
TERMAL GROUPOIDS

J. JEŽEK

Abstract. We investigate the factor of the groupoid of terms through
the largest congruence with a given set among its blocks. The set is
supposed to be closed for overterms.

0. Introduction

There are two related constructions of universal algebras from a given set
S of terms. Denote by U the set of all terms containing a subterm belonging
to S. There exist both the least and the greatest congruence with U among
its blocks. The first construction is taking the factor of T through the least
such congruence, the second through the largest. The first construction has
been investigated, e.g., in the papers [1],[3] and [4]. In the present paper we
start to investigate the second construction. In order to simplify notation,
we restrict our attention to the algebras with a single binary operation,
i.e., groupoids. By a termal groupoid we mean the factor of T through the
largest congruence with U among its blocks, for a subset U of T closed for
overterms.

Of special interest are the termal groupoids corresponding to a set of terms
U such that U is closed for both overterms and substitution instances. In
this case there also exists the greatest equational theory with U among its
blocks.

We will concentrate on the abstract characterization of termal groupoids,
questions of finiteness and the description of the equational theory.

For basics of universal algebra, the reader is referred to [2].

1. General termal groupoids

Let X be a nonempty set of variables. We denote by T(X) the absolutely
free groupoid over X, i.e., the groupoid of terms over X.

For a term t we define two mappings αt and βt of T(X) into itself by
αt(u) = tu and βt(u) = ut (for all u ∈ T(X)). These mappings are called
elementary lifts. By a lift we mean a composition of a finite number of
elementary lifts. Every lift L can be uniquely expressed as L = Qn

tn
. . . Q1

t1

for some n ≥ 0, some terms t1, . . . , tn and symbols Qi ∈ {α, β}; the terms
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t1, . . . , tn will be called its basic terms; the number n will be called the height
of the lift. For n = 0, L is the identity on T(X).

A term u is a subterm of a term t if and only if L(u) = t for a lift L. In
this case we write u ⊆ t; we also say that t is an overterm of u. The relation
u ⊆ t is a (partial) ordering on T(X) satisfying the minimal condition.

Two terms u, v are said to be similar (we write u ∼ v) if f(u) = v for
an automorphism f of T(X). (We could also say that v results from u by
renaming variables.) Two sets U, V of terms are said to be similar (we write
U ∼ V ) if they contain the same terms up to similarity.

For a subset U of T(X) we denote by M(U) the set of the terms minimal
in U , i.e., the set of the terms u ∈ U such that v /∈ U for any proper subterm
v of u. Any two terms in M(U) are either similar or subterm-incomparable.
We have M(T(X)) = X.

For a set U of terms, we denote by O(U) the set of all overterms of terms
from U . By an up-set (of terms) we mean a subset U of T(X) such that
O(U) = U . For an arbitrary subset U , O(U) is the up-set generated by U .
If U is a set of pairwise subterm-incomparable terms, then M(O(U)) = U .

For every nonempty subset U of T(X) we define a binary relation ⊑U on
T(X) by u ⊑U v if and only if L(u) ∈ O(U) implies L(v) ∈ O(U) for any
lift L. It is evident that this relation is a quasiordering and u ⊑U v implies
L(u) ⊑U L(v) for any lift L. We write u ≡U v if both u ⊑U v and v ⊑U u.
Clearly, the relation ≡U is a congruence of T(X).

For a nonempty subset U of T(X), any groupoid isomorphic to T(X)/ ≡U

will be called the termal groupoid of U . A groupoid is said to be termal
if it is the termal groupoid of a nonempty subset of T(X), for a set of
variables X. By a finitely determined termal groupoid we mean a groupoid
isomorphic to T(X)/ ≡U , for a finite set X and a finite subset U of T(X).

Proposition 1.1. Let U be a nonempty subset of T(X). Then ≡U is just
the largest congruence of T(X) such that O(U) is one of its blocks. The
termal groupoid T(X)/ ≡U is finite if and only if there exists a congruence
s of T(X) such that T(X)/s is finite and O(U) is a block of s.

Proof. It is easy. �

Proposition 1.2. Let U be a nonempty set of pairwise subterm-incompara-
ble terms and let u, v be two terms such that u /∈ O(U) − U . Then u ⊑U v
if and only if L(u) ∈ U implies L(v) ∈ O(U) for any lift L. Consequently,
if u, v /∈ O(U), then u ≡U v if and only if L(u) ∈ U is equivalent with
L(v) ∈ U for any lift L.

