseteq \mathcal{R}$ by (i).
3.5 Lemma. Let V be a variety of $L D$-semigroups. If $V \cap \mathcal{I} \subseteq \mathcal{I}_{6}$, then $V \subseteq \mathcal{T}$. If $V \cap \mathcal{I} \subseteq \mathcal{I}_{5}$, then $V \subseteq \mathcal{R}$.
Proof. First, let $V \cap \mathcal{I} \subseteq \mathcal{I}_{6}$. Then $a b c=b a c$ for all $a, b, c \in \operatorname{Id}(S)$, for any $S \in V$. Consequently, $V \subseteq \mathrm{M}\left(x^{2} y z^{2} \approx y^{2} x z^{2}\right) \subseteq \mathcal{T}$ by 3.3(i).

Now, let $V \cap \mathcal{I} \subseteq \mathcal{I}_{5}$. Then $V \subseteq \mathrm{M}\left(x^{3} \approx x^{2} y x^{2}\right) \subseteq \mathcal{R}$ by 3.4(ii).
3.6 Lemma. The following are true:
(i) Let r, s be two words such that $o(r) \neq o(s)$ and $\operatorname{var}(r) \neq \operatorname{var}(s)$. Then $\mathrm{M}(r \approx s) \subseteq \mathcal{T} \cap \mathcal{R}$.
(ii) Let V be a variety of $L D$-semigroups such that $V \cap \mathcal{I} \subseteq \mathcal{I}_{3}$. Then $V \subseteq \mathcal{T} \cap \mathcal{R}$.

Proof. Use 3.3(i), 3.4(ii) and 3.5.
3.7 Lemma. Let r, s be two words.
(i) If $r, s \in W_{2}$, then $\mathrm{M}(r \approx s)=S_{4, j}$ for some j.
(ii) If $r, s \in W_{1}$, then $\mathrm{M}(r \approx s) \cap \mathcal{T}=T_{3, j}$ for some j.
(iii) If $r \in W_{1}$, then either $\mathrm{M}(r \approx s) \cap \mathcal{T} \subseteq \mathcal{R}$ or $\mathrm{M}(r \approx s) \cap \mathcal{T}=T_{3, j}$ or $\mathrm{M}(r \approx s) \cap \mathcal{T}=T_{2, j}$ for some j.

Proof. Put $V=\mathrm{M}(r \approx s)$ and let $V \cap \mathcal{I}=\mathcal{I}_{j}$. Then $V \subseteq S_{4, j}$ and $V \cap \mathcal{T} \subseteq T_{3, j}$.
(i) Let $S \in S_{4, j}$ and let f be a homomorphism of \mathbf{F} into S. Then $f\left(W_{2}\right) \subseteq \operatorname{Id}(S)$ and hence $f(r)=f(s)$. Thus $S \in V$ and $V=S_{4, j}$.
(ii) Let $S \in T_{3, j}$ and let f be a homomorphism of \mathbf{F} into S. Denote by g the substitution with $g(x)=x^{3}$ for all variables x. Put $h(a)=a^{3}$ for all $a \in S$, so that h is an endomorphism of S. We have $g(\mathbf{F})=W_{2}$ and $h(S)=\operatorname{Id}(S)$. Moreover, $\operatorname{Id}(S) \in \mathcal{I}_{j} \subseteq V \cap \mathcal{T}$ and $f g(\mathbf{F}) \subseteq \operatorname{Id}(S)$. Consequently, $f g(r)=f g(s)$. On the other hand, it is easy to see that $f g=h f$. Therefore $h f(r)=h f(s)$. But both $f(r)$ and $f(s)$ belong to $\operatorname{Id}(S)$, and so $f(r)=f(s)$.
(iii) By the construction of free LD-semigroups given in II.1.1 we can assume that $s=x_{1}^{i} x_{2} \ldots x_{n}$ where $n \geq 1, x_{1}, \ldots, x_{n}$ are pairwise different variables and $i \leq 2$. Put $U=\mathrm{M}\left(s \approx s^{3}\right)$. Clearly, $V \cap \mathcal{T}=U \cap \mathcal{T} \cap \mathrm{M}\left(r \approx s^{3}\right)$. Since the words r and s^{3} belong to W_{1}, we have $\mathrm{M}\left(r \approx s^{3}\right) \cap \mathcal{T}=T_{3, k}$ for some k. If $n=1$ and $i=1$, then $U=\mathcal{I}$ and $V \cap \mathcal{T}=\mathcal{I}_{k}$. If $n=1$ and $i=2$, then $U=S_{2}$ and $V \cap \mathcal{T}=T_{2, k}$. Let $n \geq 2$. Then

$$
U=\mathrm{M}\left(x_{1}^{i} x_{2} \ldots x_{n} \approx x_{1}^{i} x_{2} \ldots x_{n-1} x_{n}^{2}\right) \subseteq \mathcal{R}
$$

by 3.4(i).
3.8 Lemma. Let x, y be two variables and r, s be two words with $x \notin \operatorname{var}(r s)$. Let $V=\mathrm{M}(x y r \approx x y s)$. If either $V \subseteq \mathcal{R}$ or $x y r$, xys $\in W_{1}$, then either $V=S_{4, j}$ or $V=R_{6, j}$ for some j.

