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Abstract. We introduce a generalization of symmetric (v, k, λ) block
designs, and show how these could potentially be used to construct
projective planes of non-prime-power order.

If q is a prime power and n2+n+1 = N(q2+q+1), then conceivably we
could construct a projective plane of order n by gluing together N planes of
order q. For example, 182+18+1 = 343 = 49 ·7. Can we make a projective
plane of order 18 by gluing 49 planes of order 2?

With this in mind, we will discuss a class of directed graphs which arises
when we attempt such a construction. The existence of a graph with the
necessary parameters is the first problem we face. Then we will describe how
the graphs may be used to build the putative plane of order n. The gluing
maps are an even more serious obstacle. Nonetheless, it is an intriguing
program, which just possibly could work.

1. Ordinary Graphs and their Associated Matrices

Let G be a loopless directed graph. For a vertex i of G, let

↑ i = {j : i→ j}

↓ i = {k : k → i}.

Define binary relations A, B, C on the vertices of G by

(1) i A j if i 6= j and there is no edge between i and j,
(2) i B j if i→ j or j → i but not both,
(3) i C j if i→ j and j → i.

We say that G is an ordinary graph of type 〈n, r, a, b, c〉 if

(1) G has n vertices,
(2) | ↑ i| = | ↓ i| = r for each vertex i of G,
(3) if i A j then | ↑ i ∩ ↑j| = | ↓ i ∩ ↓j| = a,
(4) if i B j then | ↑ i ∩ ↑j| = | ↓ i ∩ ↓j| = b,
(5) if i C j then | ↑ i ∩ ↑j| = | ↓ i ∩ ↓j| = c.

We allow a, b or c to be the special symbol × to indicate that in G the
corresponding relation A, B or C is empty.
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2 MARC FOSSORIER, JAROSLAV JEŽEK, J. B. NATION AND ALEX POGEL

This definition is easily interpreted in terms of the adjacency matrix M

of G. An n×n 0-1 matrix M = [mij ] is the adjacency matrix of an ordinary
graph of type 〈n, r, a, b, c〉 if it has a zero diagonal and

(MMt)ij = (MtM)ij =



















r if i = j,

a if i 6= j and mij +mji = 0,

b if mij +mji = 1,

c if mij +mji = 2.

We will also refer to the adjacency matrix of an ordinary graph as an ordinary
matrix.

Recall, for example, that the incidence matrix of a symmetric (v, k, λ)
block design is a v× v 0-1 matrix satisfying MMt = MtM = (k−λ)I+λJ.
Thus the corresponding graph is ordinary of type 〈v, k, λ, λ, λ〉, with possibly
one or more of the λ’s replaced by an ×.

Question. In the examples we have found so far, if a 0-1 matrix M

has constant row and column sums, and satisfies the conditions above for
(MMt)ij , then MtM = MMt (so M is normal). Is this always the case?
If so, it would generalize a well-known result of Ryser for symmetric block
designs.

We will produce many examples in the next two sections. First, we have
the basic counting lemma.

Lemma 1. Let G be an ordinary graph of type 〈n, r, a, b, c〉. Let α be the
number of (unordered) pairs in the A relation, and similarly β is the number
of pairs in B, γ the number of pairs in C. Then

(1) α+ β + γ =
(

n
2

)

,
(2) β + 2γ = nr,
(3) aα+ bβ + cγ = n

(

r
2

)

.

Proof. (1) is clear, while (2) just counts the number of arrows in G. For
(3), we count the pairs (i, {j, k}) with j 6= k, i→ j and i→ k. Each subset
{j, k} with j A k will be counted a times, etc. �

An ordinary graph is symmetric if i → j implies j → i (equivalently,
Mt = M or β = 0). Likewise, a graph is antisymmetric if i → j implies
j 6→ i (equivalently, M+Mt + I ≤ J or γ = 0).

Note: the conflict of terminology is unfortunate, but a symmetric (v, k, λ)
block design need not be symmetric in this sense.

Given an ordinary graph G, we define the complement G∗ to be the
loopless graph such that, for vertices i 6= j, i →G∗ j if and only if i 6→G j.
In matrix terms, if M is the adjacency matrix for G, then J− I−M is the
adjacency matrix for G∗. The following calculation is easy.

Lemma 2. Let G be an ordinary graph of type 〈n, r, a, b, c〉. If A 6= ∅, B 6= ∅
and C 6= ∅, then G∗ is an ordinary graph of type 〈n, n−1− r, n+ c−2r, n+
b− 2r − 1, n+ a− 2r − 2〉.
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The modifications for when A = ∅ or B = ∅ or C = ∅ are straightforward.
For example, if A = ∅ and B, C 6= ∅, so that G has type 〈n, r,×, b, c〉, then
G∗ has type 〈n, n− 1− r, n+ c− 2r, n+ b− 2r − 1,×〉.

Corollary 3. Let G be an ordinary graph of type 〈n, r, a, b, c〉.

(1) If A 6= ∅, then n+ a ≥ 2r + 2.
(2) If B 6= ∅, then n+ b ≥ 2r + 1.
(3) If C 6= ∅, then n+ c ≥ 2r.

2. Examples

We have several methods for constructing ordinary graphs and matrices,
sometimes overlapping.

Symmetric (v, k, λ) block designs. These include complete loopless graphs
(with adjacency matrix J− I), graphs whose adjacency matrix is a permu-
tation matrix, and graphs whose adjacency matrix is the incidence matrix
of a finite projective plane. This class also includes ordinary tournaments,
discussed in the next section.

Set intersection graphs. These are simple examples of symmetric ordi-
nary graphs. Let X be an N -element set, where N ≥ 2, and let X(2) be the
collection of all 2-element subsets of X.

(1) For A, B ∈ X(2), define A → B if |A ∩ B| = 1. Then X(2) forms an

ordinary graph of type 〈
(

N
2

)

, 2N − 4, 4,×, N − 2〉.
(2) If N ≥ 4, for A, B ∈ X(2), define A → B if |A ∩ B| = 0. Then X(2)

forms an ordinary graph of type 〈
(

N
2

)

,
(

N−2
2

)

,
(

N−3
2

)

,×,
(

N−4
2

)

〉.
(3) If N = 7 or N = 10, then the collection X(3) of 3-element subsets of

X, with the relation A → B if |A ∩ B| = 1, is an ordinary graph of type
〈35, 18, 9,×, 9〉 or 〈120, 63, 36,×, 30〉, respectively.

Circulant ordinary matrices. A matrix M = (mij) for 0 ≤ i, j < n
is said to be circulant if there is a sequence e = 〈e0, . . . , en−1〉 such that
mij = e(j−i) mod n. Given a sequence e of 0’s and 1’s, let us denote the
corresponding circulant matrix by C(e). This familiar construction allows
us to build many examples of ordinary matrices. Indeed, it is simple to
write a program which will generate the circulant matrices of a given size,
and check which ones are ordinary.

