
CONSTRUCTIONS OVER TOURNAMENTS

J. JEŽEK

Abstract. We investigate tournaments that are projective in the va-
riety that they generate, and free algebras over partial tournaments in
that variety. We prove that the variety determined by three-variable
equations of tournaments is not locally finite. We also construct infin-
itely many finite, pairwise incomparable simple tournaments.

1. Introduction

Let us denote by T the class of tournaments, i.e., directed graphs (T,→)
such that for every pair a, b of distinct elements of T , precisely one of the two
cases, either a → b or b → a, takes place; and a → a for all a ∈ T . There is a
natural one-to-one correspondence between tournaments and commutative
groupoids satisfying ab ∈ {a, b} for all a and b: set ab = a if and only if a → b.
This makes it possible to identify tournaments with their corresponding
groupoids and then to investigate tournaments by using algebraic methods
(see [9]). In particular, we can investigate the variety generated by T. We
denote this variety by T . In [4] we prove that the variety T is not finitely
based. In [5] we prove some results in support of the following conjecture,
which can be stated in two equivalent forms:

Conjecture.

(1) Every subdirectly irreducible algebra in T is a tournament.
(2) T is the quasivariety generated by tournaments.

In the present paper we investigate a construction of the T -free algebra
over a partial tournament, in hope that this also may be helpful in solv-
ing the problem. We also investigate tournaments that are projective in T ,
and prove that the variety determined by three-variable equations of tour-
naments is not locally finite. In the last section we give a positive solution
to a problem of E. Fried [3]. For basics of universal algebra, the reader is
referred to [8].

For any n ≥ 1, let Tn denote the variety generated by all n-element
tournaments, and let T n denote the variety determined by the at most n-
variable equations of tournaments. So, Tn ⊆ Tn+1 ⊆ T ⊆ T n+1 ⊆ T n
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for all n. For a variety V and a positive integer n, we denote by Fn(V )
the free algebra in V on n generators. According to Theorem 3 of [5],
Fn(T ) = Fn(Tn) = Fn(T

n) for all n, and the following four equations are a
base for the equational theory of T 3:

(e1) xx = x,
(e2) xy = yx,
(e3) xy · x = xy,
(e4) (xy · xz)(xy · yz) = xyz

According to Lemma 5 of [5], for any three elements a, b, c of an algebra
A ∈ T 3 we have:

(p1) If ab → c, then a, b, c generate a semilattice.
(p2) If ab → c → a, then bc = ab.
(p3) If a → c → ab, then c → b.
(p4) If a → c and b → c, then ab → c.
(p5) If a → c → b and a, b, c, ab are four distinct elements, then the sub-

groupoid generated by a, b, c either contains just these four elements
and c → ab, or else it contains precisely five elements a, b, c, ab, ab · c
and a → ab · c → b.

Our proof in [4] relied on an infinite sequence Mn (n ≥ 3) of algebras
with the following properties: Mn is subdirectly irreducible, |Mn| = n + 2
and Mn ∈ T n − T n+1. These algebras are defined as follows. Mn =
{a, c, c, d1, . . . , dn−2, e};

ab = e,

e → a → c,

e → b → c,

e → c,

a → d1 → d2 → · · · → dn−2 → b,

di → c for i < n− 2,

c → dn−2,

di → e for all i,

di → a for i > 1,

di → b for all i,

dj → di for j > i+ 1.

We have also introduced in [5] a five-element, subdirectly irreducible alge-
bra J3 ∈ T 3 − T 4. This algebra is defined on {a, b, c, d, e} by a → d → b →
c → a, c → e, d → c, d → e and ab = e. The following is an even stronger
formulation of the Conjecture: Is it true that every subdirectly irreducible
algebra in T − T contains a subalgebra isomorphic to either J3 or Mn for
some n ≥ 3?
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2. Projective tournaments

Let V be a variety. An algebra A ∈ V is said to be projective in V
if for every B,C ∈ V , every homomorphism f of B onto C and every
homomorphism h of A into C there exists a homomorphism g of A into B
with h = fg.

The following are equivalent for an algebra A ∈ V :

(1) A is projective in V ;
(2) A is a retract of a free algebra in V , i.e., there are an algebra F free

in V , a homomorphism f of F onto A and a homomorphism g of A
into F such that fg = idA;

(3) for any B ∈ V and any homomorphism f of B onto A there is a
homomorphism g of A into B with fg = idA.

The (easy) proof given in Theorem 5.1 of [1] for the variety of lattices can
be extended to the case of an arbitrary variety without any difficulty.

2.1. Theorem. A tournament A is projective in T if and only if for every

B ∈ SP(T) and every homomorphism f of B onto A there is a homomor-

phism g of A into B with fg = idA.

