ONE-ELEMENT EXTENSIONS IN THE VARIETY GENERATED BY TOURNAMENTS

J. JEŽEK

ABSTRACT. We investigate congruences in one-element extensions of algebras in the variety generated by tournaments.

0. INTRODUCTION

Recently M. Maróti proved that every subdirectly irreducible algebra in the variety \mathcal{T} generated by tournaments is a tournament; equivalently, the variety generated by tournaments coincides with the quasivariety generated by tournaments. This has been a conjecture formulated in the paper [3]; in that paper and in [1] we have proved some particular cases. In [3] we have also formulated a stronger conjecture, which remains open: A groupoid belongs to the variety \mathcal{T} if and only if it satisfies the three-variable equations of tournaments and avoids the algebras \mathbf{J}_3 and \mathbf{M}_n ($n \geq 3$; these algebras are defined below). This has been verified for all groupoids with at most ten elements.

The aim of this paper is to investigate one-element extensions in the variety \mathcal{T} . Let A and B be two groupoids such that $B \in \mathcal{T}$ and B is an extension of A by an element e. Denote by V the set of the elements $a \in A$ such that $a \to e$ in B. The main result of this paper states that the congruence of B generated by all pairs of incomparable elements from V has all nontrivial blocks contained in V. Since there is a hope that this could be useful for the solution of the stronger conjecture, we will formulate and prove this result in terms of algebras satisfying the three-variable equations of tournaments and avoiding \mathbf{J}_3 and \mathbf{M}_n . (See Theorem 2.12.)

For the terminology and notation see [4] and [2].

We denote by **T** the class of tournaments, and by \mathcal{T} the variety generated by **T**. For any $n \geq 1$, let \mathcal{T}_n denote the variety generated by all *n*-element tournaments, and let \mathcal{T}^n denote the variety determined by the at most *n*variable equations of tournaments. So, $\mathcal{T}_n \subseteq \mathcal{T}_{n+1} \subseteq \mathcal{T} \subseteq \mathcal{T}^{n+1} \subseteq \mathcal{T}^n$ for all *n*.

¹⁹⁹¹ Mathematics Subject Classification. 08B30.

Key words and phrases. Tournament, variety.

While working on this paper the author was partially supported by the Grant Agency of the Czech Republic, grant 201/99/0263 and by the institutional grant MSM113200007.

J. JEŽEK

For a variety V and a positive integer n, we denote by $\mathbf{F}_n(V)$ the free algebra in V on n generators. According to Theorem 3 of [3], $\mathbf{F}_n(\mathcal{T}) = \mathbf{F}_n(\mathcal{T}_n) = \mathbf{F}_n(\mathcal{T}^n)$.

According to [3], the following four equations are a base for the equational theory of \mathcal{T}^3 :

- (e1) xx = x,
- (e2) xy = yx,
- (e3) $xy \cdot x = xy$,
- (e4) $(xy \cdot xz)(xy \cdot yz) = xyz$

and the following are consequences of these four equations:

- (e5) $(xy \cdot xz)x = xy \cdot xz$,
- $(e6) (xy \cdot xz) \cdot yz = xyzy,$
- (e7) xyzy = xzyz,
- (e8) $(yzx)(xy \cdot xz) = xy \cdot xz$,
- (e9) xzyxz = xyz.

According to Lemma 5 of [3], for any three elements a, b, c of an algebra $A \in \mathcal{T}^3$ we have:

- (p1) If $ab \rightarrow c$, then a, b, c generate a semilattice.
- (p2) If $ab \to c \to a$, then bc = ab.
- (p3) If $a \to c \to ab$, then $c \to b$.
- (p4) If $a \to c$ and $b \to c$, then $ab \to c$.
- (p5) If $a \to c \to b$ and a, b, c, ab are four distinct elements, then the subgroupoid generated by a, b, c either contains just these four elements and $c \to ab$, or else it contains precisely five elements $a, b, c, ab, ab \cdot c$ and $a \to ab \cdot c \to b$.