Proof. The direct implication is clear. In order to prove the converse, let
L(u) ∈ O(U); we need to show that L(v) ∈ O(U). This is evident in the case
that at least one of the basic terms of L belongs to O(U). In the opposite
case we have L = L2L1 for two lifts L1, L2 such that L1(u) ∈ U . Then
L1(v) ∈ O(U) by the assumption, and hence L(v) = L2L1(v) ∈ O(U). �
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Corrollary 1.3. If X is at most countable and if U is finite, then the
relations ⊑U and ≡U are both recursive.

Corrollary 1.4. Let U be a nonempty set of pairwise subterm-incomparable
terms. Denote by S the set of the terms that are subterm-incomparable with
any term from U . If S is nonempty, then it is a block of ≡U and s ⊑U t for
any s ∈ S and any term t.

In the next proposition we describe an effective construction of termal
groupoids.

Proposition 1.5. Let U be a nonempty set of pairwise subterm-incompara-
ble terms. Denote by P the set of proper subterms of terms from U . Define
an equivalence r on P by (u, v) ∈ r if and only if L(u) ∈ U is equivalent with
L(v) ∈ U for any lift L. If every term is subterm-comparable with a term
from U , put G = (P/r) ∪ {0}; in the opposite case put G = (P/r) ∪ {0, 1}.
Define multiplication on G as follows: 0a = a0 = 0 for all a; 1b = b1 = 1
for all b 6= 0; if u, v ∈ P and uv ∈ P , put (u/r)(v/r) = (uv)/r; if uv ∈ U ,
put (u/r)(v/r) = 0; in all other cases put (u/r)(v/r) = 1. Then G is the
termal groupoid of U .

Proof. It follows from 1.2 and 1.4. �

Corrollary 1.6. If U is finite, then the termal groupoid of U is finite.

A groupoid G is said to be 0-simple if it contains a zero element 0 and for
every nontrivial congruence s of G there exists an element a ∈ G−{0} such
that (a, 0) ∈ s. For example, every simple groupoid with zero is 0-simple.

Proposition 1.7. Let G be a 0-simple groupoid and let X be a generating
subset of G. Denote by f the homomorphism of T(X) onto G extending the
identity and put U = f−1(0). Then G is the termal groupoid of U .

Proof. The kernel of f is a congruence of T(X) and the up-set U is one of
its blocks. It follows by 1.1 that the kernel of f is contained in ≡U . But
then, there exists a congruence s of G such that for any terms u and v,
u ≡U v if and only if (f(u), f(v)) ∈ s. Since {0} is a block of s, it follows
from the 0-simplicity of G that s is the identity, so that ≡U is the kernel of
f . Consequently, G is isomorphic to T(X)/ ≡U . �

Theorem 1.8. A groupoid is a termal groupoid if and only if it is 0-simple.
A groupoid is a termal groupoid with respect to a finite set of variables X
(and an arbitrary subset U of T(X)) if and only if it is 0-simple and finitely
generated.

Proof. It follows from 1.1, 1.7 and the definitions. �

By a divisibility cycle in a groupoid G we mean a finite sequence a1, . . . , an
(n ≥ 1) of elements of G such that a1ρa2ρ . . . ρanρa1, where ρ is the divisi-
bility relation defined as follows: aρb if and only if either b = ac or b = ca
for an element c ∈ G.
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An element z of a groupoid G is said to be a zero among nonzeros if it
is a nonzero element and za = az = z for all nonzero elements a of G. Of
course, a groupoid can have at most one zero among nonzeros.

Theorem 1.9. The following are equivalent for a groupoid G:

(1) G is a finitely determined termal groupoid;
(2) G is a finite 0-simple groupoid in which all members of any divisi-

bility cycle are equal to either 0 or a zero among nonzeros;
(3) G is a finite 0-simple groupoid and whenever G is isomorphic to the

factor T(X)/ ≡U for a finite set X and a set U of pairwise subterm-
incomparable terms, then U is finite.

Proof. (1) implies (2): G is finite by 1.6 and 0-simple by 1.8. Let X be
finite and let U be a finite set of pairwise subterm-incomparable terms from
T(X); let f be a homomorphism of T(X) onto G such that ≡U is the kernel
of f . Suppose that there exists a divisibility cycle a1, . . . , an in G containing
neither 0 nor a zero among nonzeros. There is a term u with a1 = f(u).
The existence of the cycle means that there is a lift L of height n such that
f(L(u)) = f(u) = a1. Then f(Li(u)) = a1 for all i ≥ 0. Since a1 is neither
0 nor a zero among nonzeros, each of the terms Li(u) is a proper subterm
of a term from U . It follows that there are arbitrarily long terms in U , and
U is infinite.