Note that circulant matrices are normal: C(e)tC(e) = C(e)C(e)t.
Table 1 lists all types of circulant ordinary matrices with n ≤ 8, except

that circulant permutation matrices and complete matrices J − I are not
listed. A selection of others of the hundreds of ordinary matrices we have
generated in this way is given in Table 2. Of crucial importance to us later
is the following well-known theorem of J. Singer [9]; see [4], Theorem 11.3.1.

Theorem 4. For each prime power q, there is a circulant ordinary matrix
representing the incidence matrix of a desarguean projective plane of order
q.
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〈e〉 type
0110 〈4, 2,×, 1, 0〉
0101 〈4, 2, 2,×, 0〉
01001 〈5, 2, 1,×, 0〉
01110 〈5, 3,×, 2, 1〉
010100 〈6, 2, 1, 0, 0〉
010010 〈6, 2, 2, 0,×〉
001010 〈6, 2, 0,×, 1〉
011010 〈6, 3, 2, 1, 1〉
010110 〈6, 3,×, 1, 2〉
010101 〈6, 3, 3,×, 0〉
011110 〈6, 4,×, 3, 2〉
011011 〈6, 4, 4,×, 2〉
0101000 〈7, 2, 1, 0,×〉
0110100 〈7, 3,×, 1,×〉
0110010 〈7, 3, 2, 1, 0〉
0110001 〈7, 3, 1, 1, 1〉
0111010 〈7, 4,×, 2, 2〉
0111110 〈7, 5,×, 4, 3〉
00101000 〈8, 2, 0, 1, 0〉
01101000 〈8, 3, 1, 1, 0〉
01010100 〈8, 3, 2, 0, 0〉
01001100 〈8, 3, 0, 1, 2〉
00101010 〈8, 3, 0,×, 2〉
01110100 〈8, 4, 2, 2, 1〉
01101010 〈8, 4, 2, 1, 2〉
01100110 〈8, 4, 4, 2, 0〉
01010101 〈8, 4, 4,×, 0〉
01110101 〈8, 5, 4, 4, 2〉
01111110 〈8, 6,×, 5, 4〉

Table 1. Circulant ordinary matrices with n ≤ 8

Other ordinary graphs. It is also not hard to generate small ordinary
graphs which are symmetric or antisymmetric. In this way, we find one ad-
ditional type of ordinary graphs of size at most 8, namely 〈8, 6, 6,×, 4〉. One
can also write a program which attempts to construct an ordinary graph of
a fixed type. For example, there is an ordinary graph of type 〈25, 8, 3, 2,×〉.
On the other hand, the program shows that apparently plausible types may
fail to exist.

Lemma 5. There is no 〈13, 7, a, b, c〉 ordinary graph with a = 7 or ×, b =
4 or ×, and c = 1 or ×.
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〈e〉 type
000100100 〈9, 2, 0,×, 1〉
011010010 〈9, 4, 3, 1, 1〉
010110100 〈9, 4, 2, 1, 2〉
0100011000 〈10, 3, 0, 1, 2〉
0010101000 〈10, 3, 0, 2, 1〉
01110100100 〈11, 5, 2, 2, 2〉
01101101000 〈11, 5, 3, 2, 1〉
01011100010 〈11, 5,×, 2,×〉
0101000001000 〈13, 3, 1, 0,×〉
0110100000100 〈13, 4, 1, 1,×〉
0110001000001 〈13, 4, 1, 1, 1〉
0111010100010 〈13, 6, 4, 2, 3〉
0101100001101 〈13, 6, 3,×, 2〉
011101100101000 〈15, 7, 3, 3, 3〉
011101011001000 〈15, 7, 4, 3, 2〉
010110010010110 〈15, 7, 6, 2, 5〉
010011100101001 〈15, 7, 3, 6, 2〉
01111000101000011 〈17, 8, 4, 3, 4〉
01110101001100100 〈17, 8, 5, 3, 3〉
01101000110001011 〈17, 8, 4,×, 3〉
0100101101010000000 〈19, 6, 3, 1,×〉
0111101010000110010 〈19, 9, 4, 4, 4〉
0111010100010010110 〈19, 9, 5, 3, 4〉
0111010100001101100 〈19, 9, 5, 4, 3〉
0100111101010000110 〈19, 9,×, 4,×〉
011001000000000101000 〈21, 5, 1, 1,×〉
011000010100000000010 〈21, 5, 1, 1, 1〉
010000011000001100000 〈21, 5, 0, 2, 4〉
000100100100100100000 〈21, 5, 0, 4, 3〉
011011011001000011001 〈21, 10, 7, 3, 4〉
011011010011010010010 〈21, 10, 8, 3, 3〉
010110110100110100100 〈21, 10, 4, 3, 7〉
010110100100101110100 〈21, 10, 5, 3, 6〉

Table 2. More examples of circulant ordinary matrices

Ordinary Tournaments

A tournament is a loopless, directed graph such that for each pair i, j
of distinct vertices, exactly one of the relations i → j or j → i holds. Thus
a square 0-1 matrix M is the adjacency matrix of a tournament if and only
if M+Mt + I = J.
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An ordinary tournament has type 〈n, r,×, b,×〉. An easy application of
Lemma 1 shows that r = 2b+1 and n = 2r+1 = 4b+3. Thus we have the
following result.

Lemma 6. An ordinary tournament has type 〈4k + 3, 2k + 1,×, k,×〉 for
some integer k ≥ 0. Its adjacency matrix satisfies

M+Mt + I = J

MMt = MtM = kJ+ (k + 1)I.

In this case, we say that M is an ordinary tournament of order k. By
a theorem of H. Ryser, if a square 0-1 matrix of size 4k + 3 satisfies M +
Mt + I = J and MMt = kJ+ (k + 1)I, then MtM = MMt, and hence M

is the adjacency matrix of an ordinary tournament of order k (see e.g. [4],
Theorem 10.2.3).

A fundamental question is: Does there exist an ordinary tournament of
order k for every k ≥ 0? Recall that a Hadamard design of order k is a
square 0-1 matrix H of size 4k + 3 such that HHt = HtH = kJ+ (k + 1)I.
Since it is unknown whether Hadamard designs of order k exist for every k,
we certainly don’t know whether ordinary tournaments of every order exist.
However, we raise the possibility that the problem may be easier for this
more restricted class.

Quadratic residue tournaments. A classic construction due to R. Paley
yields a nice infinite class of ordinary tournaments.

Theorem 7. If 4k+ 3 is a prime power, then there is an ordinary tourna-
ment of order k.

Proof. Assume that 4k + 3 = pα. Define a sequence e = 〈ei : i ∈ GF(pα)〉
by

ei =

{

1 if i is a nonzero quadratic residue in GF(pα),

0 otherwise.