Our proof in [2] of the fact that the variety \mathcal{T} is not finitely based relied on an infinite sequence \mathbf{M}_n $(n \geq 3)$ of algebras with the following properties: \mathbf{M}_n is subdirectly irreducible, $|\mathbf{M}_n| = n + 2$ and $\mathbf{M}_n \in \mathcal{T}^n - \mathcal{T}^{n+1}$. These algebras are defined as follows. $\mathbf{M}_n = \{a, c, c, d_1, \dots, d_{n-2}, e\};$

$$ab = e,$$

$$e \to a \to c,$$

$$e \to b \to c,$$

$$e \to c,$$

$$a \to d_1 \to d_2 \to \dots \to d_{n-2} \to b,$$

$$d_i \to c \text{ for } i < n-2,$$

$$c \to d_{n-2},$$

$$d_i \to e \text{ for all } i,$$

$$d_i \to b \text{ for all } i,$$

$$d_i \to b \text{ for all } i,$$

$$d_i \to d_i \text{ for } j > i+1.$$

 $\mathbf{2}$

We will also need the five-element subdirectly irreducible algebra $\mathbf{J}_3 \in \mathcal{T}^3$, introduced in [3] and defined on $\{a, b, c, d, e\}$ by $a \to d \to b \to c \to a, c \to e$, $d \to c, d \to e$ and ab = e. The algebras \mathbf{M}_3 , \mathbf{M}_4 and \mathbf{J}_3 are pictured in Fig. 1. (The monolith of \mathbf{M}_n identifies ab with b; the monolith of \mathbf{J}_3 identifies ab with b with c.)

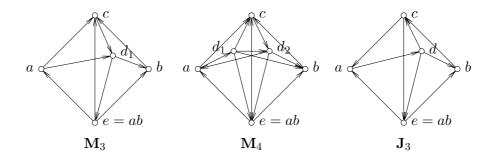


Fig. 1

Two elements a, b of an algebra $A \in \mathcal{T}^3$ are said to be comparable if either $a \to b$ or $b \to a$; we write $a \ddagger b$ in that case. If a, b are incomparable, we write a ||b.

We say that an algebra A avoids an algebra B if A contains no subalgebra isomorphic to B. We denote by \mathcal{T}^* the class of the algebras belonging to \mathcal{T}^3 and avoiding the algebras \mathbf{J}_3 and \mathbf{M}_n for all $n \geq 3$.

1. One-element extensions

Throughout this paper let A be an algebra belonging to \mathcal{T}^* ; let $A = U \cup V$ be a partition of A into two disjoint subgroupoids such that $u \in U$, $v \in V$ and u||v imply $uv \in U$; let e be an element not belonging to A; define an algebra B with the underlying set $A \cup \{e\}$ in such a way that A is a subgroupoid and $v \to e \to u$ for all $u \in U$ and $v \in V$. Then, as it is easy to see, B belongs to \mathcal{T}^3 . We will assume that B avoids \mathbf{J}_3 and \mathbf{M}_n for all $n \geq 3$, so that $B \in \mathcal{T}^*$.

1.1. **Proposition.** The following are true:

- (1) There are no elements $u \in U$, $v \in V$ and $a \in A$ with $u || v, u \to a \to v$ and $a \to uv$.
- (2) There are no elements $u \in U$ and $v, w \in V$ with $u || v, u \to w$ and $v \to w$.
- (3) There are no elements $u \in U$ and $v_1, v_2 \in V$ with $v_1 || v_2, v_1 \rightarrow u \rightarrow v_2$ and $u \rightarrow v_1 v_2$.

Proof. Suppose there are such elements.

(1) Since $u \to a \to v \to e \to u$, $a \to uv$, $e \to uv$ and $a \updownarrow e$, these five elements constitute a subalgebra isomorphic to \mathbf{J}_3 (no matter whether $a \to e$ or $e \to a$).

(2) The elements $v \to e \to u$ with uv and w constitute a subalgebra isomorphic to \mathbf{M}_3 .

(3) The elements $v_1 \rightarrow u \rightarrow v_2$ with v_1v_2 and e constitute a subalgebra isomorphic to \mathbf{M}_3 .

We get a contradiction in each case.

1.2. **Proposition.** Let $u \in U$, $v \in V$, u || v. Then there is no element $a \in A$ with $u \to a \to v$.

Proof. Suppose there is. Put a' = uva. By (p5) we have $u \to a' \to v$. Since $a' \to uv$, we get a contradiction with 1.1(1).