(2) implies (3): Let X be finite, U be a set of pairwise subterm-incompar-
able terms and f be a homomorphism of T(X) onto G with kernel ≡U .
Suppose that U is infinite. Since X is finite, there exists a term u ∈ U
such that u can be expressed as u = L(x) for a variable x and a lift L
of height larger than the cardinality of G. We have L = En . . . E1 for
elementary lifts E1, . . . , En. For every i put Li = Ei . . . E1. Since n is larger
than the cardinality of G, there exist two numbers 0 ≤ i < j ≤ n with
f(Li(u)) = f(Lj(u)). But then f(Li(u)), . . . , f(Lj−1(u)) is a divisibility
cycle in G and f(Li(u)) is neither 0 nor a zero among nonzeros.

(3) implies (1): This follows from 1.7. �

Proposition 1.10. Let U be a set of pairwise subterm-incomparable terms
containing at least one term not belonging to X. The termal groupoid of U
is simple if and only if every term is either a subterm or an overterm of
a term from U and for every pair u, v of proper subterms of terms from U
there exists a lift L with L(u) ≡U v.

Proof. Let G be the termal groupoid constructed as in 1.5; let G be simple.
If some term is neither a subterm nor an overterm of a term from U , then the
element 1 belongs to G and {0, 1}∪ idG is a congruence, so that G = {0, 1};
this gives a contradiction. Let u be a proper subterm of a term from U .
Define a binary relation s on T(X) by (p, q) ∈ s if and only if either p ≡U q
or else p ≡U L1(u) and q ≡U L2(u) for two lifts L1 and L2. It is easy to verify
that s is a congruence containing ≡U . Moreover, s properly contains ≡U ,
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and thus s is the largest congruence of T(X). This means that for every pair
u, v of proper subterms of terms from U there exists a lift L with L(u) ≡U v.

Now let the termal groupoid G be not simple. There is a nontrivial
congruence s of T(X) properly containing ≡U . Since G is 0-simple, there is
a term u /∈ O(U) such that (u,w) ∈ s for all terms w ∈ U . If every term
is either a subterm or an overterm of a term from U , then u is a proper
subterm of a term from U ; there exists a term v with (u, v) /∈ s, and v is
also a proper subterm of a term from U . But then, it is easy to see that
L(u) 6≡U v for any lift L. �

Proposition 1.11. Every simple groupoid with 0 is termal. However, if
a simple groupoid with 0 contains at least three elements, then it is never
finitely determined.

Proof. It follows from 1.7, 1.9 and 1.10. �

Example 1.12. Let X = {x}. For every i ≥ 2 put ti = x(x . . . (xx)), where
x occurs i times. Put U = {tix : i ≥ 2}. Then U is an infinite set of pairwise
subterm-incomparable terms. The termal groupoid T(X)/ ≡U is finite: it
has four elements 0, x, a, b and multiplication table

0 x a b

0 0 0 0 0
x 0 a a b
a 0 0 b b
b 0 b b b

2. Fully termal groupoids

From now on let X be an infinitely countable set of variables.
For two terms u, v we write u ≤ v if there exists a substitution f (i.e., an

endomorphism of T(X)) such that f(u) is a subterm of v. The relation ≤ is
a quasiordering on T(X) satisfying the minimal condition. Two terms u, v
are similar if and only if both u ≤ v and v ≤ u. We write u < v if u ≤ v
but v � u.

By a full set of terms we mean a nonempty subset U of T(X) such that
u ∈ U and u ≤ t imply t ∈ U . For a nonempty subset J of T(X) we denote
by F(J) the set of the terms t such that u ≤ t for some u ∈ J ; this is the full
set generated by J . A nonempty subset J of T(X) is said to be irreducible
if it consists of pairwise incomparable terms (incomparable with respect to
the quasiordering ≤). Every full set is generated by an irreducible subset J ,
and J is determined uniquely up to the similarity of terms by U .