Proof. Put $r=u_{1} \ldots u_{n}$ and $s=v_{1} \ldots v_{m}\left(u_{i}, v_{i} \in X\right)$.
Let $V \subseteq \mathcal{R}$. It is enough to show that a semigroup $S \in \mathcal{R}$ satisfies xyr $\approx x y s$ if and only if $\operatorname{Id}(S)$ satisfies $x y r \approx x y s$. The direct implication is clear. Let $\operatorname{Id}(S)$ satisfy $x y r \approx x y s$. In S we have

$$
\begin{aligned}
x y r & =x y^{2} r=(x y)^{2} r=(x y)^{2} r^{2}=(x y)^{3} y^{3} r^{3}=(x y)^{3} y^{3} u_{1}^{3} \ldots u_{n}^{3} \\
& =(x y)^{3} y^{3} v_{1}^{3} \ldots v_{m}^{3}=x y s .
\end{aligned}
$$

Let $x y r, x y s \in W_{1}$. Then $V=\mathrm{M}\left(x y u_{1}^{3} \ldots u_{n}^{3} \approx x y v_{1}^{3} \ldots v_{m}^{3}\right)$. If $x=y$, then the result follows from $3.7(\mathrm{i})$. Hence suppose that $x \neq y$ and put $\mathcal{I}_{j}=V \cap \mathcal{I}$. Then \mathcal{I}_{j} satisfies $y u_{1} \ldots u_{n} \approx y v_{1} \ldots v_{m}$ and $V \subseteq S_{4, j}$. Conversely, let $S \in S_{4, j}$. Then S satisfies $y^{3} u_{1}^{3} \ldots u_{n}^{3} \approx y^{3} v_{1}^{3} \ldots v_{m}^{3}$ and hence $S \in V$.
3.9 Lemma. Let $i, j \leq 2 \leq n$, let x_{1}, \ldots, x_{n} be pairwise different variables and let p be a permutation of $\{1, \ldots, n\}$ such that $p(1) \neq 1$. Put

$$
r=x_{1}^{i} x_{2} \ldots x_{n}, \quad s=x_{p(1)}^{j} x_{p(2)} \ldots x_{p(n)}
$$

and $V=\mathrm{M}(r \approx s)$. Then either $V \subseteq \mathcal{T} \cap \mathcal{R}$ or $V=T_{3,6}$.
Proof. By 3.3(i), $V \subseteq \mathcal{T}$. If $p(n) \neq n$, then $V \subseteq \mathcal{R}$ by 3.4(i). So, we can assume that $p(n)=n$. Then $n \geq 3, \mathcal{I}_{1} \nsubseteq V, V \cap \mathcal{I}=\mathcal{I}_{6}$ and we get $V \subseteq T_{3,6}$. Conversely, let $S \in T_{3,6}$ and $a_{1}, \ldots, a_{n} \in S$. Then

$$
a_{1}^{3} \ldots a_{n-1}^{3} a_{n-1}^{3}=a_{p(1)}^{3} \ldots a_{p(n-1)}^{3} a_{n-1}^{3}
$$

and

$$
\begin{aligned}
a_{1} \ldots a_{n} & =a_{1}^{2} a_{2} \ldots a_{n}=a_{1}^{3} a_{2}^{3} \ldots a_{n-1}^{3} a_{n-1}^{3} a_{n}=a_{p(1)}^{3} \ldots a_{p(n-1)}^{3} a_{n-1}^{3} a_{n} \\
& =a_{p(1)} \ldots a_{p(n-1)} a_{n-1} a_{n}=a_{p(1)} \ldots a_{p(n-1)} a_{n} .
\end{aligned}
$$

3.10 Lemma. Let r, s be two words such that $o(r) \neq o(s)$ and let $V=\mathrm{M}(r \approx s)$. Then either $V \subseteq \mathcal{T} \cap \mathcal{R}$ or $V=T_{2, j}$ or $V=T_{3, j}$ for some j.

Proof. By 3.3(i) we have $V \subseteq \mathcal{T}$ and by 3.6(i) we can assume that $\operatorname{var}(r)=\operatorname{var}(s)$. Taking into account 3.7 (iii), we may restrict ourselves to the case $r, s \in F-W_{1}$. Then $r=x_{1}^{i} x_{2} \ldots x_{n}$ and $s=y_{1}^{k} y_{2} \ldots y_{m}$. We have $n=m$ and there is a permutation p of $\{1, \ldots, n\}$ with $p(1) \neq 1$, such that $y_{1}=x_{p(1)}, \ldots, y_{n}=x_{p(n)}$. The result now follows from 3.9.
3.11 Lemma. Let $i \leq 2,3 \leq n$, let x_{1}, \ldots, x_{n} be pairwise distinct variables and let p be a permutation of $\{2, \ldots, n\}$ such that $p(2) \neq 2$. Put $r=x_{1} x_{2} \ldots x_{n}$, $s=x_{1}^{i} x_{p(2)} \ldots x_{p(n)}$ and $V=\mathrm{M}(r \approx s)$. Then:
(i) $V \subseteq \mathcal{T}$.
(ii) If $p(n) \neq n$, then $V \subseteq \mathcal{T} \cap \mathcal{R}$.
(iii) If $p(n)=n$, then $V=T_{3,7}$.