Proof. Let C ∈ T = HSP(T), so that there is a homomorphism h of an
algebra B ∈ SP(T) onto C. Let f be a homomorphism of C onto A. Then
fh is a homomorphism of B onto A and hence there exists a homomorphism
g0 of A into B with fhg0 = idA. Put g = hg0. Then g is a homomorphism
of A into C and fg = fhg0 = idA. �

We denote by C3 and C4 the tournaments pictured in Fig. 1. Observe
that C4 is, up to isomorphism, the only four-element tournament containing
a four-cycle.

a b

c

b

a

c

d

C3 C4

Fig. 1

2.2. Theorem. C3 is projective in T 3.

Proof. Let f be a homomorphism of an algebra B ∈ T 3 onto C3. Clearly,
there is an element c0 ∈ B with f(c0) = c, there is an element b0 ∈ B with
f(b0) = b and b0 → c0, and there is an element a0 ∈ B with f(a0) = a and
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a0 → b0. If c0 → a0, then we can define g by g(a) = a0, g(b) = b0, g(c) = c0
and we are through. Otherwise, the element c1 = a0c0 does not belong to
{a0, b0, c0}. If b0 → c1, then we can put g(a) = a0, g(b) = b0, g(c) = c1.
According to (p5) applied to a0 → b0 → c0, the only remaining possibility
is that the element b1 = b0c1 does not belong to {a0, b0, c0, c1} and a0 → b1.
But then we can put g(a) = a0, g(b) = b1, g(c) = c1. �

2.3. Lemma. Let A,B ∈ T 3, let f be a homomorphism of B onto A and let

a, c, d ∈ A be three distinct elements such that a → c → d and a → d. Then

for every c0, d0 ∈ B with f(c0) = c, f(d0) = d, c0 → d0 there is an element

a0 ∈ B with f(a0) = a, a0 → c0, a0 → d0.

Proof. Of course, there exists an element a1 ∈ B with f(a1) = a and a1 →
c0. If a1 → d0, then we can put a0 = a1. Otherwise, a1 is incomparable
with d0. Put a2 = a1d0 and a0 = a2c0. Clearly, a0 → c0. Since a1 → d0 and
c0 → d0, we have a0 → d0 by (p4). �

2.4. Lemma. Let A,B ∈ T 3, let f be a homomorphism of B onto A and

let a, b, c, d ∈ A be four distinct elements such that a → c → d → b → c,
a → d. Then there are elements a0, b0, c0, d0 ∈ B with f(a0) = a, f(b0) = b,
f(c0) = c, f(d0) = d, a0 → c0 → d0 → b0 → c0, a0 → d0.

Proof. First use 2.2 to obtain b0, c0, d0 and then use 2.3 to obtain a0. �

2.5. Theorem. C4 is projective in T 3.

Proof. (See Fig. 2.) Let f be a homomorphism of an algebra B ∈ T 3 onto
C4. By 2.4 there are elements a0, b0, c0, d0 ∈ B with f(a0) = a, f(b0) = b,
f(c0) = c, f(d0) = d, a0 → b0 → d0 → a0, c0 → a0, c0 → d0. If b0 → c0, we
are through. Consider the opposite case. Put b1 = b0c0, so that b1 is a new
element (different from a0, b0, c0, d0). By (p4), b1 → d0. If a0 → b1, we are
through. Otherwise, a1 = a0b1 is a new element. By (p5) applied to c0 →
a0 → b0, c0 → a1 → b0. If d0 → a1, we are through. Otherwise, d1 = a1d0
is a new element. By (p5) applied to b1 → d0 → a0, b1 → d1 → a0. Since
c0 → a1 and c0 → d0, we have c0 → d1. In total, a1 → b1 → c0 → d1 → a1,
b1 → d1 and c0 → a1. �

2.6. Theorem. Let A be a tournament and A′ be the tournament obtained

from A by adding the unit element 1 (i.e., x → 1 for all x ∈ A). If A is

projective in T (or in T 3), then A′ is projective in T (or in T 3, respectively).

Proof. Let B ∈ T 3 and let f be a homomorphism of B onto A. Take an
element e ∈ B with f(e) = 1. For every a ∈ A choose an element a′ ∈ B
such that f(a′) = a and a → e (the existence of a′ is clear). Denote by S the
subalgebra of B generated by {a′ : a ∈ A}. It follows from (p4) that x → e
for all x ∈ S. The restriction of f to S is a homomorphism of S onto A, so
there is a homomorphism g0 of A into S with fg0 = idA. Define a mapping
g of A′ into B by g ⊇ g0 and g(1) = e. Then g is a homomorphism and
fg = idA′ . �
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Fig. 2

2.7. Corollary. Every finite chain is projective in T 3.

2.8. Theorem. Let A be a tournament such that A is a disjoint union of two

nonempty subsets B,C with the following properties: b → c for all b ∈ B,

c ∈ C; the tournament C has no zero element. Then A is not projective

in T .