Then let M be the matrix such that mij = e(j−i). It is well known that
M is the matrix of a Hadamard design, which is in fact a tournament since
α is odd, so that −1 is not a quadratic residue in GF(pα). (If α = 1 then
M will be circulant, while if α > 1 then M represents a difference set on a
non-cyclic abelian group.) �

Thus, for example, we obtain ordinary tournaments for orders k = 0, 1,
2, 4, 5, 6, 7, 10, and 11. Our second main construction (below) will yield
ordinary tournaments of orders 3 and 9. Thus far we have been unable to
construct ordinary tournaments of orders 8 (n = 35) and 12 (n = 51).

The complement of a tournament is usually referred to as its dual. The
dual is represented by the matrix Mt, and a tournament is said to be self-
dual if there is a permutation matrix P such that Mt = PtMP. Ordinary
tournaments obtained from quadratic residues are self-dual, with the map
i→ −i inducing the isomorphism.
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One can also do the quadratic residue construction for the case when n =
4k+1 is prime, which yields an ordinary matrix of type 〈4k+1, 2k, k,×, k−1〉.
Other residue systems modulo n (e.g., cubic residues) occasionally produce
ordinary matrices.

Isomorphism types. It is reasonable to ask how many different ordinary
tournaments of order k there are. For k small, this is amenable to computer
searches.

Theorem 8. The following list gives isomorphism types of ordinary tour-
naments of order k.

0. For k = 0 there is 1 isomorphism type.
1. For k = 1 there is 1 isomorphism type.
2. For k = 2 there is 1 isomorphism type.
3. For k = 3 there are 2 isomorphism types (dual to each other).
4. For k = 4 there are at least 2 isomorphism types.
5. For k = 5 there are at least 28 isomorphism types.
6. For k = 6 there are at least 20 isomorphism types.

Constructing order 2k+1 from order k. Another standard construction
for Hadamard designs also works for ordinary tournaments. This method
allows us to construct an ordinary tournament of order 2k+ 1 from one (or
more) of order k. Let 0 (resp. 1) represent a column vector of 0’s (resp.
1’s) of length 4k + 3.

Theorem 9. Let A, B and C be ordinary tournament matrices of order k.
If BAt = CB, then





A B+ I 0

B C 1

1t 0t 0





is an ordinary tournament matrix of order 2k + 1. In particular, we may
take B = A and C = At to construct an ordinary tournament of order
2k + 1 whenever there is one of order k.

The proof is a straightforward matrix calculation.

The structure of ordinary tournaments. In this section we discuss
some of the detailed structure of ordinary tournaments, which is useful in
constructions.

Let T be a tournament. For any a, b ∈ T we denote

ξaboo = |{x ∈ T − {a, b} : a→ x, b→ x}|,
ξaboi = |{x ∈ T − {a, b} : a→ x, x→ b}|,
ξabio = |{x ∈ T − {a, b} : x→ a, b→ x}|,
ξabii = |{x ∈ T − {a, b} : x→ a, x→ b}|.

Similarly, for a, b, c ∈ T we define

ξabcoii = |{x ∈ T − {a, b, c} : a→ x, x→ b, x→ c}|,
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etc. (The index i stands for “into”, while o stands for “out of”, and refers
to the corresponding upper index.)

Lemma 10. Let T be an ordinary tournament of order k, and let a, b ∈ T

be such that a→ b. Then:

ξabii = k,
ξaboo = k,
ξaboi = k,
ξabio = k + 1.

Proof. The first two statements follow from definition. Denote the third and
the fourth number by x and y, respectively. Then k + x + 1 = 2k + 1 and
k + y = 2k + 1, from which we get x = k and y = k + 1. �

Lemma 11. Let T be an ordinary tournament of order k, and let a, b, c ∈ T

be pairwise distinct. Then one of the following two cases takes place:

(1) {a, b, c} is a 3-cycle, and ξabcooo + ξabciii = k;
(2) {a, b, c} is a chain, and ξabcooo + ξabciii = k − 1.

Proof. Clearly, a 3-element subset of a tournament is either a 3-cycle or a
chain.

(1) Let {a, b, c} be a 3-cycle. Without loss of generality, a → b → c →
a. Then ξabciii + ξabcioi = k and ξabcioi + ξabcooi = k, so that ξabciii = ξabcooi . Now
ξabcooi + ξabcooo = k, and hence ξabciii + ξabcooo = k.

(2) Let {a, b, c} be a chain. Without loss of generality, a → b → c and
a → c. Then ξabciii + ξabcioi = k and ξabcioi + ξabcooi = k, so that ξabciii = ξabcooi . Now
ξabcooi + ξabcooo = k − 1, and hence ξabciii + ξabcooo = k − 1. �

Lemma 12. Let T be an ordinary tournament of order k. If k ≥ 1, then
T contains a 3-element subchain. If k ≥ 2, then every 3-element subchain
of T can be extended to a 4-element subchain; in particular, T contains a
4-element subchain.

Proof. It follows from the previous two lemmas. �

Lemma 13. Let T be an ordinary tournament of order k containing a 4-
element subchain a → b → c → d (also, a → c, etc.) which cannot be
extended to a 5-element subchain. Then

ξabcdiiio = k − 2, ξabcdiioi = 1, ξabcdiioo = 1, ξabcdioii = k − 2,

ξabcdioio = 4− k, ξabcdiooi = 1, ξabcdiooo = k − 2, ξabcdoiio = 1,

ξabcdoioi = k − 2, ξabcdoioo = 1, ξabcdooio = k − 2.

Proof. The fact that the 4-element subchain cannot be extended to a 5-
element one means that ξabcdiiii = ξabcdoiii = ξabcdooii = ξabcdoooi = ξabcdoooo = 0. There are
11 remaining numbers ξabcd. We can compute the numbers ξuvii and ξuvoo for
any 2-element subset {u, v} of {a, b, c, d} from these 11 unknowns, and also
compute ξai , obtaining 13 equations in the 11 unknowns. It is easy to solve
this system of linear equations; it has precisely one solution. �
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Lemma 14. Let T be an ordinary tournament of order k ≥ 4. Then T

contains a 5-element subchain.

Proof. Suppose that T contains no 5-element subchain. By Lemma 12 there
exists a 4-element subchain a→ b→ c→ d. It follows from Lemma 13 that
k ≤ 4, and hence k = 4. Then, by Lemma 13, ξabcdiiio = 2. This means
that there are two different elements e, f such that e → a → b → c and
f → a→ b→ c are subchains. Without loss of generality, e→ f . But then
e→ f → a→ b→ c is a 5-element subchain. �

Lemma 15. Let T be an ordinary tournament of order k ≥ 3. Then T

contains a 5-element subchain.