Proof. (i) Use 3.3(iii).
(ii) Use (i) and 3.4(i).
(iii) It is easy to see that $V \cap \mathcal{I}=\mathcal{I}_{7}$ and $V \subseteq T_{3,7}$. Conversely, let $S \in T_{3,7}$ and let a_{1}, \ldots, a_{n} be elements of S. Then

$$
\begin{aligned}
a_{1} \ldots a_{n} & =a_{1}^{3} \ldots a_{n-1}^{3} a_{1}^{3} a_{n}=a_{1}^{3} a_{p(2)}^{3} \ldots a_{p(n-1)}^{3} a_{1}^{3} a_{n} \\
& =a_{1}^{2} a_{p(2)} \ldots a_{p(n-1)} a_{n} .
\end{aligned}
$$

3.12 Lemma. Let $n \geq 3$, let x_{1}, \ldots, x_{n} be pairwise different variables and let p be a non-identical permutation of $\{1, \ldots, n\}$ such that $p(1)=1$. Put $V=$ $\mathrm{M}\left(x_{1}^{2} x_{2} \ldots x_{n} \approx x_{1}^{2} x_{p(2)} \ldots x_{p(n)}\right)$. Then:
(i) If $p(n) \neq n$, then $V=R_{6,4}$.
(ii) If $p(n)=n$, then $V=S_{4,7}$.

Proof. If $p(n) \neq n$, then $V \subseteq \mathcal{R}$ according to 3.4(i). The rest is similar to 3.11.
3.13 Lemma. Let $i, k, q, t \leq 2 \leq n$, let x_{1}, \ldots, x_{n} be pairwise distinct variables and let p be a permutation of $\{1, \ldots, n\}$. Put

$$
V=\mathrm{M}\left(x_{1}^{i} x_{2} \ldots x_{n-1} x_{n}^{k} \approx x_{p(1)}^{q} x_{p(2)} \ldots x_{p(n-1)} x_{p(n)}^{t}\right)
$$

Then either $V \subseteq \mathcal{T} \cap \mathcal{R}$ or $V=S_{4, j}$ or $V=T_{m, j}$ or $V=R_{6, j}$ for some m and j. Proof. The result can be put together from the following nine cases.
(i) Let $p(1) \neq 1$. Then we can apply 3.10 .
(ii) Let $p(1)=1, k=t=1$ and $i=q=2$. This case is clear from 3.12.
(iii) Let $p(1)=1, p(2) \neq 2, k=t=1$ and $i+q \leq 3$. In this case we can use 3.11.
(iv) Let $p(1)=1, p(2)=2, k=t=1$ and $i=q=1$. If p is the identical permutation, then $V=\mathcal{L}$. Hence assume that p is non-identical. Then $n \geq 4$. If $p(n) \neq n$, then $V \subseteq \mathcal{R}$ by 3.4(i), $V \cap \mathcal{I}=\mathcal{I}_{4}$ and it is easy to see that $V=R_{6,4}$. Now, let $p(n)=n$. Then $V \cap \mathcal{I}=\mathcal{I}_{7}$ and $V \subseteq S_{4,7}$. Conversely, if $S \in S_{4,7}$ and if a_{1}, \ldots, a_{n} are elements of S, then

$$
\begin{aligned}
a_{1} \ldots a_{n} & =a_{1} a_{2}^{3} \ldots a_{n-1}^{3} a_{2}^{3} a_{n}^{3}=a_{1} a_{2}^{3} a_{p(3)}^{3} \ldots a_{p(n-1)}^{3} a_{2}^{3} a_{n} \\
& =a_{1} a_{2} a_{p(3)} \ldots a_{p(n-1)} a_{n}
\end{aligned}
$$

and $S \in V$.
(v) Let $p(1)=1, p(2)=2, k=t=1, i=1$ and $q=2$. We have $V \subseteq \mathcal{T}$ by 3.3(ii). If $p(n) \neq n$, then $V \subseteq \mathcal{T} \cap \mathcal{R}$ follows from 3.4(i). Let $p(n)=n$ and $n \geq 3$. Then it is easy to see that $V=\mathcal{T} \cap \mathrm{M}\left(x_{1}^{2} x_{2} \ldots x_{n} \approx x_{1}^{2} x_{2} x_{p(3)} \ldots x_{p(n)}\right)$. If p is non-identical, then $V=T_{3,7}$ by 3.12 ; if p is the identity, then $V=T_{3,9}$.
(vi) Let $p(1)=1, k=t=2, i=2$ and $q=1$. Then $V \subseteq \mathcal{T}$ by $3.3(\mathrm{ii})$ and we can use 3.7(ii).
(vii) Let $p(1)=1, k=t=2$ and $i=q=1$. If $p(2)=2$, then the result follows from 3.8. If $p(2) \neq 2$, then $n \geq 3, V \subseteq \mathcal{T}$ by 3.3 (iii) and the result follows from 3.7(ii).
(viii) Let $p(1)=1, k=t=2$ and $i=q=2$. In this case, it is possible to use 3.7(i).
(ix) Let $p(1)=1, k=2$ and $t=1$. If $p(n) \neq n$, then $V \subseteq \mathcal{R}$ by 3.4(i). If $p(n)=n$, then the inclusion $V \subseteq \mathcal{R}$ is obvious. Hence we have

$$
V=\mathcal{R} \cap \mathrm{M}\left(x_{1}^{i} x_{2} \ldots x_{n-1} x_{n}^{2} \approx x_{1}^{q} x_{p(2)} \ldots x_{p(n-1)} x_{p(n)}^{2}\right)
$$

The result is now clear from (vi), (vii) and (viii).
3.14 Lemma. Let r, s be two words and let $V=\mathrm{M}(r \approx s)$. Then either $V \subseteq \mathcal{T} \cap \mathcal{R}$ or $V=T_{i, j}$ for some i and j.
Proof. According to 3.4(ii) and 3.7(iii), we can assume that $\operatorname{var}(r)=\operatorname{var}(s)$ and $r, s \in F-W_{1}$. However, then 3.13 can be applied.