Proof. Define a subset S of A × C by (a, c) ∈ S if and only if either a ∈ B
or a = c ∈ C. Clearly, S is a subalgebra of A × C, so S ∈ SP(T). The
projection of A×C onto A, restricted to S, is a homomorphism of S onto A.
So, if A is projective, then there is a homomorphism g of A into S such that
whenever g(a) = (a′, c) then a′ = a. Take an element b ∈ B. We have
g(b) = (b, c) for some c ∈ C. Since c is not a zero element of C, there exists
an element d ∈ C such that d 6= c and d → c. Then (b, c) = g(b) = g(bd) =
g(b)g(d) = (b, c)(d, d) = (b, d) 6= (b, c), a contradiction. �

2.9. Corollary. Let A be a tournament with zero, such that A is not a chain.

Then A is not projective in T .

3. Algebras, projective in T 3

3.1. Theorem. M3 is projective in T 3.

Proof. Let B ∈ T 3 and let f be a homomorphism of B onto M3. By 2.4,
there are elements a0, b0, c0, d10 ∈ B with f(a0) = a, f(b0) = b, f(c0) = c,
f(d10) = d1, a0 → d10 → b0 → c0 → d10 and a0 → c0. Put e0 = a0b0,
so that f(e0) = e and e0 → c0. If d10 → e0, then these five elements
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are a subalgebra of B isomorphic to M3. Consider the opposite case. Put
d11 = d10e0. By (p5) applied to a0 → d10 → b0 we have a0 → d11 → b0. So,
if c0 → d11, we are through. In the opposite case put c1 = c0d11. By (p5)
applied to e0 → c0 → d10 we have e0 → c1. Since a0 → c0 and a0 → d11,
we have a0 → c1. So, if b0 → c1, we are through. In the opposite case put
b1 = b0c1. By (p5) applied to d11 → b0 → c0 we have d11 → b1 → c1. Since
e0 → b0 and e0 → c1, we have e0 → b1. Now a0b0 → b1 → b0, so by (p2) we
get ab1 = a0b0 = e0 and we are through. �

3.2. Corollary. The class of the algebras in T 3 that do not contain a sub-

algebra isomorphic to M3 is a variety.

3.3. Theorem. M4 is not projective in T 3.

Proof. Define an algebra B ∈ T 3 with the underlying set {a, b, c, d11, d12, d13,
d14, d2, e} in such a way that the identity together with d1i 7→ d1 is a homo-
morphism of B onto M4 and d11b = d14, d11e = d13, d14d2 = d12, d14e = d13,
d12c = d11, d13d2 = d12. This homomorphism contradicts the assumption
that M4 is projective in T 3.

(The nine-element subdirectly irreducible algebra B is pictured in Fig. 3,
with d = d2, f = d11, g = d12, h = d13, i = d14. It contains a subalgebra
isomorphic to M3, namely, {d2, d13, e, a, d12}; it also contains a subalgebra
isomorphic to J3, namely, {e, d11, d12, a, d13}.) �

a b c d e f g h i

a a e a d e a a a a
b e b b d e i g h i
c a b c c e f f h i
d d d c d d f g g g
e e e e d e h g h h
f a i f f h f f h i
g a g f g g f g g g
h a h h g h h g h h
i a i i g h i g h i

Fig. 3

4. An infinite, 4-generated algebra in T 3

We define an infinite groupoid A with underlying set {a0, a1, a2, . . . }
as follows: the multiplication of A is both idempotent and commutative;
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{a0, a1, a2} is a subtournament with a0 → a2 → a1 → a0;

for i < 3 ≤ j, aiaj =

{

aj+1 if j ≡ i+ 2 mod 3,

aj otherwise,

for 3 ≤ i < j, aiaj =

{

ai+1 if j ≡ i+ 1 mod 3,

ai otherwise.

4.1. Lemma. The mapping f defined by f(ai) = ai for i < 3 and f(ai) =
ai+3 for i ≥ 3 is an isomorphism of A onto the subgroupoid A−{a3, a4, a5}.

Proof. It is easy. �

4.2. Theorem. The infinite groupoid A belongs to T 3 and is generated by

four elements a0, a1, a2, a3. Consequently, the variety T 3 is not locally finite.

Proof. We have a4 = a1a3, a5 = a2a4, a6 = a0a5, a7 = a1a6, etc. So, A is
generated by a0, a1, a2, a3.