By a fully termal groupoid we mean a termal groupoid determined by a
full set of terms over the infinite set of variables X, i.e., a groupoid isomor-
phic to T(X)/ ≡U for and a full subset U of T(X).
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It is easy to see that for a full set of terms U , the congruence ≡U of T(X)
is invariant, i.e., u ≡U v implies f(u) ≡U f(v) for any automorphism f of
T(X). (However, the congruence is not necessarily fully invariant.)

A term t is said to be linear if no variable has more than one occurrence
in t.

Lemma 2.1. Let J be an irreducible subset of T(X); put U = F(J). The
following are equivalent:

(1) x ≡U y for all variables x, y;
(2) x ≡U y for at least one pair x, y of distinct variables x, y;
(3) J contains only linear terms.

Proof. The equivalence of the first two conditions is obvious.
(1) implies (3): Suppose that J contains a non-linear term u. There is a

variable x with at least two occurrences in u. So, we have u = L(x) for a lift
L such that x is contained in at least one of the basic terms of L. Since X
is infinite, there exists a variable y with no occurrence in u. Put v = L(y).
By (1) we have x ≡U y and hence u ≡U v; since u ∈ U , we get v ∈ U . Since
v < u, we get a contradiction with u ∈ J .

(3) implies (1): Let L(x) ∈ U for a lift L. Then L(x) ≥ u for a term u ∈ J .
Since u is linear, it is easy to see that also L(y) ≥ u, so that L(y) ∈ U . This
proves x ⊑U y for all variables x, y. Consequently, x ≡U y for all variables
x, y. �

Lemma 2.2. Let S be a set of linear terms closed under taking subterms.
Define a binary relation s on T(X) by (u, v) ∈ s if and only if the following
two conditions are satisfied for all w ∈ S:

(1) w ≤ u if and only if w ≤ v;
(2) f(w) = u for a substitution f if and only if g(w) = v for a substitu-

tion g.

Then s is a congruence of T(X).

Proof. It is evident that s is an equivalence relation. Let (u, v) ∈ s and let
t be a term. By symmetry, it is sufficient to prove (ut, vt) ∈ s.

Let f(w) = ut for a substitution f and a term w ∈ S. If w is a variable,
then it is evident that g(w) = vt for a substitution g. So, let w = w1w2.
We have f(w1) = u and f(w2) = t. Since (u, v) ∈ s and w1 ∈ S, we have
g(w1) = v for a substitution g; since no variable occurring in w2 occurs
in w1, it is possible to choose g in such a way that it coincides with f on all
the variables occurring in w2. But then g(w2) = t and g(w) = vt.

Let w ≤ ut for a term w ∈ S. If w ≤ u, then w ≤ v by (u, v) ∈ s, and
hence w ≤ vt. If w ≤ t, then w ≤ vt is obvious. It remains to consider the
case when f(w) = ut for a substitution f . But in this case we already know
that g(w) = vt for a substitution g, so that w ≤ vt again. �

Lemma 2.3. Let J be an irreducible subset of T(X) such that the groupoid
T(X)/ ≡U with U = F(J) is finite. Then J contains only linear terms.
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Proof. It follows from 2.1. �

Theorem 2.4. Let J be a finite irreducible subset of T(X). The fully termal
groupoid T(X)/ ≡U is finite if and only if J contains only linear terms.

Proof. The direct implication follows from 2.3. Let J be a finite set of
pairwise incomparable linear terms. Denote by S the set of subterms of
terms from J . Clearly, S is a finite set of linear terms and S is closed
under taking subterms. Define the congruence s of T(X) in the same way
as in 2.2. Clearly, T(X)/s is a finite groupoid (it has at most n2 elements,
where n is the cardinality of S). It is evident that (u, v) ∈ s and u ∈ U
imply v ∈ U . Define a binary relation r on T(X) by (u, v) ∈ r if and only
if either (u, v) ∈ s or {u, v} ⊆ U . Then r is a congruence of T(X) and U is
a block of r. Since s ⊆ r, the factor T(X)/r is finite. From this it follows
by 1.1 that T(X)/ ≡U is finite. �

3. The equational theory of a fully termal groupoid

Again, let X be a countably infinite set of variables.
For a full subset U of T(X), we denote by E(U) the equational theory of

the fully termal groupoid T(X)/ ≡U , i.e., the set of all equations that are
satisfied in the groupoid.

Lemma 3.1. Let r be a congruence of T(X). An equation (u, v) is satisfied
in T(X)/r if and only if (f(u), f(v)) ∈ r for any substitution f .