Proof. It remains to consider the case k = 3. There are two isomorphism
types in this case; both were checked to contain 5-element subchains by a
computer. �

Denote by M the maximal cardinality of a subchain of an ordinary tour-
nament of order k. Using a computer, we were able to find the number M
in these cases:

For k = 0, M = 2.
For k = 1, M = 3.
For k = 2, M = 4.
For k = 3, M = 5 (for both isomorphism types).
For k = 4, M = 5 (for both known isomorphism types).
For k = 5, M = 6 for all the 28 known isomorphism types.
For k = 6, for 3 isomorphism types we have M = 7 while for the remain-

ing 17 known isomorphism types we have M = 6.

Theorem 16. Every ordinary tournament is a cycle.

Proof. Let T be an ordinary tournament of order k, and let C be a subcycle
of T of a maximal possible cardinality. Put p = |C|; clearly, p ≥ 3. We
have C = {c0, . . . , cp−1} where c0 → c1 → · · · → cp−1 → c0. Let e ∈ T − C.
If there are two indexes i and j with ci → e and e → cj , then there are
two such indexes with j ≡ i + 1 mod p, and we obtain a longer subcycle
if e is inserted between ci and cj , a contradiction. This means that the set
complement T − C is the disjoint union T − C = A ∪ B, where c → a and
b→ c for all a ∈ A, b ∈ B, c ∈ C. If a→ b for some a ∈ A and b ∈ B, then
we obtain a longer subcycle if we insert c0 → a → b → c1 between c0 and
c1, a contradiction. Hence b → a for all a ∈ A and b ∈ B. For b ∈ B we
have C ∪ A ⊆↑ b; consequently, if B is nonempty then |C| + |A| ≤ 2k + 1.
Similarly, if A is nonempty then |C| + |B| ≤ 2k + 1. If both A and B are
nonempty, we conclude 2|C|+ |A|+ |B| ≤ 4k+2 < 4k+3 = |C|+ |A|+ |B|,
a contradiction. So, either A = ∅ or B = ∅. If A is nonempty, we get
|C| ≤ 2k+ 1, so that |A| ≥ 2k+ 2, so that for c ∈ C we have | ↑c| ≥ 2k+ 2,
a contradiction. Hence A = ∅. Similarly, B = ∅. �
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Every tournament can be considered as a groupoid, with respect to the
multiplication defined as follows: aa = a for all a; if a→ b then ab = ba = a.

Theorem 17. Every ordinary tournament is a simple groupoid.

Proof. Let T be an ordinary tournament of order k, and let r be a non-
identical congruence of T. There is at least one non-singleton block B of r.
Take two different elements a, b ∈ B. Without loss of generality, a → b.
Clearly, if x is an element such that either b → x → a or a → x → b,
then x ∈ B. There are (k + 1) + k = 2k + 1 such elements x, and hence
|B| ≥ 2k + 3. So, every non-singleton block of r contains more than a half
of the elements of T . It follows that for any c ∈ T − B, {c} is a block of r.
But for any such c, either c → x for all x ∈ B or x → c for all x ∈ B, and
either the out- or the in-degree of c is too large. Hence B = T . �

3. Subplane partitions and ordinary graphs

Let Π = 〈P,L,≤〉 be a projective plane of order n (so that |P | = |L| =
n2+n+1, each line contains n+1 points and each point lies on n+1 lines).
Suppose there is a partition of Π into equal sized subplanes Πi = 〈Pi, Li,≤i〉
(0 ≤ i < N) of order q. Since n2 + n + 1 = N(q2 + q + 1), it is necessary
that n2+n+1 is divisible by q2+ q+1. For example, we could have n = 18
and q = 2; in this case, N = 49 as 343 = 49 · 7. Such a partition is called a
subplane partition of Π.

We will write i → j if i 6= j and there exist p ∈ Pi and ℓ ∈ Lj with
p ≤ ℓ. A subplane partition of Π will be called ordinary if i → j implies
that for every p ∈ Pi there exists an ℓ ∈ Lj with p ≤ ℓ. In that case, for each
pair (i, j) with i → j, we obtain a bijection λij of Pi onto Lj by defining
λij(p) = ℓ where ℓ ∈ Lj and p ≤ ℓ. In other words, λij =≤ |Pi×Lj

.
We want to show that 〈N,→〉, with the arrow relation defined in the

preceding paragraph, is an ordinary graph whenever Π =
⋃

0≤i<N Πi is an
ordinary partition.

Theorem 18. Let Πi = 〈Pi, Li,≤i〉 (0 ≤ i < N) be an ordinary partition
of a projective plane Π of order n into subplanes of order q. The following
are true:

(1) For each i = 0, . . . , N − 1, | ↑ i| = | ↓ i| = n− q.
(2) If i A j, then | ↑ i∩ ↑j| = | ↓ i∩ ↓j| = q2 + q + 1.
(3) If i B j, then | ↑ i∩ ↑j| = | ↓ i∩ ↓j| = q2.
(4) If i C j, then | ↑ i∩ ↑j| = | ↓ i∩ ↓j| = q2 − q − 1.

Thus 〈N,→〉 is an ordinary graph of type 〈N,n−q, a, b, c〉 with a = q2+q+1
or ×, b = q2 or ×, and c = q2 − q − 1 or ×.

Proof. By duality, it is sufficient to find the cardinality of the first set in
each case.

(1) Every point of Pi lies on n+ 1 lines, where k + 1 of them belong to
Li; clearly, the remaining n− k ones belong to pairwise different Lj ’s.
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(2) Denote by p1, . . . , pq2+q+1 the points of Pi and by r1, . . . , rq2+q+1 the

points of Pj . For every u ∈ {1, . . . , q2+ q+1} define ku by p1 ∨ ru ∈ Lku . It
follows from the assumptions that these numbers ku are pairwise distinct,
and different from i and j; their number is q2 + q + 1, and each has the
property i → ku&j → ku. Now every line from Lk1 ∪ · · · ∪ Lk

q2+q+1
(there

are (q2+q+1)2 such lines) contains a point from Pi and a point from Pj , and
hence can be expressed as pu ∨ rv for some u ∈ Pi and v ∈ Pj . The number
of lines that can be expressed in this form is, of course, at most (q2+q+1)2.
So, every line pu ∨ rv with u ∈ Pi and v ∈ Pj belongs to Lk1 ∪ · · · ∪Lk

q2+q+1
.

Consequently, if k is such that i→ k&j → k, then k ∈ {k1, . . . , kq2+q+1}.
(3) Let i→ j and j 6→ i. Take a point p ∈ Pi. There is precisely one line

in Lj containing p; this line contains precisely q+1 points of Pj ; denote the
remaining points of Pj by r1, . . . , rq2 . Define k1, . . . , kq2 by p∨ru ∈ Lku . We
can proceed similarly as in the previous case to show that these numbers
k1, . . . , kq2 are the only numbers k with the property that i→ k and j → k.