1.3. **Proposition.** Let $u \in U$, $v \in V$, u || v. Then there is no element $w \in V$ with $u \to w$.

Proof. Suppose there is. By 1.1(2), $v \nleftrightarrow w$. By 1.2, $w \nleftrightarrow v$. Hence v || w. If vw || u, we get a contradiction with 1.1(2), since $u \to w$ and $vw \to w$. If $u \to vw$, we get a contradiction with 1.2, since $u \to vw \to v$. Hence $vw \to u$. Then also $vw \to uv$. We have uvw = vuw = vwuvw = vwvw = vw. Clearly, $vw \neq uv$ and $vw \neq w$. Hence uv || w. But then $uvw \in U$, a contradiction with $uvw = vw \in V$.

For $v_1, v_2 \in V$ we write $v_1 \equiv v_2$ if for every $u \in U$, one of the following three cases takes place:

(1) $u \to v_1$ and $u \to v_2$;

(2) $v_1 \to u$ and $v_2 \to u$;

(3) $u||v_1, u||v_2$ and $uv_1 = uv_2$.

Clearly, \equiv is an equivalence on V.

1.4. **Proposition.** Let $v_1, v_2 \in V$, $v_1 || v_2$. Then $v_1 \equiv v_2 \equiv v_1 v_2$.

Proof. Let $u \in U$.

Let $u \to v_1$. By 1.3, u is comparable with both v_2 and v_1v_2 . If $v_2 \to u$, then $u \to v_1v_2$ by (p5) and we get a contradiction by 1.1(3). Hence $u \to v_2$, and then $u \to v_1v_2$.

Now let $u \to v_1 v_2$. By 1.3, u is comparable with both v_1 and v_2 . We cannot have $v_1 \to u$ and $v_2 \to u$ at the same time, since then $v_1 v_2 \to u$. Hence either $u \to v_1$ or $u \to v_2$. But then we have both $u \to v_1$ and $u \to v_2$ by the first part of the proof.

This proves that for any $u \in U$, $u \to v_1$ iff $u \to v_2$ iff $u \to v_1 v_2$.

Let $u||v_1$. Then $uv_1 \to v_1$ implies $uv_1 \to v_2$ and $uv_1 \to v_1v_2$. We have $v_1v_2u = v_1uv_2v_1u = v_1uv_1u = v_1u$. Hence $u||v_1v_2$. We cannot have $u \to v_2$. If $v_2 \to u$, then $v_1v_2 \to v_2 \to u$ and $uv_1 \to v_2$ contradict (p5). Hence $u||v_2$. Similarly as for v_1 , we get $v_1v_2u = v_2u$.

The rest is clear.

4

1.5. **Proposition.** Let $u_1, u_2 \in U$ and $v \in V$ be such that $u_1 || u_2$ and $u_1 \rightarrow v \rightarrow u_2$. Then $v \rightarrow u_1 u_2$ and there is no $w \in V$ with $u_2 \rightarrow w \rightarrow u_1$.

Proof. If $v||u_1u_2$, then $u_1u_2 \to u_1 \to v$ contradicts 1.2. By (p5) we get $v \to u_1u_2$. Suppose there is an element $w \in V$ with $u_2 \to w \to u_1$. Then $w \to u_1u_2$, and $v \updownarrow w$ by 1.4. But then the elements u_1, u_2, v, w, u_1u_2 constitute a subalgebra isomorphic to \mathbf{J}_3 , a contradiction.

1.6. **Proposition.** Let $u \in U$ and $v_1, v_2 \in V$ be such that $u||v_1|$ and $u||v_2$. Then $uv_1 = uv_2$.

Proof. Suppose $uv_1 \neq uv_2$. By 1.4, $v_1 \updownarrow v_2$. Without loss of generality, we can assume that $v_1 \rightarrow v_2$. By 1.3, $uv_1 \updownarrow v_2$. If $uv_1 \rightarrow v_2$ then $uv_2v_1 = uv_1v_2uv_1 = uv_1$, so that $uv_2||v_1$, a contradiction by 1.3. Hence $v_2 \rightarrow uv_1$. From $uv_2v_1 = v_2uv_1 = v_2v_1uv_2v_1 = v_1$ we get $v_1 \rightarrow uv_2$. If $uv_1||uv_2$, we get a contradiction by the second part of 1.5. Hence $uv_1 \updownarrow uv_2$. But then, by (p5), both $uv_1 \rightarrow uv_2$ and $uv_2 \rightarrow uv_1$, a contradiction.