V. 4 THE LATTICE OF SUBVARIETIES OF \mathcal{T}

4.1 Lemma. The following are true:
(i) $T_{1, j} \cap \mathcal{A}=\mathcal{A}_{1}, T_{2, j} \cap \mathcal{A}=\mathcal{A}_{4}, T_{3, j} \cap \mathcal{A}=\mathcal{A}_{5}$ and $T_{1, j} \cap \mathcal{I}=T_{2, j} \cap \mathcal{I}=$ $T_{3, j} \cap \mathcal{I}=\mathcal{I}_{j}$ for every $0 \leq j \leq 9$.
(ii) $T_{1, j}=\mathcal{A}_{1} \vee \mathcal{I}_{j}, T_{2, j}=\mathcal{A}_{4} \vee \mathcal{I}_{j}$ and $T_{3, j}=\mathcal{A}_{5} \vee \mathcal{I}_{j}$ for $j \in\{0,1,3,5\}$.

Proof. Use 1.5 and 3.5.
4.2 Lemma. Let $1 \leq i, j \leq 3$ and $0 \leq p, q \leq 9$. Then $T_{i, p} \cap T_{j, q}=T_{r, s}$ for some r, s. Moreover, $T_{i, p} \subseteq T_{j, q}$ if and only if $i \leq j$ and $\mathcal{I}_{p} \subseteq \mathcal{I}_{q}$.
Proof. It is easy.
4.3 Lemma. The varieties $T_{i, j}(1 \leq i \leq 3,0 \leq j \leq 9)$ are pairwise distinct.

Proof. Use 4.2.
4.4 Lemma. Let V be a subvariety of \mathcal{T}. Then either V is contained in $\mathcal{T} \cap \mathcal{R}$ or $V=T_{i, j}$ for some i and j.
Proof. If $V \subseteq \mathcal{R}$, then $V \subseteq \mathcal{T} \cap \mathcal{R}$. So, let $V \nsubseteq \mathcal{R}$. Then, by 3.14, V is the intersection of some varieties $T_{i, j}$, so that $V=T_{i, j}$ for some i, j by 4.2.
4.5 Proposition. The variety \mathcal{T} has the following 62 subvarieties:

$$
\begin{aligned}
& L_{0}, \ldots, L_{43}, \\
& L_{44}=T_{1,2}, \\
& L_{45}=T_{2,2}, \\
& L_{46}=T_{3,2}, \\
& L_{47}=T_{1,4}, \\
& L_{48}=T_{2,4}, \\
& L_{49}=T_{3,4}, \\
& L_{50}=T_{1,6}, \\
& L_{51}=T_{2,6}, \\
& L_{52}=T_{3,6}, \\
& L_{53}=T_{1,7}, \\
& L_{54}=T_{2,7}, \\
& L_{55}=T_{3,7}, \\
& L_{56}=T_{1,8}, \\
& L_{57}=T_{2,8} \\
& L_{58}=T_{3,8}, \\
& L_{59}=T_{1,9}, \\
& L_{60}=T_{2,9}, \\
& L_{61}=T_{3,9}=\mathcal{T} .
\end{aligned}
$$

We have $L_{44}, \ldots, L_{61} \nsubseteq L_{43}=\mathcal{T} \cap \mathcal{R}$. We have $T_{i, p} \subseteq T_{j, q}$ if and only if $i \leq j$ and $\mathcal{I}_{p} \subseteq \mathcal{I}_{q}$. We have $\mathcal{A}_{m} \vee \mathcal{I}_{n} \subseteq T_{r, s}$ if and only if $\mathcal{I}_{n} \subseteq \mathcal{I}_{s}$ and either $r=3$ or $r=2$, $m \in\{0,1,2,4\}$ or $r=1, m \in\{0,1\}$.
Proof. Let V be a subvariety of \mathcal{T} such that $V \nsubseteq \mathcal{R}$. By 4.4 and 4.1(ii), $V=T_{i, j}$ where $i \in\{1,2,3\}$ and $j \in\{2,4,6,7,8,9\}$. Conversely, if i and j are such numbers, then $T_{1,2} \subseteq T_{i, j}$ and hence $T_{i, j} \nsubseteq \mathcal{R}$. The rest is easy.

V. 5 AUXILIARY RESULTS

5.1 Lemma. Let $i, j, k \leq 2, n \geq 0, x, x_{1}, \ldots, x_{n}$ be pairwise distinct variables and let p be a permutation of $\{1, \ldots, n\}$. Put

$$
V=\mathrm{M}\left(x^{i} x_{1} \ldots x_{n-1} x_{n}^{j} \approx x^{k} x_{p(1)} \ldots x_{p(n)} x\right) .
$$

Then either $V \subseteq \mathcal{T}$ or $V=S_{r, s}$ or $V=R_{t, q}$ for some t and q.
Proof. We distinguish six cases.
(i) $n=0$. Then either $S=\mathcal{L}$ or $V=S_{2,9}$ or $V=\mathcal{I}$.
(ii) $n \geq 1$ and $i=j=k=2$. Then 3.7(i) can be applied.
(iii) $n \geq 1, i=k=2$ and $j=1$. By $3.4(\mathrm{i}), V \subseteq \mathcal{R}$ and then clearly $V=\mathcal{R} \cap U$ where

$$
U=\mathrm{M}\left(x^{i} x_{1} \ldots x_{n-1} x_{n}^{2} \approx x^{2} x_{p(1)} \ldots x_{p(n)} x\right)
$$