Suppose that an equation in three variables x, y, z is satisfied in all tour-
naments but not in A. There is an interpretation sending the three variables
to three elements ai, aj , ak, under which the two sides evaluate to different
elements. Since {a0, a1, a2} is a tournament, at least one of the elements
ai, aj , ak does not belong to {a0, a1, a2}. If none of the three elements be-
longs to {a3, a4, a5}, then it follows from 4.1 that the equation is also violated
by the interpretation, sending the three variables to ai′ , aj′ , ak′ , where n′ is
defined by n′ = n for n < 3 and n′ = n − 3 for n ≥ 3. So, we can suppose
that at least one of the three elements belongs to {a3, a4, a5}. From the same
reason we can suppose that either the three elements belong to {a0, . . . , a5}
or at least one of them belongs to {a6, a7, a8}. And again, that either they
all belong to {a0, . . . , a8} or at least one of them belongs to {a9, a10, a11}.
In total, we can suppose {ai, aj , ak} ⊆ {a0, . . . , a11}. However, one can
easily check that the equations (e1),. . . ,(e4) are satisfied under all the 123

interpretations sending x, y, z to {a0, . . . , a11}. �

For every n ≥ 3 we define two groupoids An and Bn with the underlying
set {a0, . . . , an−1} as follows. Let c be the only element of {0, 1, 2} with
c ≡ n mod 3. Now all products in both An and Bn are the same as in A,
except that acan−1 = an−1ac = an−3 in An, and acan−1 = an−1ac = ac
in Bn.

Clearly, A3 = B3 ≃ C3, A4 = B4 ≃ C4, A5 = B5 ≃ M3, and An 6= Bn

for n ≥ 6.

4.3. Theorem. The groupoids An and Bn all belong to T 3. The groupoids

Bn are all subdirectly irreducible, and A is isomorphic to a subdirect product

of the groupoids Bn (n ≥ 3) and C3 +0 (the groupoid C3 with zero element

added). Although A is subdirectly reducible, idA is not the intersection of a

finite number of nontrivial congruences of A.
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Proof. For every n ≥ 0 define an equivalence µn on A as follows: (ai, aj) ∈
µn if and only if i ≡ j mod 3 and either i = j or i, j ≥ n. While µ1 and µ2

are not congruences, it is easy to check that µn is a congruence of A for any
n ≥ 3. Since

⋂

n≥3 µn = idA, it follows that A is subdirectly reducible: it is

isomorphic to a subdirect product of the groupoids A/µn, n ≥ 3. Now it is
easy to see that A/µn ≃ An+3 for n ≥ 3. Consequently, An ∈ T 3 for n ≥ 6.
(But we have seen that this is also true for n = 3, 4, 5.) It is easy to see that
every nontrivial congruence of A contains µn for some n, and so idA is not
the intersection of any finite number of nontrivial congruences of A.

For n ≥ 6, the identity on An is the intersection of two nontrivial con-
gruences α and β of An, where

(ai, aj) ∈ α iff i ≡ j mod 3 and either i, j ∈ {0, 1, 2, an−3, an−2, an−1} or
i = j,

(ai, aj) ∈ β iff either i = j or i, j ≥ 3.
Now An/α ≃ Bn−3 and An/β ≃ C3 + 0. Consequently, Bn−3 ∈ T 3

for all n ≥ 6 and A is isomorphic to a subdirect product of the groupoids
B3,B4, . . . and C3 + 0.

For n ≥ 3, the groupoid Bn is subdirectly irreducible: for n ≥ 4, its
monolith is the congruence identifying an−1 with ac, where c ∈ {0, 1, 2} and
c ≡ n− 1 mod 3. �

4.4. Remark. For n ≥ 5, {a0, a1, a2, an−2, an−1} is a subgroupoid of Bn

isomorphic to M3.

5. Free constructions over partial tournaments

By a partial tournament we mean a set A together with a reflexive, anti-
symmetric relation on A; the relation will be usually denoted by →. By a
homomorphism of a partial tournament A into a partial tournament B we
mean a mapping f such that a → b implies f(a) → f(b).

By a T -free algebra over a partial tournament A we mean an algebra G ∈
T together with a homomorphism g of A into G, such that G is generated
by g(A) and for any homomorphism h of A into any algebra B ∈ T there
exists a homomorphism h′ of G into B with h = h′g.

It is easy to see that the T -free algebra G over A exists and is uniquely
determined up to isomorphism; it will be denoted by F(A). For A =
{a1, . . . , an}, it can be constructed in the following way. Let F be the free
algebra in T generated by a set of n variables x1, . . . , xn, and denote by
r the congruence of F generated by the pairs (xixj , xi) such that ai → aj
in A. Clearly, F(A) = F/r. In more detail, the factor F/r together with
the mapping ai 7→ xi/r is the T -free algebra over A.