1.7. **Proposition.** Let $u \in U$, $v \in V$, u || v. Then for every $w \in V$ either uw = uv or else $w \to u$ and $w \to uv$.

Proof. By 1.3 we cannot have $u \to w$. If u || w, then uw = uv by 1.6. It remains to consider the case $w \to u$. By 1.4, $v \updownarrow w$. If $w \to v$, then clearly $w \to uv$. Finally, let $v \to w$. By 1.3 we have $uv \updownarrow w$, and hence $w \to uv$ by (p5).

2. Incomparabilities in V

By a basic pair we will mean a pair a, b of elements of V such that either a||b or b = ad for some $d \in V$ with d||a or a = bd for some $d \in V$ with d||b. In this section we assume that there exists a basic pair a, b and a sequence c_1, \ldots, c_n of elements of V such that $ac_1 \ldots c_n \neq bc_1 \ldots c_n$. Then let us consider one such sequence a, b, c_1, \ldots, c_n minimal in the sense that n is as small as possible and, among all such sequences of the same length, the number $Y = |\{i : ac_1 \ldots c_{i-1} | | c_i\}| + |\{i : bc_1 \ldots c_{i-1} | | c_i\}|$ is as small as possible. By 1.4, we have $n \geq 1$.

Two elements v, v' of V are said to be connected through basic pairs if there exists a finite sequence v_0, \ldots, v_k of elements of V such that $v_0 = v$, $v_k = v'$ and for each $j = 1, \ldots, k, v_{j-1}, v_j$ is a basic pair.

2.1. **Proposition.** Let $i \in \{1, ..., n\}$. Then $ac_1 ... c_i \neq bc_1 ... c_i$ and the elements $ac_1 ... c_i$ and $bc_1 ... c_i$ are not connected through basic pairs.

Proof. Suppose the elements are connected through v_0, \ldots, v_k . For each $j = 1, \ldots, k$ we have $v_{j-1}c_{i+1} \ldots c_n \equiv v_jc_{i+1} \ldots c_n$ by the minimality of n. Hence, by the transitivity of \equiv , $ac_1 \ldots c_n \equiv bc_1 \ldots c_n$, a contradiction. \Box

2.2. **Proposition.** $c_1 \uparrow a$ and $c_1 \uparrow b$.

J. JEŽEK

Proof. It is easy to see that if either $c_1 || a$ or $c_1 || b$, then (in every one of a small number of possible cases) ac_1 and bc_1 are connected through basic pairs, a contradiction with 2.1.

2.3. **Proposition.** If b = ad for some d||a, then $a \to c_1 \to b$ and $c_1 \to d$.

Proof. Suppose $c_1 \to a$. Due to 2.1 and 2.2, $b \to c_1$. But then $c_1d = b$ and c_1, b is a basic pair, a contradiction. Hence $a \to c_1$. Then $c_1 \to b$ and, by (p3), $c_1 \to d$.

2.4. **Proposition.** If a||b then either $a \to c_1 \to b$ and $c_1 \to ab$, or else $b \to c_1 \to a$ and $c_1 \to ab$.

Proof. Clearly, either $a \to c_1 \to b$ or $b \to c_1 \to a$. By symmetry, it is sufficient to consider the first case. Then $ac_1 = a$ and $bc_1 = c_1$. If $c_1 || ab$, then a, ab and ab, c_1 are basic pairs, a contradiction. Hence $c_1 \updownarrow ab$ and $c_1 \to ab$ by (p5).

It follows from these lemmas that without loss of generality, we can assume that $a||b, a \to c_1 \to b$ and $c_1 \to ab$. So, we will go on under this assumption. We will assume that we have already proved for some index i the following: $a \to c_1 \to \cdots \to c_i \to b, c_j \to b$ for all $j \leq i, c_j \to a$ for all $2 \leq j \leq i, c_k \to c_j$ for $1 \leq j < j+2 \leq k \leq i, c_j \to ab$ for all $j \leq i$, and $a \equiv c_1 \equiv \cdots \equiv c_{i-1} \equiv b$. (This has been proved for i = 1.)