But $U=S_{4, s}$ for some s and $V=R_{6, s}$.
(iv) $n \geq 1$ and $i+k=3$. By 3.3 (ii), $V \subseteq \mathcal{T}$.
(v) $n \geq 1, i=k=1$ and $j=2$. If $p(1) \neq 1$, then $V \subseteq \mathcal{T}$ due to 3.3(iii). Now we can assume that $p(1)=1$. Consider first the case when p is the identity. Then it is easy to see that $V \subseteq S_{3,8}$. Conversely, if $S \in S_{3,8}$ and $a, b_{1}, \ldots, b_{n} \in S$, then

$$
a b_{1} \ldots b_{n}^{2}=a\left(b_{1} \ldots b_{n}\right)^{2}=a b_{1} \ldots b_{n} a
$$

and $S \in V$. Now, let p be non-identical. Using similar arguments as in the last case, we see that $V=S_{3,4}$.
(vi) $n \geq 1$ and $i=j=k=1$. Then $V \subseteq \mathcal{R}$,

$$
V=\mathcal{R} \cap \mathrm{M}\left(x x_{1} \ldots x_{n-1} x_{n}^{2} \approx x x_{p(1)} \ldots x_{p(n)} x\right)
$$

and either $V=R_{5,8}$ or $V=R_{5,4}$ by (v).
5.2 Lemma. Let $i, j \leq 2, n \geq 0, x, x_{1}, \ldots, x_{n}$ be pairwise distinct variables and let p be a permutation of $\{1, \ldots, n\}$. Put

$$
V=\mathrm{M}\left(x^{i} x_{1} \ldots x_{n} x \approx x^{j} x_{p(1)} \ldots x_{p(n)} x\right)
$$

Then either $V \subseteq \mathcal{T}$ or $V=S_{4,9}$ or $V=S_{4,7}$.
Proof. It is similar to the proof of 5.1.
5.3 Lemma. Let $i, j, k \leq 2 \leq n, 1 \leq q<n, x, x_{1}, \ldots, x_{n}$ be pairwise distinct variables and lep p be a permutation of $\{1, \ldots, n\}$. Put

$$
V=\mathrm{M}\left(x^{i} x_{1} \ldots x_{n-1} x_{n}^{j} \approx x^{k} x_{p(1)} \ldots x_{p(n)} x_{p(q)}\right)
$$

Then either $V \subseteq \mathcal{T}$ or $V=S_{4, r}$ or $V=R_{6, r}$ for some r.
Proof. We distinguish five cases.
(i) $i=j=k=2$. In this case we can use $3.7(\mathrm{i})$.
(ii) $i=k=2$ and $j=1$. Clearly, $V \subseteq \mathcal{R}$ and we can use 3.8.
(iii) $i+k=3$. Then $V \subseteq \mathcal{T}$.
(iv) $i=k=1$ and $p(1) \neq 1$. Then $V \subseteq \mathcal{T}$ by 3.2.
(v) $i=k=1$ and $p(1)=1$. If $j=2$, then we can use 3.8. If $j=1$, then $V \subseteq \mathcal{R}$ and we can again use 3.8.
5.4 Lemma. Let $i, j \leq 2 \leq n, 1 \leq r, s<n, x, x_{1}, \ldots, x_{n}$ be pairwise distinct variables and let p be a permutation of $\{1, \ldots, n\}$. Put

$$
V=\mathrm{M}\left(x^{i} x_{1} \ldots x_{n} x_{r} \approx x^{j} x_{p(1)} \ldots x_{p(n)} x_{p(s)}\right)
$$

Then either $V \subseteq \mathcal{T}$ or $V=S_{4, q}$ or $V=S_{6, q}$ for some q.
Proof. It is similar to the proof of 5.3 .
5.5 Lemma. Let $i, j \leq 2 \leq n, 1 \leq k<n, x, x_{1}, \ldots, x_{n}$ be pairwise distinct variables and let p be a permutation of $\{1, \ldots, n\}$. Put

$$
V=\mathrm{M}\left(x^{i} x_{1} \ldots x_{n} x \approx x^{j} x_{p(1)} \ldots x_{p(n)} x_{p(k)}\right)
$$

Then either $V \subseteq \mathcal{T}$ or $V=S_{r, s}$ for some r, s or $V=R_{t, s}$ for some t, s.
Proof. Clearly, $V \cap \mathcal{I}=\mathcal{I}_{8}$ and

$$
V \subseteq \mathrm{M}\left(x_{p(k)}^{3} \ldots x_{p(n)}^{3} x_{p(k)}^{3} \approx x_{p(k)}^{3} \ldots x_{p(n)}^{3}\right)
$$