(4) Let i → j and j → i. Take a point p ∈ Pi. There is precisely one
line A ∈ Lj containing p. This line contains precisely q + 1 points of Pj .
Also, p belongs to q + 1 lines of Li, each of which contains precisely one
point of Pj , and this point does not belong to A. So, there are precisely
q2+q+1− (q+1)− (q+1) = q2−q−1 points r of Pj such that the line p∨r
does not belong to either Li or Lj . Denote these points by r1, . . . , rq2−q−1

and define k1, . . . , kq2−q−1 by p ∨ ru ∈ Lku . As in the proof of property (2),
one can show that these are the only numbers k with i→ k and j → k. �

We also need to describe a basic property of the maps λij .

Lemma 19. Let Πi = 〈Pi, Li,≤i〉 for 0 ≤ i < N be an ordinary partition
of a projective plane Π of order n into subplanes of order q. If i 6= j and
p ∈ Pi and r ∈ Pj, then exactly one of the following holds:

(1) r ≤j λij(p), or
(2) p ≤i λji(r), or
(3) there exists k such that λik(p) = λjk(r).

The condition of this lemma just makes each pair of points join to a
unique line. It follows from general principles that this also makes each pair
of lines meet in a unique point; see e.g. [3], Theorem 20.8.1.

Conversely, if the conditions of Theorem 18 and Lemma 19 are satisfied,
we can construct a projective plane of order n. We formulate this as follows.

Theorem 20. Assume that n2 + n + 1 = N(q2 + q + 1), and that there
exists a projective plane Ψ of order q. Let Πi = 〈Pi, Li,≤i〉 for 0 ≤ i < N
be disjoint copies of Ψ. Suppose

(1) there exists an ordinary graph 〈N,→〉 of type 〈N,n− q, a, b, c〉 with
a = q2 + q + 1 or ×, b = q2 or ×, and c = q2 − q − 1 or ×, and
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(2) there exist bijections λij : Pi → Lj for each pair with i→ j such that
if i 6= j and p ∈ Pi and r ∈ Pj, then exactly one of the following
holds:
(a) r ≤j λij(p), or
(b) p ≤i λji(r), or
(c) there exists k such that λik(p) = λjk(r).

Then there exists a projective plane of order n with an ordinary subplane
partition into subplanes of order q.

The construction and proof are entirely straightforward in view of the
previous discussion, viz., if p ∈ Pi and ℓ ∈ Lj , then p ≤ ℓ if and only if
i = j and p ≤i ℓ, or i→ j and ℓ = λij(p). In the next section we will give a
matrix version of the construction.

Now we have several tasks to address. The first is to identify pairs n, q
which are candidates. If n ≡ q mod q2 + q + 1 or n ≡ q2 mod q2 + q + 1
then q2 + q + 1 divides n2 + n + 1. In the first case it is evident, and in
the second case n2 + n + 1 ≡ q4 + q2 + 1 = (q2 + q + 1)(q2 − q + 1) ≡ 0
mod (q2 + q+1). If q2 + q+1 is prime, then the converse is true: q2 + q+1
divides n2 + n+ 1 only if n ≡ q or q2 mod q2 + q + 1.

Table 3 gives a list of candidates for n ≤ 60. We have omitted those n
for which no plane of order n exists by the Bruck-Ryser theorem.

The second task, given n and q, is to find an ordinary graph of the
required type. Two natural cases immediately present themselves.

The first natural case is when q is a prime power and n = q2. R. H. Bruck
proved that the desarguean plane of order q2 always has a subplane partition
into subplanes of order q, based on J. Singer’s result that any finite desar-
guean plane may be derived from a difference set [1]. Peter Yff showed that
these planes may have other partitions into subplanes of order q; see [10],
[11]. In each case, N = q2 − q + 1 and the corresponding graph is complete
of type 〈N,N − 1,×,×, N − 2〉. This still leaves open the possibility that
nondesarguean planes of order q2 may have a subplane partition.

The second natural case is when q is a prime power and n = 2q2+ q+1.
In this case we could use an ordinary tournament of order q2, which has
type 〈4q2 + 3, 2q2 + 1,×, q2,×〉. For q = 2 we have n = 11, an intriguing
possibility. However, any attempt to construct a nondesarguean plane of
order 11 must bear in mind the known constraints; see, e.g., [5] or [6], and
Theorem 25 below. For q = 3 we have n = 22, which is eliminated by the
Bruck-Ryser theorem. The cases q = 4, n = 37 and q = 5, n = 56 seem a
priori promising. The methods we have used to attempt these constructions
will be described in the next section.

The third, and most difficult task, given candidates n, q and an appropri-
ate ordinary graph, is to find bijections λij satisfying the required property.
One method for attempting this will also be given in the next section.
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n n2 + n+ 1 q N comments
4 21 = 7 · 3 2 3 works
9 91 = 13 · 7 3 7 works
9 91 = 7 · 13 2 13 no, type 〈13, 7, 7, 4, 1〉 DNE
11 133 = 7 · 19 2 19 need type 〈19, 9, 7, 4, 1〉
16 273 = 21 · 13 4 13 works
16 273 = 13 · 21 3 21 need type 〈21, 13, 13, 9, 5〉
18 343 = 7 · 49 2 49 need type 〈49, 16, 7, 4, 1〉
23 553 = 7 · 79 2 79 need type 〈79, 21, 7, 4, 1〉
25 651 = 31 · 21 5 21 works
25 651 = 21 · 31 4 31 need type 〈31, 21, 21, 16, 11〉
25 651 = 7 · 93 2 93 need type 〈93, 23, 7, 4, 1〉
29 871 = 13 · 67 3 67 need type 〈67, 26, 13, 9, 5〉
32 1057 = 7 · 151 2 151 need type 〈151, 30, 7, 4, 1〉
35 1261 = 13 · 97 3 97 need type 〈97, 32, 13, 9, 5〉
36 1333 = 31 · 43 5 43 need type 〈43, 31, 31, 25, 19〉
37 1407 = 21 · 67 4 67 need type 〈67, 33, 21, 16, 11〉
37 1407 = 7 · 201 2 201 need type 〈201, 35, 7, 4, 1〉
39 1561 = 7 · 223 2 223 need type 〈223, 37, 7, 4, 1〉
42 1807 = 13 · 139 3 139 need type 〈139, 39, 13, 9, 5〉
48 2353 = 13 · 181 3 181 need type 〈181, 45, 13, 9, 5〉
49 2451 = 57 · 43 7 43 works
51 2653 = 7 · 379 2 379 need type 〈379, 49, 7, 4, 1〉
53 2863 = 7 · 409 2 409 need type 〈409, 51, 7, 4, 1〉
55 3081 = 13 · 237 3 237 need type 〈237, 52, 13, 9, 5〉
56 3193 = 31 · 103 5 103 need type 〈103, 51, 31, 25, 19〉
58 3423 = 21 · 163 4 163 need type 〈163, 54, 21, 16, 11〉
58 3423 = 7 · 489 2 489 need type 〈489, 56, 7, 4, 1〉
60 3661 = 7 · 523 2 523 need type 〈523, 58, 7, 4, 1〉

Table 3. Possible combinations for special subplane partitions

4. Matrix interpretation

Now suppose that n and q are given, and that we can find an ordinary

matrixM of type 〈N,n−q, a, b, c〉, where as usual N = n2+n+1
q2+q+1

, a = q2+q+1

or ×, b = q2 or ×, and c = q2− q− 1 or ×. Thus M is an N ×N 0-1 matrix
satisfying certain conditions on MMt = MtM involving n − q, a, b and c.
Let P be the incidence matrix of a projective plane of order q, i.e., P is a
square 0-1 matrix of size q2 + q + 1 satisfying PPt = PtP = qI+ J.