However, this construction is very inefficient. It assumes that we are able
to construct the free algebra F over x1, . . . , xn. For n = 3 we have |F | = 15,
but for n = 4 we only know that F has more than (possibly much mure
than) 500000 elements.
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On the other hand, there is a candidate for G which can be constructed
much more easily, at least in the case when the partial tournament is almost
complete: Denote by A1, . . . , Ak all completions of A to tournaments (so that

k = 2(
n

2
)−m, where m is the number of the pairs ai → aj with i 6= j), for

a ∈ A put ā = (a, a, . . . , a) ∈ A1× · · ·×Ak, and denote by S the subalgebra
of A1 × · · · ×Ak generated by ā1, . . . , ān. The algebra S, together with the
mapping ai 7→ āi, is a good candidate for a T -free algebra over A. This
algebra will be denoted by F0(A).

One can easily see that F0(A) is free over A in the quasivariety generated
by tournaments. So, if the Conjecture is true, then F(A) = F0(A) for every
partial tournament A. However, we do not know whether the Conjecture is
true. So, we need to find at least a way how to prove F(A) = F0(A) in some
particular cases.

Let A = {a1, . . . , an} be a finite partial tournament. Take a set of
n variables x1, . . . , xn and denote by T the groupoid of terms over the
set {x1, . . . , xn}. We define a mapping ν of a subset of T into A as fol-
lows: ν(xi) = ai; ν(t1t2) is defined if and only if both ν(t1) and ν(t2) are
defined and either ν(t1) → ν(t2) or ν(t2) → ν(t1); in the first case put
ν(t1t2) = ν(t1), and in the second case ν(t1t2) = ν(t2). If defined, the
element ν(t) is called the value of t in A (under the interpretation xi 7→ ai).

By a correct term configuration for A we mean a mapping γ of A into T
satisfying two conditions:

(1) for a ∈ A, the value of γ(a) in A under the interpretation xi 7→ ai is
equal to a;

(2) for a → b in A, the equation γ(a)γ(b) ≈ γ(a) is true in all tourna-
ments.

5.1. Theorem. Let A be a finite partial tournament for which there exists

a correct term configuration. Then F(A) = F0(A).

Proof. Let us keep the above notation, so that F(A) = F/r and F0(A) = S.
Denote by h the extension of the identity to a homomorphism of T onto
F , and by f the homomorphism of F onto S extending xi 7→ āi. Easily,
r ⊆ ker(f) and all we need to prove is that ker(f) = r.

It is easy to prove by induction on the length of t that if t ∈ T is a term
having a value ai in A, then (xi, h(t)) ∈ r. According to (1), it follows that
(hγ(ai), xi) ∈ r for all ai ∈ A.

For every s ∈ S take a term τs(x1, . . . , xn) such that τs(ā1, . . . , ān) = s
in S. This can be done in such a way that τāi = xi for all i. If s1, s2
are elements of S, then for any tournament C and any n-tuple c1, . . . , cn
of elements of C such that ai → aj in A implies ci → cj in C we have
τs1(c1, . . . , cn)τs2(c1, . . . , cn) = τs1s2(c1, . . . , cn). (I.e., for every s1, s2 ∈ S
we obtain a certain quasiequation true in all tournaments.) Indeed, the as-
sumption implies that there is an index p ∈ {1, . . . , k} such that the mapping
ϕ : ai 7→ ci is a homomorphism of Ap into C; where πp is the projection of
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A1 × · · · ×Ak onto Ap, we have

τs(c1, . . . , cn) = τs(ϕπp(ā1), . . . , ϕπp(ān)) = ϕπpts(ā1, . . . , ān) = ϕπp(s)

for all s ∈ S, so that

τs1(c1, . . . , cn)τs2(c1, . . . , cn) = ϕπp(s1)ϕπp(s2) = ϕπp(s1s2)

= τs1s2(c1, . . . , cn).

Define an endomorphism ε of T by ε(xi) = γ(ai). If ai → aj in A, then
by (2) ε(xi) → ε(xj) is satisfied in all tournaments (under any interpreta-
tion). Consequently, for s1, s2 ∈ S, ε(τs1)ε(τs2) ≈ ε(τs1s2) is satisfied in all
tournaments. This means hε(τs1) ·hε(τs2) = hε(τs1s2) in F . So, the set H =
{hε(τs) : s ∈ S} is a subgroupoid of F . Since (hε(τāi), xi) = (hγ(ai), xi) ∈ r,
every element of F is congruent with an element of H modulo r. Conse-
quently, F/r ≃ H/r. The rest is now clear. �

5.2. Example. Consider the partial tournament A = {x, y, z, u} with x →
z → y → u → x and z → u. The mapping

γ(x) = x(xuy · xuz),
γ(y) = x(xuy · xuz)(xu)(xuy),
γ(z) = xuy · xuz,
γ(u) = x(xuy · xuz)(xu)

is a correct term configuration for A. Condition (1) can be checked imme-
diately. Clearly, γ(y) → γ(u) → γ(x) → γ(z) is true in all tournaments.
γ(z) → γ(u) is easy to prove from the three-variable equations. It remains to
prove xuy ·xuz → x(xuy ·xuz)(xu)(xuy), which is easy to do by considering
several (not many) cases.