Consequently, $V \subseteq U$ where

$$
U=\mathrm{M}\left(x^{i} x_{1} \ldots x_{n} x \approx x^{j} x_{p(1)} \ldots x_{p(n)}\right)
$$

and $V=U \cap S_{4,8}$. The result now follows from 5.1.
5.6 Lemma. Let r, s be two words such that $\operatorname{var}(r)=\operatorname{var}(s)$ and $o(r)=o(s)$. Put $V=\mathrm{M}(r \approx s)$. Then either $V \subseteq \mathcal{T} \cap \mathcal{R}$ or $V=T_{i, j}$ or $V=R_{p, q}$ or $V=S_{n, m}$ for some i, j, p, q, n, m.
Proof. We can assume that $r, s \in F$. The result then follows from 3.13 and 5.1, ..., 5.5.
5.7 Lemma. Let r, s be two words such that $\operatorname{var}(r) \neq \operatorname{var}(s)$ and let $V=\mathrm{M}(r \approx s)$. Then either $V=\mathcal{T} \cap \mathcal{R}$ or $V=R_{6, j}$ or $V=R_{4, j}$ for some j.
Proof. By 3.4(ii), $V \subseteq \mathcal{R}$ and we can assume that $o(r)=o(s)$; denote this variable by x. Recall that $o(w)$ is the first variable in a word w. The last variable in w will be denoted by $\bar{o}(w)$. We distinguish nine cases.
(i) $r=x^{2} p$ and $s=x^{2} q$ where p, q are two words with $o(p) \neq x \neq o(q)$. Then $V=R_{6, j}$ by $3.7(\mathrm{i})$.
(ii) $r=x^{i} p$ and $s=x^{2} q$ where p, q are two words with $o(p) \neq x \neq o(q)$ and $i+j=3$. Then $V \subseteq \mathcal{T} \cap \mathcal{R}$ by 3.3(ii).
(iii) $r=x p$ and $s=x q$ where p, q are two words with $o(p)=o(q) \neq x$ and $\bar{o}(p) \neq x \neq \bar{o}(q)$. Then we can assume that $x \notin \operatorname{var}(p q)$ and the result follows from 3.8 .
(iv) $r=x p$ and $s=x q$ where p, q are two words with $x \neq o(p) \neq o(q) \neq x$. Then $V \subseteq \mathcal{T} \cap \mathcal{R}$ by 3.3 (iii).
(v) $r=x p$ and $s=x q$ where p, q are two words with $o(p)=o(q) \neq x$ and $\bar{o}(p) \neq x=\bar{o}(q)$. We can assume that $p=x_{1} \ldots x_{n}, x \notin \operatorname{var}(p), q=y_{1} \ldots y_{m} x$, $x_{1}=y_{1}, x \neq y_{i}$. Then $V \cap \mathcal{I}=\mathcal{I}_{1}$ and it is easy to see that $V=R_{6,1}$.
(vi) $r=x p$ and $s=x q$ where p, q are two words with $o(p)=o(q) \neq x=\bar{o}(p)=$ $\bar{o}(q)$. We can assume that $p=x_{1} \ldots x_{n} x, q=y_{1} \ldots y_{m} x, x_{1}=y_{1}$. Then $V \cap \mathcal{I}=\mathcal{I}_{5}$ and $V=R_{6,5}$.
(vii) $r=x$. Then $V \subseteq \mathcal{I}$.
(viii) $r=x^{3}$ and $s=x^{i} q$ where q is a word with $o(q) \neq x$. If $i=1$, then $V \subseteq \mathcal{T} \cap \mathcal{R}$ by 3.3(ii). If $i=2$, then 3.7(i) can be used.
(ix) $r=x^{2}$ and $s=x^{i} q$ where q is a word with $o(q) \neq x$. Then $V \subseteq S_{2}$ and $V=\mathrm{M}\left(x^{3} \approx s\right) \cap S_{2}$. The result now follows from (viii).
5.8 Proposition. Let r, s be two words and let $V=\mathrm{M}(r \approx s)$. Then either $V \subseteq \mathcal{R} \cap \mathcal{T}$ or $V=R_{i, j}$ or $V=T_{i, j}$ or $V=S_{i, j}$ for some i, j.
Proof. Apply 3.3, 5.6 and 5.7.

V. 6 THE LATTICE OF SUBVARIETIES OF \mathcal{R}

6.1 Lemma. The following are true:
(i) $R_{1, j} \cap \mathcal{A}=R_{2, j} \cap \mathcal{A}=\mathcal{A}_{1}, R_{3, j} \cap \mathcal{A}=R_{4, j} \cap \mathcal{A}=\mathcal{A}_{4}, R_{5, j} \cap \mathcal{A}=R_{6, j} \cap \mathcal{A}=$ $\mathcal{A}_{5}, R_{1, j} \cap \mathcal{I}=R_{3, j} \cap \mathcal{I}=R_{5, j} \cap \mathcal{I}=\mathcal{I}_{j} \cap \mathcal{I}_{8}$ and $R_{2, j} \cap \mathcal{I}=R_{4, j} \cap \mathcal{I}=$ $R_{6, j} \cap \mathcal{I}=\mathcal{I}_{j}$ for every $0 \leq j \leq 9$.
(ii) $R_{2, j}=\mathcal{A}_{1} \vee \mathcal{I}_{j}, R_{4, j}=\mathcal{A}_{4} \vee \mathcal{I}_{j}, R_{6, j}=\mathcal{A}_{5} \vee \mathcal{I}_{j}$ for every $j \in\{0,2,3,6\}$.
(iii) $R_{1,0}=R_{1,3}=\mathcal{A}_{1} \vee \mathcal{I}_{0}, R_{1,2}=R_{1,6}=\mathcal{A}_{1} \vee \mathcal{I}_{2}, R_{3,0}=R_{3,3}=\mathcal{A}_{4} \vee \mathcal{I}_{0}$, $R_{3,2}=R_{3,6}=\mathcal{A}_{4} \vee \mathcal{I}_{2}, R_{5,0}=R_{5,3}=\mathcal{A}_{5} \vee \mathcal{I}_{0}$ and $R_{5,2}=R_{5,6}=\mathcal{A}_{5} \vee \mathcal{I}_{2}$.
(iv) $R_{1, j}=R_{2, j}, R_{3, j}=R_{4, j}$ and $R_{5, j}=R_{6, j}$ for every $j \in\{1,4,8\}$.
(v) $R_{i, k}=R_{i, j}$ for $i \in\{1,3,5\}$ and $(k, j) \in\{(1,5),(4,7),(8,9)\}$.