Our goal is to construct the incidence matrix of a projective plane of order
n, i.e., a square 0-1 matrix H of size n2 + n + 1 satisfying HHt = nI + J.
(This implies that HtH = HHt.) The construction requires that we find
suitable permutation matrices Eij for each pair (i, j) with i→ j, which must
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satisfy some matrix equations given below. The matrices Eij will be square
of size q2 + q + 1.

Define H to be a block matrix H = (Hij) for 0 ≤ i, j < N where

Hij =











P if i = j,

Eij if mij = 1,

O if i 6= j and mij = 0.

In terms of this block construction, (HHt)ij =
∑

k HikH
t
jk. Our objective

is to have HHt = nI+ J, and hence

∑

0≤k<N

HikH
t
jk =

{

nI+ J if i = j,

J if i 6= j.

Since the matrices Eik are chosen to be permutation matrices, EikE
t
ik = I.

There are n−q permutation matrices in each “row” ofH, whilePPt = qI+J.
Thus any choice of the matrices Eij will satisfy the equations for i = j, and
the difficulty lies with the off-diagonal block positions. We record this as
follows.

Theorem 21. The construction above will yield the incidence matrix of a
projective plane of order n precisely when we can find permutation matrices
Est for s → t such that, for all pairs (i, j) ∈ N2 with i 6= j, we have
∑

k HikH
t
jk = J.

Now the equations
∑

k HikH
t
jk = J, with each Hik either P, O, or an

unknown permutation matrix Eik, are too unwieldy to handle. Therefore
we will consider a sequence of simplifying assumptions, in hopes that we do
not lose all the solutions in the process.

Assumption A. Assume that P is a circulant matrix, P = C(p). As
long as our plane of order q is desarguean, there is no loss of generality in
this. Moreover, it allows us to handle Pt effectively.

Lemma 22. If P = C(p0, . . . , pm−1), then Pt = C(p0, pm−1, pm−2, . . . , p1),
where m = q2 + q + 1.

Assumption B. Assume that M is a circulant matrix, M = C(f).
This is of course a loss of generality, because not every ordinary matrix
is equivalent to a circulant one. Nonetheless, this class provides enough
examples to keep us busy.

Assumption C. If M is circulant, then we may take H to be block-
circulant:

Hij =











P if i = j,

Fk if j − i ≡ k mod N and fk = 1,

O if j − i ≡ k mod N and fk = 0,

where the matrices Fk are unknown permutation matrices.
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This tactic greatly reduces the number of equations to be considered: we
may fix i = 0 and just solve the equations

∑

k H0kH
t
jk = J for 1 ≤ j < N .

But there is an added benefit: the equations for j and N − j are transposes
of each other. (This is a straightforward calculation.) Thus, if we take H to
be block circulant as above, it suffices to solve the ⌈N−1

2 ⌉ = ⌊N2 ⌋ equations
∑

k H0kH
t
jk = J for 1 ≤ j ≤ ⌊N2 ⌋.

The cost is that we have introduced a lot of symmetry: the map ϕ :
hij 7→ hi+t,j+t where t = q2 + q + 1 is an automorphism of the matrix H,
and hence of the corresponding projective plane. An automorphism of order
N is not necessarily fatal to our attempt to construct a nondesarguean plane
of order n, but it is certainly a significant restriction.

If we want to construct a projective plane of non-prime-power order,
then we should stop with (at most) the first three assumptions, and allow
the permutation matrices Fk to be arbitrary. However, in order to illustrate
the general method, let us proceed and consider systems with an additional
property.

Assumption D. Let S = C(0100 . . . 0), corresponding to the cyclic
permutation on t = q2 + q + 1. Assume that Fk = Sxk when fk = 1, where
each xk is an unknown with 0 ≤ xk < t, and of course Fk = O when fk = 0.

Since desarguean planes are also cyclic, with Assumption A this intro-
duces additional symmetries, viz., a cyclic automorphism ψ of order t which
permutes the indices within the blocks of H simultaneously. Moreover, ψ
commutes with ϕ. The restrictions imposed by this assumption are signifi-
cant, and will be discussed in the final section.

With Assumption D, the problem reduces to solving at least one member
of a set of (possibly inconsistent) linear equations in Zq2+q+1. The following
lemma is crucial to our calculations.

Lemma 23. Let S = C(0100 . . . 0).

(1) (Sx)t = S−x.
(2) S commutes with circulant matrices:

SC(e) = C(e)S = C(em−1, e0, e1, . . . , em−2).

Now let us illustrate how these constructions work with several examples.
We begin by reversing Bruck’s decomposition of a desarguean plane of order
q2 into subplanes of order q. For small values of q, at least, it is feasible to
build a plane of order q2 as a union of planes of order q.

Example 1: Constructing a plane of order 4. In this case M =
C(011), we may take P = C(0110100), and S = C(0100000). The matrix
H then has the form

H =





P Sx1 Sx2

Sx2 P Sx1

Sx1 Sx2 P




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with x1 and x2 unknown integers modulo 7. Then HHt =




PPt + 2I PS−x2 + Sx1P+ Sx2−x1 PS−x1 + Sx1−x2 + Sx2Pt

Sx2Pt +PS−x1 + Sx1−x2 PPt + 2I Sx2−x1 +PS−x2 + Sx1Pt

Sx1Pt + Sx2−x1 +PS−x2 Sx1−x2 + Sx2Pt +PS−x1 PPt + 2I





where PPt = 2I + J. The equations to be satisfied for HHt = J are all
equivalent to

PS−x2 + Sx1Pt + Sx2−x1 = J

or, equivalently,

P+PtSx1+x2 + S2x2−x1 = J.

Now the first row of P is the vector 0110100, and the first row of Pt is
0001011. Therefore, in order to get all 1’s, it suffices to have

x1 + x2 ≡ 0 mod 7

−x1 + 2x2 ≡ 0 mod 7

which has the solution x1 = x2 = 0. Thus we obtain the an incidence matrix
for a plane of order 4 by taking

H =





P I I

I P I

I I P



 .