Proof. It is easy. �

Proposition 3.2. Let U be a full set of terms. The following are equivalent
for an equation (u, v):

(1) (u, v) ∈ E(U);
(2) f(u) ≡U f(v) for any substitution f ;
(3) for any lift L and any substitution f , L(f(u)) ∈ U if and only if

L(f(v)) ∈ U ;
(4) every immediate consequence of (u, v) belongs to (U × U) ∪ (−U ×

−U);
(5) every consequence of (u, v) belongs to (U × U) ∪ (−U ×−U).

Proof. The equivalence of (1) with (2) follows from 3.1. Condition (3) is
just a reformulation of (2). Immediate consequences of an equation (u, v)
are just the equations (L(f(u)), L(f(v))) for a lift L and a substitution f ,
so (4) is a reformulation of (3). The equivalence with (5) is obvious. �

Proposition 3.3. Let U be a full set of terms. Then U is a block of E(U),
and E(U) is just the largest equational theory E such that U is a block of E.

Proof. It follows from 3.2. �

Proposition 3.4. Let U be a full set of terms and let (u, v) ∈ E(U) be an
equation such that u, v /∈ U . Then the terms u, v contain the same variables.
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Proof. Suppose that there exists a variable x contained in u but not con-
tained in v. Take an arbitrary term t ∈ U and denote by f the sub-
stitution such that f(x) = t and f(y) = y for all y ∈ X − {x}. Then
(f(u), f(v)) ∈ E(U). But f(u) ∈ U and f(v) = v /∈ U , a contradiction. �

Proposition 3.5. Let U be a full set of terms containing a linear term not
belonging to X. Let (x, u) ∈ E(U) for a variable x and a term u. Then
u = x.

Proof. It is sufficient to derive a contradiction in the case that u is a com-
posed term, u = u1u2. Take a linear term t ∈ U of minimal length; we can
suppose that t does not contain x. We can express t as t = L(y1y2) for a
lift L and a pair of distinct variables y1, y2. Since (x, u) ∈ E(U), we have
(L(x), L(u)) ∈ E(U). But L(x) /∈ U (since L(x) is a linear term shorter
than t), while L(u) ∈ U (since L(u) ≥ t), a contradiction. �

For every n ≥ 0 define a set Pn of similar linear terms of length 2n as
follows: P0 = X; Pn+1 = {uv : u, v ∈ Pn and uv is linear}.

Proposition 3.6. Let U be the full set generated by a single linear term t.
Then (xy, yx) ∈ E(U) if and only if t ∈ Pn for some n.

Proof. Let (xy, yx) ∈ E(U). If uv is an arbitrary composed subterm of t,
then t = L(uv) for a lift L; we have (t, L(vu)) ∈ E(U) and thus L(vu) ≥ t,
from which we easily obtain u ∼ v. Since u ∼ v for any composed subterm
uv of t, it follows that t ∈ Pn for some n. The converse is obvious. �

Proposition 3.7. Let J be a nonempty set of linear terms and U be the full
set generated by J . Let G be a 0-simple groupoid and let a be a generator
of G. Denote by h the homomorphism of T(X) onto G such that h(x) = a
for all variables x and suppose that h−1({0}) = U . Then ≡U is the kernel
of h and G is the termal groupoid of U .

Proof. It is easy. �

Example 3.8. Let

X = {x, y, z, u, x1, x2, . . . }

and

J = {u(((((x(yz))x1)x2) . . . )xk) : k ≥ 0}.

Applying 3.7, one can easily verify that the groupoid T(X)/ ≡U with
U = F(J) has four elements (denote them 0, a, b, c) and the following mul-
tiplication table:

0 a b c

0 0 0 0 0
a 0 b c 0
b 0 b c 0
c 0 c c 0
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Notice that, according to 1.9, this termal groupoid is not finitely determined.

We are going to describe the equational theory E(U) in the special case
when U is the full set generated by a single linear term. To this purpose we
need some notation.

For two terms u and v, write u → v if there is a substitution f with
f(u) = v.

For a subterm u of t, occurrences of u in t can be identified with the
lifts L such that L(u) = t. Let L be a lift, expressed as the composition of
elementary lifts, L = Qn

un
. . . Q1

u1
(Qi ∈ {α, β} for all i). A liftK is said to be

a regular part of L if there is a k ∈ {0, . . . , n} such thatK = Qn
un

. . . Qn−k+1
un−k+1

,

Qn−k+1 = Q1, . . . , Qn = Qk and un−k+1 → u1, . . . , un → uk.
For a linear term t, define a binary relation Rt on T(X) by (u, v) ∈ Rt if

and only if whenever L(p) = t for a lift L and a subterm p of t with p → u,
then K(q) = t for a regular part K of L and a subterm q of t with q → v.