Proof. (i) is easy. In order to prove (ii), it is sufficient to show that $R_{6,6} \in \mathcal{T} \cap \mathcal{R}$. Let $S \in R_{6,6}$. We have $x^{2} y=x^{2} y^{2}$ and efg $=f e g$ for all elements $x, y \in S$ and all idempotents $e, f, g \in S$. Hence $x^{2} y^{2}=x x^{3} y^{3} y^{3}=x y^{3} x^{3} y^{3}=x y^{2}$.
(iii) follows from (ii). In order to prove (iv), it is sufficient to show that $R_{5,8}=$ $R_{6,8}$. Let $S \in R_{6,8}$. We have $x^{2} y=x^{2} y^{2}$ and efe $=e f$ for all elements $x, y \in S$ and all idempotents $e, f \in S$. Hence $x y x=x y^{3} x^{3}=x y^{3} x^{3} y^{3}=x y^{2}$.

In order to prove (v), it is sufficient to show that $R_{5,8}=R_{5,9}$. Let $S \in R_{5,9}$. We have $x^{2} y=x^{2} y^{2}$ and $x y^{2}=x y x$ for all elements $x, y \in S$. Then $e f e=e f^{2}=e f$ for all idempotents $e, f \in S$.
6.2 Lemma. Let $1 \leq i, j \leq 6$ and $0 \leq r, s \leq 9$. Then $R_{i, r} \cap R_{j, s}=R_{p, q}$ for some p and q.

Proof. It is easy.
6.3 Proposition. We have the following inclusions between the varieties $R_{i, j}$:
(i) $R_{i, j} \subseteq R_{p, q}$ if $R_{i} \subseteq R_{p}$ and $\mathcal{I}_{j} \subseteq \mathcal{I}_{q}$;
(ii) $R_{i, j} \subseteq R_{p, q}$ if $R_{i, j}=R_{p, q}$ as described in 6.1.

There are no other inclusions except those that follow by transitivity from these two cases.

Proof. The other inclusions would imply incorrect inclusions between subvarieties of $\mathcal{T} \cap \mathcal{R}$ (intersect both sides with \mathcal{T}).
6.4 Proposition. The variety \mathcal{R} has the following 62 subvarieties:

$$
\begin{aligned}
& L_{0}, \ldots, L_{43}, \\
& L_{62}=R_{1,1}=R_{2,1}=R_{1,5}, \\
& L_{63}=R_{3,1}=R_{4,1}=R_{3,5}, \\
& L_{64}=R_{5,1}=R_{6,1}=R_{5,5}, \\
& L_{65}=R_{1,4}=R_{2,4}=R_{1,7}, \\
& L_{66}=R_{3,4}=R_{4,4}=R_{2,7}, \\
& L_{67}=R_{5,4}=R_{6,4}=R_{5,7},
\end{aligned}
$$

$$
\begin{aligned}
& L_{68}=R_{2,5}, \\
& L_{69}=R_{4,5}, \\
& L_{70}=R_{6,5}, \\
& L_{71}=R_{2,7}, \\
& L_{72}=R_{4,7}, \\
& L_{73}=R_{6,7}, \\
& L_{74}=R_{1,8}=R_{2,8}=R_{1,9}, \\
& L_{75}=R_{3,8}=R_{4,8}=R_{3,9}, \\
& L_{76}=R_{5,8}=R_{6,8}=R_{5,9}, \\
& L_{77}=R_{2,9} \\
& L_{78}=R_{4,9}, \\
& L_{79}=R_{6,9}=\mathcal{R} .
\end{aligned}
$$

Proof. Let V be a subvariety of \mathcal{R} such that $V \nsubseteq \mathcal{T}$. It follows from 5.8 and 6.2 that $V=R_{i, j}$ for some $1 \leq i \leq 6$ and $0 \leq j \leq 9$. According to $6.1, V$ is one of the varieties L_{62}, \ldots, L_{79}. Example I. 2.5 shows that $L_{62} \nsubseteq \mathcal{T}$.