Put $c_0 = a$. Clearly, $\{ac_1 \dots c_j, bc_1 \dots c_j\} = \{c_{j-1}, c_j\}$ for $1 \le j \le i$.

2.5. **Proposition.** $c_i \equiv a$. Consequently, n > i.

Proof. Let $u \in U$. Let $a \to u$, so that also $b \to u$, $ab \to u$ and $c_j \to u$ for j < i. Suppose $u \to c_i$. Then all these elements constitute a subalgebra isomorphic to \mathbf{M}_{i+2} , a contradiction. So, $a \to u$ implies that either $c_i \to u$ or $u || c_i$.

Let $c_i \to u$. Suppose $u \to a$. Then all these elements together with e(with respect to $a \to c_1 \to \cdots \to c_i \to u \to b$) constitute a subalgebra isomorphic to \mathbf{M}_{i+3} , a contradiction. So, $c_i \to u$ implies that either $a \to u$ or a||u.

If $u \to c_i$ then by 1.3 we cannot have a || u, so we get $a \to u$. If $u \to a$ then we cannot have $u || c_i$, so we get $u \to c_i$. So, $u \to a$ if and only if $u \to c_i$.

Let $u||c_i$. Then $uc_i \in U$ and $uc_i \to c_i$. Hence $uc_i \to a$. By 1.7 we get $ua = uc_i$. Quite similarly, if u||a then $uc_i = ua$. The rest is clear.

2.6. **Proposition.** $c_{i+1} \uparrow c_i$.

Proof. Suppose $c_{i+1}||c_i$. If also $c_{i+1}||c_{i-1}$ then $c_{i-1}c_{i+1}, c_ic_{i+1}$ can be connected through basic pairs, a contradiction. If $c_{i+1} \rightarrow c_{i-1}$ then $c_{i-1}c_{i+1}$, c_ic_{i+1} is a basic pair, a contradiction. Hence $c_{i-1} \rightarrow c_{i+1}$ and thus $c_{i-1} \rightarrow c_ic_{i+1}$. We have $\{c_{i-1}c_{i+1}, c_ic_{i+1}\} = \{c_{i-1}, c_ic_{i+1}\}$. But then c_{i+1} can be replaced with c_ic_{i+1} , a contradiction with the minimality of Y.

2.7. **Proposition.** $c_{i+1} \updownarrow c_{i-1}$.

$\mathbf{6}$

Proof. Suppose $c_{i+1}||c_{i-1}$. If $c_{i+1} \to c_i$ then $c_{i-1}c_{i+1}, c_ic_{i+1}$ is a basic pair, a contradiction. If $c_i \to c_{i+1}$ then $\{c_{i-1}c_{i+1}, c_ic_{i+1}\} = \{c_{i-1}c_{i+1}, c_i\}, c_{i-1}c_{i+1} \updownarrow c_i, c_i \to c_{i-1}c_{i+1}$ and c_{i+1} can be replaced with $c_{i_1}c_{i+1}$, a contradiction with the minimality of Y.

2.8. **Proposition.** $c_i \rightarrow c_{i+1} \rightarrow c_{i-1}$.

Proof. Suppose, on the contrary, that $c_{i-1} \to c_{i+1} \to c_i$, so that $\{c_{i-1}c_{i+1}, c_ic_{i+1}\} = \{c_{i-1}, c_{i+1}\}$. Of course, i > 1.

Suppose there is an index j with $1 \leq j < i-1$ and $c_j \not\rightarrow c_{i+1}$, and let j be the largest index with that property. If $c_j || c_{i+1}$, then this is a basic pair and $\{c_j c_{j+1}, c_{i+1} c_{j+1}\} = \{c_j, c_{j+1}\}$, a contradiction with the minimality of n. Hence $c_{i+1} \rightarrow c_j$. By the minimality of n, $c_j c_{i+1} \dots c_n \equiv c_{j+1} c_{i+1} \dots c_n$, i.e., $c_{i+1} \dots c_n \equiv c_{j+1} c_{i+2} \dots c_n$. But also $c_{j+1} c_{i+2} \dots c_n \equiv c_{j+2} c_{i+2} \dots c_n \equiv \cdots \equiv c_{i-1} c_{i+2} \dots c_n$ and hence $c_{i-1} c_{i+2} \dots c_n \equiv c_{i+1} c_{i+2} \dots c_n$, a contradiction. We have proved that $c_j \rightarrow c_{i+1}$ for all $1 \leq j \leq i-1$.