Example 2: Constructing planes of order 9 and 16. The first
example is too small to illustrate the general procedure for constructing a
desarguean plane of order q2 from a plane of order q. The construction of a
plane of order 9 from one of order 3 is more typical.

For q = 3, we have N = q2 − q + 1 = 7. Thus M = C(0111111),
we may take P = C(0110100000100), and S = C(0100000000000). The
matrix H then has the block form H = C(P,Sx1 ,Sx2 ,Sx3 ,Sx4 ,Sx5 ,Sx6).
The equations we obtain from HHt = J simplify to

P+PtSx1+x6 + S2x1−x2 + Sx1+x2−x3 + Sx1+x3−x4 + Sx1+x4−x5 + Sx1+x5−x6 = J

P+PtSx2+x5 + Sx1+x2−x3 + S2x2−x4 + Sx2+x3−x5 + Sx2+x4−x6 + Sx2+x6−x1 = J

P+PtSx3+x4 + Sx3+x1−x4 + Sx3+x2−x5 + S2x3−x6 + Sx3+x5−x1 + Sx3+x6−x2 = J.

Now, for P = C(f), let F = {i : fi = 1} = {1, 2, 4, 10}. Likewise, for
Pt = C(g), let G = {i : gi = 1} = {3, 9, 11, 12}. Note that F ∩ G = ∅,
and let R0 = Z13 − (F ∪ G) = {0, 5, 6, 7, 8}. Moreover, two translates of
Pt share this property: PtS9 and PtS10 have 1’s in places disjoint from
P. If PtS9 = C(h), let H = {i : hi = 1} = {5, 7, 8, 12}, so that R9 =
Z13 − (F ∪H) = {0, 3, 6, 9, 11}. Similarly, we obtain R10 = {3, 5, 7, 11, 12}.

To solve the first matrix equation, it is necessary and sufficient that
x1 + x6 ∈ {0, 9, 10} and {2x1 − x2, x1 + x2 − x3, x1 + x3 − x4, x1 + x4 −
x5, x1 + x5 − x6} = Rx1+x6

, with all calculations done modulo 13. To solve
the second equation, we need x2 + x5 ∈ {0, 9, 10} and {x1 + x2 − x3, 2x2 −
x4, x2 + x3 − x5, x2 + x4 − x6, x2 + x6 − x1} = Rx2+x5

. The third equation
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requires x3+x4 ∈ {0, 9, 10} and {x3+x1−x4, x3+x2−x5, 2x3−x6, x3+x5−
x1, x3+x6−x2} = Rx3+x4

. There are three solution sets satisfying all three
conditions, one of which is x1 = x6 = 0, x2 = x5 = 5, and x3 = x4 = 11.
(The other solutions are similar).

The case q = 4 is also doable. We have N = 13, and we may take
say P = C(f) where F = {i : fi = 1} = {1, 4, 5, 10, 12}. Proceeding as
above, we obtain six sets of equations modulo 21, one solution of which is
x1 = x12 = 0, x2 = x11 = 2, and x3 = x10 = 9, x4 = x9 = 6, x5 = x8 = 14,
and x6 = x7 = 20.

For q larger, the computations become quite slow.
Example 3: Constructing a plane of order 4 as a union of tri-

angles. We may regard the triangle, with its adjacency matrix P = C(011)
satisfying PPt = I+ J, as a (degenerate) projective plane of order q = 1. If
n ≡ 1 mod 3, then 3 divides n2+n+1. In that case, we can try to construct
a projective plane of order n by gluing triangles over an ordinary graph of

type 〈N,n− 1, a, b,×〉 where N = n2+n+1
3 , a = 3 or ×, and b = 1 or ×.

For n = 4, we can use M = C(0110100) as an ordinary graph of type
〈7, 3,×, 1,×〉. Of course, S = C(010). The matrixH then has the block form
H = C(P,Sx1 ,Sx2 ,O,Sx4 ,O,O). The equations we obtain from HHt = J

are

P+ S2x1−x2 = J

P+ S2x2−x4 = J

P+ S2x4−x1 = J

Thus we need 2x1−x2 ≡ 2x2−x4 ≡ 2x4−x1 ≡ 0 mod 3, with the obvious
solution x1 = x2 = x4 = 0.

Example 4: Constructing planes of order 7, 13, 16, 19 and 31

as unions of triangles. To construct a plane of order 7 as a union of
triangles, we need an ordinary graph of type 〈19, 6, 3, 1,×〉. From Table 2
we find that M = C(0100101101010000000) works. The matrix equations
are

P+ Sx1+x6−x7 = J

P+ Sx4+x7−x11 = J

P+ Sx9+x11−x1 = J

Sx4−x6 + Sx7−x9 + Sx9−x11 = J

Sx1−x4 + Sx4−x7 + Sx6−x9 = J

Sx1−x6 + Sx4−x9 + Sx6−x11 = J.

Thus we need x1+x6−x7 ≡ x4+x7−x11 ≡ x9+x11−x1 ≡ 0 mod 3, and we
need that each of the sets {x4−x6, x7−x9, x9−x11}, {x1−x4, x4−x7, x6−x9},
{x1 − x6, x4 − x9, x6 − x11} is equivalent to {0, 1, 2} modulo 3. There are
two solutions, one of which is x4 = x6 = x9 = 0 and x1 = x7 = x11 = 1.
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Interestingly, for n = 10, we cannot find an ordinary graph of type
〈37, 9, 3, 1,×〉, which could still exist even though a plane of order 10 does
not. (Neither have we proved that such a graph does not exist.) There is,
however, a circulant ordinary graph of type 〈37, 9, 2, 2,×〉.

To construct a plane of order 13 as a union of triangles, we need an
ordinary graph of type 〈61, 12, 3, 1,×〉. One such graph is provided by M =
C(e) where {i : ei = 1} = {1, 4, 5, 7, 13, 24, 30, 32, 40, 47, 50, 52}. We obtain
a system of equations modulo 3 having two solutions, including x0 = x13 =
x47 = 0, x4 = x5 = x7 = x24 = x30 = x52 = 1, and x32 = x40 = x50 = 2.

For a plane of order 16, we need an ordinary graph of type 〈91, 15, 3, 1,×〉.
The matrixM = C(e) where {i : ei = 1} = {1, 2, 4, 8, 13, 16, 23, 26, 32, 37, 46, 52, 57, 64, 74}
works. One solution to the corresponding system of equations is x0 = x4 =
x16 = x23 = x64 = x74 = 0, x2 = x8 = x32 = x37 = x46 = x57 = 1, and
x13 = x26 = x52 = 2.