V. 7 THE LATTICE OF SUBVARIETIES OF \mathcal{L}

7.1 Lemma. The following are true:
(i) $S_{1, j} \cap \mathcal{A}=S_{2, j} \cap \mathcal{A}=\mathcal{A}_{4}, S_{3, j} \cap \mathcal{A}=S_{4, j} \cap \mathcal{A}=\mathcal{A}_{5}, S_{1, j} \cap \mathcal{I}=S_{3, j} \cap \mathcal{I}=$ $\mathcal{I}_{j} \cap \mathcal{I}_{8}, S_{2, j} \cap \mathcal{I}=S_{4, j} \cap \mathcal{I}=\mathcal{I}_{j}$ for every $0 \leq j \leq 9$.
(ii) $S_{1,0}=S_{2,0}=S_{1,3}=\mathcal{A}_{4} \vee \mathcal{I}_{0}, S_{3,0}=S_{4,0}=S_{3,3}=\mathcal{A}_{5} \vee \mathcal{I}_{0}, S_{2,3}=\mathcal{A}_{4} \vee \mathcal{I}_{3}$ and $S_{4,3}=\mathcal{A}_{5} \vee \mathcal{I}_{3}$.
(iii) $S_{3} \cap \mathcal{T}=T_{3,8}$.
(iv) $S_{1,2}=S_{2,2}=S_{1,6}=T_{2,2}, S_{3,2}=S_{4,2}=S_{3,6}=T_{3,2}, S_{2,6}=T_{2,6}$ and $S_{4,6}=T_{3,6}$.
(v) $S_{1,1}=S_{2,1}=R_{3,1}, S_{3,1}=S_{4,1}=R_{5,1}, S_{1,5}=R_{3,1}, S_{3,5}=R_{5,1}, S_{2,5}=$ $R_{4,5}$ and $S_{4,5}=R_{6,5}$.

Proof. It is easy.
7.2 Lemma. Let $0 \leq i \leq 9$ and $\mathcal{I}_{j}=\mathcal{I}_{i} \cap \mathcal{I}_{8}$. Then $S_{1, i}=S_{1, j}$ and $S_{3, i}=S_{3, j}$. Proof. It is easy.
7.3 Lemma. Let $i \in\{0,1,2,4,8\}$. Then $S_{1, i}=S_{2, i}$ and $S_{3, i}=S_{4, i}$.

Proof. It is easy.
7.4 Lemma. Let $1 \leq i, j \leq 4$ and $0 \leq r, s \leq 9$. Then $S_{i, r} \cap S_{j, s}=S_{p, q}$ for some p and q.

Proof. It is easy.
7.5 Proposition. We have the following inclusions between the varieties $S_{i, j}$:
(i) $S_{i, j} \subseteq S_{p, q}$ if $S_{i} \subseteq S_{p}$ and $\mathcal{I}_{j} \subseteq \mathcal{I}_{q}$;
(ii) $S_{i, j} \subseteq S_{p, q}$ if $S_{i, j}=S_{p, q}$ according to 7.1, 7.2 or 7.3.

There are no other inclusions except those that follow by transitivity from these two cases.

Proof. It is easy.
7.6 Theorem. The variety \mathcal{L} has the following 88 subvarieties:

$$
\begin{aligned}
& L_{0}, \ldots, L_{79}, \\
& L_{80}=S_{1,4} \\
& L_{81}=S_{3,4}, \\
& L_{82}=S_{2,7}, \\
& L_{83}=S_{4,7} \\
& L_{84}=S_{1,8} \\
& L_{85}=S_{3,8} \\
& L_{86}=S_{2,9} \\
& L_{87}=S_{4,9}=\mathcal{L} .
\end{aligned}
$$

Proof. Apply 5.8 and $7.1, \ldots, 7.5$.
The lattice of varieties of LD-semigroups is pictured in Fig. 3. An element labeled i in the picture represents the variety $L_{i}(i=0, \ldots, 87)$.

Fig. 3

REFERENCES

[GorK,?] P. Goralčík and V. Koubek, There are too many subdirectly irreducible bands, preprint.
[Huq,88] S. A. Huq, Distributivity in semigroups, Math. Japon. 33 (1988), 535-541.
[Kep,81] T. Kepka, Varieties of left distributive semigroups, Acta Univ. Carolinae Math. Phys. 22 (1981), no. 2, 23-37.
[KepZ89] T. Kepka and A. Zejnullahu, Finitely generated left distributive semigroups, Acta Univ. Carolinae Math. Phys. 30 (1989), no. 1, 33-36.
[Mar79] S. Markovski, Za distributivnite polugrupy, God. zbor. Matem. fak. (Skopje) 30 (1979), 15-27.
[Pet69] M. Petrich, Structure des demi-groupes et anneaux distributifs, C. R. Acad. Sci. Paris. Sér. A-B 268 (1969), A849-852.
[Zej89a] A. Zejnullahu, Splitting left distributive semigroups, Acta Univ. Carolinae Math. Phys. 30 (1989), no. 1, 23-27.
[Zej89b] A. Zejnullahu, Free left distributive semigroups, Acta Univ. Carolinae Math. Phys. 30 (1989), no. 1, 29-32.

LIST OF SYMBOLS

$a(n)$	11
$a(n, m)$	11
\mathcal{A}	14
$\mathcal{A}_{0}, \ldots, \mathcal{A}_{5}$	14
$b(n)$	11
f_{1}, \ldots, f_{16}	$11-12$
F	9
\mathbf{F}	9
\mathcal{I}	26
$\mathcal{I}_{0}, \ldots, \mathcal{I}_{9}$	19
L_{0}, \ldots, L_{87}	$26-38$
$\mathrm{LA}(S)$	22
$\mathrm{M}\left(u_{1} \approx v_{1}, \ldots\right)$	28
R_{i}	27
$R_{i, j}$	27
\mathcal{R}	26
S_{i}	27
$S_{i, j}$	27
T_{i}	27
$T_{i, j}$	27
\mathcal{T}	26
W_{1}, W_{2}	28

INDEX

A-semigroup	14
admissible semigroup	22
$L D R$-semigroup	1
$L D R_{1}$-semigroup	2
$L D T$-semigroup	2
$L D T_{1}$-semigroup	3
primary semigroup	22
reductive semigroup	22