Suppose $a||c_{i+1}$. Then $ac_{i+2} \dots c_n \equiv c_{i+1}c_{i+2} \dots c_n$, but also $ac_{i+2} \dots c_n \equiv c_1c_{i+2} \dots c_n \equiv \dots c_{i-1}c_{i+2} \dots c_n$, so that $c_{i-1}c_{i+2} \dots c_n \equiv c_{i+1}c_{i+2} \dots c_n$, a contradiction.

Suppose $c_{i+1} \rightarrow a$. Then $ac_{i+1}c_{i+2} \dots c_n \equiv c_1c_{i+1} \dots c_n$, i.e., $c_{i+1}c_{i+2} \dots c_n \equiv c_1c_{i+2} \dots c_n$. But also $c_1c_{i+2} \dots c_n \equiv c_2c_{i+2} \dots c_n \equiv \cdots \equiv c_{i-1}c_{i+2} \dots c_n$, so that $c_{i-1}c_{i+2} \dots c_n \equiv c_{i+1}c_{i+2} \dots c_n$, a contradiction.

Hence $a \to c_{i+1}$.

Suppose $b||c_{i+1}$. Then $c_{i+1}c_ic_{i+2}\ldots c_n \equiv bc_ic_{i+2}\ldots c_n$, i.e., $c_{i+1}c_{i+2}\ldots c_n \equiv c_ic_{i+2}\ldots c_n$. But also $c_{i-1}c_{i+2}\ldots c_n \equiv c_ic_{i+2}\ldots c_n$ and thus $c_{i-1}c_{i+2}\ldots c_n \equiv c_{i+1}c_{i+2}\ldots c_n$, a contradiction.

Suppose $c_{i+1} \rightarrow b$. Then $ac_{i+1}c_{i+2} \dots c_n \equiv bc_{i+1}c_{i+2} \dots c_n$, i.e., $ac_{i+2} \dots c_n \equiv c_{i+1}c_{i+2} \dots c_n$. But also $ac_{i+2} \dots c_n \equiv c_1c_{i+2} \dots c_n \equiv \cdots \equiv c_{i-1}c_{i+2} \dots c_n$, so that $c_{i-1}c_{i+2} \dots c_n \equiv c_{i+1}c_{i+2} \dots c_n$, a contradiction.

Hence $b \to c_{i+1}$. Then also $ab \to c_{i+1}$. But then all these elements constitute a subalgebra isomorphic to \mathbf{M}_{i+2} , a contradiction.

2.9. **Proposition.** $c_{i+1} \rightarrow c_j$ for all $1 \le j \le i-1$.

Proof. Suppose, on the contrary, that j is the largest index with $1 \leq j < i - 1$ and $c_{i+1} \not\rightarrow c_j$. If $c_{i+1} || c_j$ then $c_{i+1}c_{i+2} \dots c_n \equiv c_j c_{i+2} \dots c_n \equiv c_{j+1}c_{i+2} \dots c_n \equiv \cdots \equiv c_i c_{i+2} \dots c_n$, a contradiction. If $c_j \rightarrow c_{i+1}$ then $c_j c_{i+1}c_{i+2} \dots c_n \equiv c_{j+1}c_{i+1}c_{i+2} \dots c_n$, i.e., $c_j c_{i+2} \dots c_n \equiv c_{i+1}c_{i+2} \dots c_n$, but also $c_j c_{i+2} \dots c_n \equiv c_{j+1}c_{i+2} \dots c_n \equiv \cdots \equiv c_i c_{i+2} \dots c_n$, so that $c_i c_{i+2} \dots c_n \equiv c_{i+1}c_{i+2} \dots c_n \equiv c_{i+1}c_{i+2} \dots c_n \equiv \cdots \equiv c_i c_i c_i + 1 = 0$.

2.10. **Proposition.** $c_{i+1} \rightarrow a$.