Denote by A1 and A2 the two completions of A, one by x → y and
the other by y → x. Easily, the subgroupoid of A1 × A2 generated by
(x, x), (y, y), (z, z), (u, u) equals A1 × A2. Consequently, F(A) = A1 × A2.
With (x, x) = a, (y, y) = f , (z, z) = k, (u, u) = p, the multiplication table
of this groupoid is given in Fig. 4.

From this table it is possible to read, for example, that if an algebra in T
contains four elements x, y, z, u with x → z → y → u → x and z → u, then
xyuz = z.

5.3. Example. Consider the partial tournament A = {x, y, z, u} with z →
y → u → z → x and y → x. Where t = yxux, the mapping

γ(x) = x,
γ(y) = t(zxtx)ut,
γ(z) = t(zxtx)ut(t(zxtx)),
γ(u) = t(zxtx)u

is a correct term configuration for A.

5.4. Example. Consider the partial tournament A = {x, y, z, u} with z →
y → u → z → x. The mapping

γ(x) = x,
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a b c d e f g h i j k l m n o p

a a b a d a b a d a b a d m n m p
b b b c b b b c b b b c b n n o n
c a c c c a c c c a c c c m o o o
d d b c d d b c d d b c d p n o p
e a b a d e f e h i j i l e f e h
f b b c b f f g f j j k j f f g f
g a c c c e g g g i k k k e g g g
h d b c d h f g h l j k l h f g h
i a b a d i j i l i j i l i j i l
j b b c b j j k j j j k j j j k j
k a c c c i k k k i k k k i k k k
l d b c d l j k l l j k l l j k l
m m n m p e f e h i j i l m n m p
n n n o n f f g f j j k j n n o n
o m o o o e g g g i k k k m o o o
p p n o p h f g h l j k l p n o p

Fig. 4

γ(y) = zxuxuy,
γ(z) = zxuxuy(zxux),
γ(u) = zxuxuy(zxux)(zxuxu)

is a correct term configuration for A. Thus F(A) = F0(A). This algebra has
61 elements. Observe that the 16-element free algebra from Example 5.2
could be also constructed as a factor of this 61-element algebra.

5.5. Example. Consider the partial tournament A = {x, y, z, u} with x →
z → y → x → u → y. In this case it is easy to construct the free algebra
directly: it has just five elements. Consequently, F(A) = F0(A) also in this
case.

We can also find a correct term configuration γ for A:

γ(x) = x(yz)(yu)(yz),
γ(y) = x(yz)(yu)(yz)y,
γ(z) = x(yz)(yu)(yz)y(yz),
γ(u) = x(yz)(yu)(yz)y(yu).

5.6. Theorem. Let n ≥ 3. Then every tournament satisfies

x1x2x3 . . . xn → x1x2x3 . . . xnx1(x1x2)(x1x2x3) . . . (x1x2 . . . xn−1).

Consequently, there exists a correct term configuration for the partial tour-

nament A = {x1, . . . , xn} with x1 → xn → xn−1 → · · · → x2 → x1, and

F(A) is the subgroupoid of A1× · · ·×Ak generated by the constant k-tuples,
where A1, . . . , Ak are all completions of A to tournaments.

Proof. Let a tournament B be given, and let us compute in B. For all
j = 1, . . . , n put yj = x1 . . . xj , so that yj ∈ {x1, . . . , xj}. Clearly, yj+1 → yj
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for j < n. There is an index i with yn = xi, and we need to prove xi →
xiy1 . . . yn−1.

If xiy1 . . . yj = yj for some j < n, then xiy1 . . . yn−1 = yj . . . yn−1 = yn−1,
and we are through, since xi = yn → yn−1. So, we may assume that
xiy1 . . . yj 6= yj for all j < n. But then, by induction on j, xiy1 . . . yj = xi
for all j < n. In particular, xiy1 . . . yn−1 = xi. �

5.7. Remark. For n = 4, an easy computation shows that the subalgebra
of P = A1 × · · · × Ak generated by the constant k-tuples is equal to P .
However, this is not true for n ≥ 5. For n = 4, the algebra P has 256
elements. For n = 5, it has 532 elements, so it is not easy to compute its
subalgebra generated by the five constant 32-tuples. But if the subalgebra
equals P , then also the product P ′ = B1 × · · · × B8, where B1, . . . , B8 are
all the completions of A enriched by x2 → x0 and x3 → x0, is generated by
the five constant 8-tuples; one can easily compute that the subalgebra of P ′

generated by the constant 8-tuples has 109375 elements, and this number is
less than 58 = |P ′|.