Theorem 3.9. Let t be a linear term and U be the full set {w : w ≥ t}
generated by t. An equation (u, v) belongs to E(U) if and only if either
u, v ≥ t or else u, v � t and (u, v) ∈ Rt ∩R−1

t .

Proof. Let (u, v) ∈ E(U) and u, v � t. We are going to prove that (u, v) ∈
Rt. Let L(p) = t for a lift L = Qn

un
. . . Q1

u1
and a subterm p of t with p → u.

Evidently, t ≤ L(u) and hence t ≤ L(v). There is a substitution f such
that f(t) is a subterm of L(v). Since none of the terms v, u1, . . . , un belongs
to U , we get f(t) = Qk

uk
. . . Q1

u1
(v) for some k ∈ {1, . . . , n}.

Let us prove by induction on i = 0, . . . , k that

Qn−i+1 = Qk−i+1, . . . , Qn = Qk

and

f(Qn−i
un−i

. . . Q1
u1
(p)) = Qk−i

uk−i
. . . Q1

u1
(v).

This is clear for i = 0. Suppose that the assertion is true for a number
i < k, and let us prove it for the number i + 1. If Qn−i 6= Qk−i, then
f(Qn−i−1

un−i−1
(p)) = uk−i; this is possible only if k = n, but then we immediately

obtain a contradiction. Hence Qn−i = Qk−i. But then,

f(Qn−i−1
un−i−1

. . . Q1
u1
(p)) = Qk−i−1

uk−i−1
. . . Q1

u1
(v)

and we are through.
For i = k we obtain

Qn−k+1 = Q1, . . . , Qn = Qk and f(Qn−k
un−k

. . . Q1
u1
(p)) = v.

Put q = Qn−k
un−k

. . . Q1
u1
(p) and K = Qn

un
. . . Qn−k+1

un−k+1
, so that f(q) = v and

K(q) = t. Clearly, f(un−k+1) = u1, . . . , f(un) = uk. Hence K is a regular
part of L.

Conversely, let (u, v) ∈ Rt ∩ R−1
t and u, v � t. In order to prove (u, v) ∈

E(U), it is sufficient to show that if f(t) = L(u) for a substitution f and
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a lift L, then L(v) ≥ t. Let L = Qn
un

. . . Q1
u1
. We have n ≥ 1. Suppose

L(v) � t.
Let us prove by induction on i = 0, . . . , n−1 that there is a subterm pi of t

with t = Qn
vn

. . . Qn−i
vn−i

(pi) for some terms vn−i, . . . , vn. This is clear for i = 0.
Let the assertion be true for a number i < n− 1. In order to prove that it is
true for the number i+1, it is sufficient to show that pi is not a variable. So,
suppose that pi is a variable. We have f(pi) = Qn−i−1

un−i−1
. . . Q1

u1
(u). Define a

substitution g by g(pi) = Qn−i−1
un−i−1

. . . Q1
u1
(v) and g(y) = f(y) for all variables

y 6= pi. Then evidently g(t) = L(v), so that L(v) ≥ t, a contradiction.
In particular, there is a subterm p = pn−1 of t with t = Qn

vn
. . . Q1

v1
(p)

for some terms v1, . . . , vn. We have f(p) = u and f(v1) = u1, . . . , f(vn) =
un. Since (u, v) ∈ Rt, there exist a regular part K = Qn

vn
. . . Qn−k+1

vn−k+1
of

Qn
vn

. . . Q1
u1
, a subterm q of t with K(q) = t and a substitution g with

g(q) = v. The term

L(v) = Qn
un

. . . Q1
u1
(g(Qn−k

vn−k
. . . Q1

v1
(p)))

contains the subterm

Qk
uk

. . . Q1
u1
(g(Qn−k

vn−k
. . . Q1

v1
(p))) = Qn

uk
. . . Qn−k+1

u1
(g(Qn−k

vn−k
. . . Q1

v1
(p))).

Since vn−k+1 → v1 → u1, . . . , vn → vk → uk, the subterm is of the form h(t)
for a substitution h. We get L(v) ≥ t. �
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