Proof. If $a||c_{i+1}$, then a contradiction can be obtained in the same way as in 2.9, with $c_j = c_0$. If $a \to c_{i+1}$ then $ac_{i+1}c_{i+2} \dots c_n \equiv c_1c_{i+1}c_{i+2} \dots c_n$, i.e., $ac_{i+2} \dots c_n \equiv c_{i+1}c_{i+2} \dots c_n$, but also $ac_{i+2} \dots c_n \equiv c_1c_{i+2} \dots c_n \equiv \cdots \equiv c_ic_{i+2} \dots c_n$, so that $c_ic_{i+2} \dots c_n \equiv c_{i+1}c_{i+2} \dots c_n$, a contradiction. \Box

2.11. **Proposition.** $c_{i+1} \rightarrow b$ and $c_{i+1} \rightarrow ab$.

Proof. If $c_{i+1}||b$ then $c_{i+1}c_{i+2} \ldots c_n \equiv bc_{i+2} \ldots c_n \equiv ac_{i+2} \ldots c_n \equiv c_1c_{i+2} \ldots c_n \equiv c_1c_{i+2} \ldots c_n \equiv c_1c_{i+2} \ldots c_n \equiv c_1c_{i+2} \ldots c_n$, a contradiction. Suppose $b \to c_{i+1}$. Then $c_{i+1}||ab$, since otherwise $c_{i+1} \to ab$ and $b \to c_{i+1} \to a$ with c_1 and ab would give a subalgebra isomorphic to \mathbf{J}_3 . Hence $c_{i+1}c_{i+2} \ldots c_n \equiv (ab)c_{i+2} \ldots c_n \equiv ac_{i+2} \ldots c_n \equiv c_1c_{i+2} \ldots c_n \equiv c_ic_{i+2} \ldots c_n$, a contradiction. Hence $c_{i+1} \to b$ and, consequently, $c_{i+1} \to ab$.

The assumption taken at the beginning of this section turns out to be contradictory, as by 2.5 we get n > i for all positive integers *i*. As a consequence, we get the following result.

2.12. **Theorem.** Let A, B be two algebras in \mathcal{T}^* such that B is an extension of A by an element e, and let $V = \{a \in A : a \to e\}$. The congruence of B generated by the pairs $(a, b) \in V^2$ such that a || b is contained in $V^2 \cup id_B$.

3. More results

3.1. **Proposition.** Let $u \in U$, $v \in V$ and u || v. Then there is no $a \in A$ with $u \to a \to uv$.

Proof. Suppose there is. We have $a \to v$ by (p3), a contradiction with 1.2.

3.2. **Proposition.** Let $u_1, u_2 \in U$ and $v \in V$ be such that $u_1 || u_2$ and $u_1 \rightarrow v \rightarrow u_2$. Then there is no $w \in V$ with $u_2 \rightarrow w$.

Proof. Suppose there is. Since $u_1 \to v$, by 1.3 we cannot have $u_1 || w$. By 1.5 we have $v \to u_1 u_2$ and we cannot have $w \to u_1$. Hence $u_1 \to w$. Since $v \to u_2 \to w$, by 1.4 we cannot have v || w. If $w \to v$ then these elements constitute a subalgebra isomorphic to \mathbf{M}_3 , a contradiction. Hence $v \to w$. But then these elements together with e (with $u_1 \to v \to e \to u_2$) constitute a subalgebra isomorphic to \mathbf{M}_4 , a contradiction. \Box

3.3. **Proposition.** Let $u \in U$, $v \in V$, u || v. Then for any $s \in A$, $s \to uv$ implies $s \to u$.

Proof. Let $s \to uv$. Let us first consider the case $s \in V$. If s||u then by 1.6 we have us = uv, a contradiction with $s \to uv$. If $u \to s$, we get a contradiction by 3.1. Hence $s \to u$.

Now consider the case $s \in U$. Again by 3.1, we cannot have $u \to s$. Suppose s||u. Since $s \to uv \to v$, by 1.2 we cannot have s||v. If $v \to s$ then $s \to u$ by (p3). So, let $s \to v$. Since $us \to s \to v$, by 1.2 we cannot have us||v. If $us \to v$ then $us \to uv$, a contradiction with (p5). Hence $v \to us$. But then $v \to u$ by (p3), a contradiction.