5.8.Theorem. Let A be a finite partial tournament and a ∈ A be an element

such that there is no element b 6= a with b → a, and there are at most two

elements c 6= a with a → c. Denote by A′ the partial tournament A − {a}.
If there exists a correct term configuration for A′, then there exists a correct

term configuration for A.

Proof. Let γ be a correct term configuration for A′. Let x be the variable
corresponding to the element a. We can extend γ to a correct term con-
figuration for A as follows: if there is no element b ∈ A′ with a → b, put
γ(a) = x; if there is precisely one such element b, and put γ(a) = xγ(b); if
there are two such elements b1 and b2, put γ(a) = xγ(b1)γ(b2)γ(b1). �

5.9. Theorem. Let A be a finite partial tournament and let A′ be obtained

by adding a zero element z to A, i.e., z → a for all a ∈ A. If F(A) = F0(A),
then also F(A′) = F0(A

′).

Proof. Clearly, F(A′) is obtained by adding a zero element to F(A). �

5.10. Remark. It follows that F(A) = F0(A) for the partial tournament
A = {x, y, z, u} with x → y, x → z, x → u; the algebra has 16 elements. On
the other hand, it can be easily shown that there is no correct term configu-
ration for this partial tournament. Suppose there is such a configuration γ.
One can easily see that (modulo the idempotent law) γ(y) = y, γ(z) = z
and γ(u) = u. Put t = γ(x). Then t is a term in four variables such that
t → y, t → z and t → u are satisfied in all tournaments. Substituting y for x
in t we obtain a term in three variables with the same property. However, it
is easy to check that in the 15-element T -free algebra with three generators
there is no element corresponding to such a term.

5.11. Theorem. F(A) = F0(A) for every partial tournament A with at most

four elements.
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Proof. If |A| ≤ 3, then it follows from 5.6 that there is a correct term
configuration for A. Let |A| = 4. Of course, we can assume that A is not a
tournament. By 5.9 we can assume that A has no zero element, and by 5.8
we can assume that for every a ∈ A there exists a b 6= a with b → a. The
cases when A contains a four-cycle are covered by 5.2 and 5.6. There are
only three cases remaining, covered by 5.3, 5.4 and 5.5. �

5.12. Remark. The cardinality of F(A) for a partial tournament A with
four elements x, y, z, u can be easily computed in some cases. For example:

For A given by x → y → z → u, |F(A)| = 965.
For A given by x → y → z, |F(A)| = 18010.
For A given by y → x and z → x, |F(A)| = 732.
For A given by x → y and x → z, |F(A)| = 736.
For A given by x → y and z → u, |F(A)| = 3611.
For A given by x → y → z → x, |F(A)| = 380.

6. Infinitely many incomparable tournaments

Tournaments can be identified with algebras in two different ways. The
approach to consider them as groupoids (algebras with one binary operation)
was taken, for example, in [4], [5], [9] (and in the present paper). Alterna-
tively, tournaments can be also identified with algebras with two binary
operations xy and x+ y, where xy is defined as above and a+ b = b+ a = b
for a → b. This approach was taken, for example, in [2] and [3]. For
tournaments themselves the difference is not significant, but if we want to
consider the variety generated by tournaments, we get different results in
both cases. In the case of two binary operations, the variety generated by
tournaments is contained in the variety of weakly associative lattices, and
hence is congruence distributive (see [2]).

In [3] E. Fried asks whether the variety generated by tournaments has
uncountably many subvarieties, and remarks that this would be a conse-
quence of a positive solution to the following problem: Does there exist an
infinite set of finite subdirectly irreducible tournaments such that neither
one is isomorphic to a subalgebra of some other one? In this section we are
going to construct such an infinite set of tournaments; all of them will be
simple.

The infinite sequence of tournaments An (n ≥ 8) is defined in the following
way: An = {an,1, . . . , an,n},

an,n → an,1;
an,i+2 → an,i for 1 ≤ i ≤ n− 2;
an,i → an,j for 1 ≤ i < j ≤ n, j 6= i+ 2, (i, j) 6= (1, n).

6.1. Lemma. Let an,i, an,j be two distinct elements of An such that an,i →
an,j. Put X = {x ∈ An − {an,i, an,j} : an,j → x → an,i}. Then:

(1) For (i, j) = (n, i), X = {an,2, an,4, an,5, . . . , an,n−4, an,n−3, an,n−1}
and |X| ≥ 4.
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(2) For 1 ≤ j < i = j + 2 ≤ n, X ⊆ {an,j−2, an,j+1, an,j+4}.
(3) For 1 = i < j, X ⊆ {an,3, an,n}.
(4) For i < j = n, X ⊆ {an,1, an,n−2}.
(5) For 2 ≤ i < i+ 1 = j ≤ n− 1, X ⊆ {an,i−1, an,i+2}.
(6) For 2 ≤ i < i+ 4 = j ≤ n− 1, X = {an,i+2}.
(7) In all other cases, X = ∅.