Likewise, we were able to construct planes of orders 19 and 31 as unions
of triangles; the results of the calculations are omitted. For n ≥ 19, we
searched for the ordinary graphs using a method which is not exhaustive and

depends on N = n2+n+1
3 being prime. This does not apply when n = 25,

and produced no results for n = 22 and n = 28.
On the basis of this evidence, it seems reasonable to conjecture that if

q is a prime power and n ≡ 1 mod 3, then the desarguean plane of order
q has a decomposition into triangles. So far, we have been unable to prove
this, either.

Example 5: Attempts to construct a plane of order 2q2 + q + 1.
If q and N = 4q2+3 are prime powers, then we can try to construct a plane
of order n = 2q2 + q + 1 using the quadratic residue tournament of order
q2. The systems of equations we obtain in this case are again tractable. We
will show that there is no solution when q = 2k (k ≥ 1) and N is prime.

Assume that N = 4q2 + 3 is prime. The quadratic residue tourna-
ment has a circulant matrix M = C(f) with fi = 1 if i is a nonzero qua-
dratic residue in ZN . Let QRN denote the set of nonzero quadratic residues
modulo N . The matrix H to be constructed is block-circulant of the form
C(P,F1, . . . ,FN−1) with Fi = Sxi when i ∈ QRN , and O when i /∈ QRN .
Since N ≡ 3 mod 4, we know that −1 is not a quadratic residue modulo
N . Hence for each i, exactly one of Fi and FN−i is nonzero.

If we consider the N−1
2 = 2q2 + 1 equations

PFt
i + F1F

t
i+1 + · · ·+ FN−1F

t
N−1+i = J

where i is a nonzero quadratic residue, then we will have one of each pair
of equivalent matrix equations, with no term Pt involved. These equations
simplify to

P+
∑

i+k≡j mod N
j,k∈QRN

Sxi−xj+xk = J

for each fixed i ∈ QRN .
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Suppose the matrix P = C(p) has 1’s in positions b1, . . . , bq+1. Let
R = Zq2+q+1 − {b1, . . . , bq+1}, and note that |R| = q2. It suffices to find

values in Zq2+q+1 for the 2q2 + 1 variables xj so that, for each nonzero

quadratic residue i, the q2 expressions xi − xj + xk with i+ k ≡ j mod N
and j, k ∈ QRN take on each of the values of R exactly once.

Let us formalize this. Let XN denote the set of variables xi where i is
a nonzero quadratic residue modulo N , and for each such i let Ti be the
corresponding set of expressions xi − xj + xk with i + k ≡ j mod N . We
seek a map ϕ : XN → Zq2+q+1 such that ϕ(Ti) = R for every i ∈ QRN .

If i 6= k, then the expression xi − xj + xk occurs twice, once in Ti and
once in Tk. However, when 2 is a quadratic residue modulo N , then the
expression 2xi − xj occurs only once (in Ti), while if 2 is a not quadratic
residue the expression 2xi − xj does not occur at all. Recall that, for p
prime, 2 is a quadratic residue modulo p if and only if p ≡ 1 or 7 mod 8.
Now N = 4q2+3 ≡ 3 mod 8 when q is even, i.e., q = 2k, and N ≡ 7 mod 8
when q is odd. Let us show that no solution exists in the former case.

Lemma 24. If q = 2k and N is prime, then there is no map ϕ : XN →
Zq2+q+1 such that ϕ(Ti) = R for every i ∈ QRN .

Proof. There are 2q2 + 1 nonzero quadratic residues modulo N . Since each
Ti contains q

2 expressions and each expression occurs twice,
⋃

i Ti contains
1
2(2q

2 + 1)q2 expressions. Now
⋃

i ϕ(Ti) takes on the q2 values of R. By

the pigeonhole principle, there exists an r ∈ R such that |ϕ−1(r)| > q2, and
hence |ϕ−1(r)| ≥ q2 + 1. The expressions in ϕ−1(r) occur in two Ti’s each,
for a total of at least 2q2 + 2 times. Hence there is an i0 such that Ti0
contains at least two expressions in ϕ−1(r), so that ϕ(Ti0) 6= R. �

We conclude that the special construction we have described does not
work in these cases.

Theorem 25. Let q = 2k with k ≥ 1, and let n = 2q2 + q + 1. Assume
that N = 4q2 +3 is prime. Then there is no choice of integers xi ∈ Zq2+q+1

for i ∈ QRN such that the block-circulant matrix C(P,F1, . . . ,FN−1) is
the incidence matrix of a projective plane, where P is a circulant incidence
matrix for a plane of order q, and Fi = Sxi when i ∈ QRN , and Fi = O

when i /∈ QRN .

In particular, this applies when q = 2, n = 11, N = 19 and when q = 4,
n = 37, N = 67. It also applies for q = 2k with k = 5, 7, 8, 13 and 14. The
proof can be modified to include the case where N is a prime power, but we
do not know whether that ever actually occurs.

For q odd, we have no general theorem. However, the considerations in
the next section show that the above construction fails when N is a prime
power, n < 2, 000, 000 and n is not a prime power.
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5. Modifications required to construct nondesarguean planes

The examples we have constructed so far are all desarguean. In fact,
Assumptions A, B, C and D together virtually ensure that this will be the
case. The authors would like to thank Dean Crnković and Mario-Osvin
Pavčević for pointing out to us the nature of these difficulties, which are
due to the following elementary result.

Theorem 26. Let H = (Hij) for 0 ≤ i, j < N be a block-circulant matrix
which is the incidence matrix of a symmetric block design. If each Hij is a
circulant t× t matrix, then H can be represented as a difference set on the
the abelian group ZN × Zt.

Section 8 of D. Jungnickel’s survey [7] gives a good summary of the dif-
ficulties of constructing nondesarguean planar abelian difference sets. Fol-
lowing Jungnickel, we note that there are three main conjectures about how
these things work.

Conjecture 27. Any finite projective plane admitting a Singer group is
desarguean. (A Singer group is a group of automorphisms which is regular
on the points and lines of a plane.)

Conjecture 28. If there is an abelian planar difference set of order n, then
n is a prime power.

Conjecture 29. Any abelian planar difference set is cyclic.

Note that the latter two conjectures would be a consequence of the first.
There is substantial evidence supporting these conjectures. The following
results are especially relevant.

Theorem 30. Let P be a finite projective plane with a Singer group G.
Then either P is desarguean or G is a normal subgroup of Aut P.

Theorem 31. All cyclic planes of order m or m2 with m ≤ 9 are desar-
guean.

Theorem 32. Every abelian difference set of order n < 2, 000, 000 has
prime power order.

Theorem 30 is due to U. Ott [8], Theorem 31 is due to R. Bruck [1], and
Theorem 32 is a result of D. Gordon [2]) extending earlier work of Keiser,
Evans and Mann.

Clearly, our future investigations should eliminate some of the Assump-
tions from Section 4. Also, much work remains to be done on the existence
of ordinary matrices of various types.
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