Proof. It is easy. �

6.2. Lemma. Let n,m ≥ 8 and let α be an embedding of An into Am. Then

α(an,1) = am,1 and α(an,n) = am,m.

Proof. We have α(an,n) → α(an,1) and, by Lemma 6.1(1), there are at least
four elements x ∈ Am−{α(an,1), α(an,n)} such that α(an,1) → x → α(an,n).
By Lemma 6.1, it follows that (α(an,n), α(an,1)) = (am,m, am,1). �

6.3. Lemma. Let n,m ≥ 8 and let α be an embedding of An into Am. Then

α(an,2) = am,2 and α(an,3) = am,3.

Proof. Put x = α(an,2), y = α(an,3), z = α(an,4) and u = α(an,5). Then
x, y, z, u are four distinct elements of Am − {am,1, am,m} such that am,1 →
x → y → z → u, y → am,1, z → x, u → y, x → u, am,1 → u. From am,1 →
x → y → am,1 we get either (x, y) = (am,2, am,3) or (x, y) = (am,5, am,3). In
the first case we are done, so suppose that x = am,5 and y = am,3. From
y → z → x (i.e., am,3 → z → am,5) we get either z = am,4 or z = am,7.

Suppose z = am,4. From z → u → y we get either u = am,2 or u = am,5.
In the first case we get a contradiction with x → u, and the second case
contradicts x 6= u.

So, it remains to consider the case z = am,7. From z → u → y we get
u = am,5, a contradiction with x 6= u. �

6.4. Lemma. Let n,m ≥ 8 and let α be an embedding of An into Am. Then

α(an,i) = am,i for all i = 1, . . . , n.

Proof. By Lemma 6.2 and Lemma 6.3, this is true for i = 1, 2, 3. Let i ≥ 4
and suppose α(an,j) = am,j for all j < i. Put x = α(an,i). We have
an,i−1 → an,i → an,i−2 in An, and thus am,i−1 → x → am,i−2 in Am.
Moreover, x /∈ {am,1, . . . , am,i−1}. But there is only one element x in Am

with these properties, namely, x = am,i. Hence α(an,i) = am,i. �

6.5. Lemma. An is a simple tournament for n ≥ 8.

Proof. Let r 6= idAn
be a congruence of An. We need to prove that r =

An ×An.
If (an,i, an,i+1) ∈ r for some i, then in the case i > 1 we have an,i−1 →

an,i → an,i+1 → an,i−1, from which it follows that (an,i−1, an,i) ∈ r; and in
the case i+1 < n we have (an,i+1, an,i+2) ∈ r from the same reason. Hence,
if (an,i, an,i+1) ∈ r for some i, then r = An ×An.

If (an,i, an,i+2) ∈ r for some i, then

(an,i, an,i+1) = (an,ian,i+1, an,i+2an,i+1) ∈ r,
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so that r = An ×An.
If (an,i, an,i+3) ∈ r for some i, then one of the following two cases takes

place. If i ≥ 3, then

(an,i, an,i−2) = (an,ian,i−2, an,i+3an,i−2) ∈ r.

If i ≤ n− 5, then

(an,i, an,i+5) = (an,ian,i+5, an,i+3an,i+5) ∈ r

and hence (an,i+3, an,i+5) ∈ r. But then, r = An ×An in both cases.
Finally, if (an,i, an,j) ∈ r where j ≥ i+ 4, then

(an,i, an,i+1) = (an,ian,i+1, an,jan,i+1) ∈ r,

so that r = An ×An. �

6.6. Theorem. The tournaments An with n ≥ 8 are all simple and pair-

wise incomparable in the sense that if n 6= m, then An cannot be embedded

into Am.

Proof. It follows from the lemmas. �

As noted in [3], due to the ultraproduct theorem of Jónsson [7] and the
fact that a homomorphic image of a tournament is isomorphic to a subtour-
nament of that tournament, it follows from Theorem 6.6 that for any subset
S of {A8, A9, . . . }, the variety (of algebras with two binary operations) gen-
erated by S does not contain any An with n ≥ 8 and n /∈ S.

6.7. Corollary. The lattice of subvarieties of the variety (of algebras with

two binary operations) generated by tournaments is uncountable. It contains

a subset, order isomorphic to the lattice of all subsets of a countably infinite

set.

It is not clear, although it is likely, that the same is true for the variety
generated by tournaments considered as algebras with one binary operation.
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