3.4. **Proposition.** Let $u \in U$, $v \in V$, u || v. Then for any $s \in A$, $u \to s$ implies $uv \to s$.

Proof. Let $u \to s$. Then $s \in U$ by 1.3. By 3.1, $s \not\to uv$. So, suppose s || uv. By 3.1, we cannot have $u \to uvs$. Hence, by (p5), u || uvs and $uv \to uvsu$.

By (p1) we get v || uvsu and $v \cdot uvsu = uv$. But $uvsu \to uvs \to uv$, a contradiction by 3.1.

3.5. **Proposition.** Let $u \in U$, $v \in V$, u || v. Then there are no elements $r, s \in U$ with $u \to r \to s \to uv$.

Proof. Suppose there are. By 3.3 and 3.4, $s \to u$ and $uv \to r$.

Suppose $s \to v$. Then, by 1.2, we cannot have r||v. Again by 1.2, we cannot have $r \to v$. Hence $v \to r$. But then these elements together with e (with respect to $v \to e \to s \to u$) constitute a subalgebra isomorphic to \mathbf{M}_4 , a contradiction.

Since $s \to uv \to v$, by 1.2 we cannot have s || v. It follows that $v \to s$.

By 1.2 we cannot have $r \to v$. If $v \to r$ then these elements, with respect to $v \to s \to u$, constitute a subalgebra isomorphic to \mathbf{M}_3 , a contradiction. Hence v||r. We have vru = vurvu = uvuv = uv. Consequently, the elements r, s, u, vr, uv (with respect to $vr \to s \to u$) constitute a subalgebra isomorphic to \mathbf{M}_3 , a contradiction.

3.6. **Proposition.** Let $a, b, p \in U$ and $v \in V$ be such that $a || v, b \rightarrow a, p \rightarrow a$ and av = bv. Then bpv = pv.

Proof. Let $p \to v$. Then $p \to av = bv \to b$, so $p \to b$ by 3.3. Hence bp = p and bpv = pv.

Let $v \to p$. Then bpv = pbv = pvbpv = vbpv = vapv = avpv = apvp = pvp = pv.

It remains to consider the case p||v. Since $pv \to p \to a$, by 3.4 we have $pv \to a$. Hence $pv \to av$. We have avp = apvap = pvap = pvp = pv. By three-variable equations, $bpv \cdot pv = bvpv = avpv = pvv = pv$, so that $pv \to bpv$. We have bpvp = bvpv = pv.

If either bp||v or $bp \to v$ then $bpv \to p$, bpvp = bpv, so bpv = pv and we are through. So, the case $v \to bp$ remains. Then v = bpv = bvpbv = avpbv = pvbv = vb, a contradiction.

3.7. **Proposition.** Let $u \in U$, $v \in V$, u||v; let $a \in U$. Then $uv \cdot ua = uva$ and uvaw = uaw for all $w \in V$.

Proof. Since $uva \to uv$, we have $uva \to u$ by 3.3. Hence $uv \cdot ua = uv \cdot ua \cdot u = a \cdot uv \cdot u = a \cdot uv \cdot u \cdot uv = uvau \cdot uv = uva \cdot uv = uva$. In order to prove the rest, it is sufficient to assume that $a \to u$. By 1.7 we have either uw = uv or uvw = uw = w, so uvw = uw in any case. Hence, by 3.6, it is sufficient to consider the case $u \uparrow w$. By 1.7 we have $w \to u$ and $w \to uv$.

If $w \to a$ then $w \to uva$ and uvaw = w = aw.

Let $a \to w$. Then $a \updownarrow v$. If $a \to v$ then uva = uavua = a and we are through. So, let $v \to a$. Then $v \to a \to u$ gives $v \to uva$ by (p5). We have $uv \to v \to a$, $a \to w \to uv$ and (obviously) uv||a, a contradiction by 1.5.

It remains to consider the case a||w. Then $aw \to u$ by 3.4. Since $aw \to w$, by 1.3 we cannot have aw||v. If $aw \to v$ then $aw \to uv$, hence $aw \to uva$, and $aw \to uva \to a$ implies uvaw = aw by (p1). So, let $v \to aw$. We have $uvaw = uvwa(uv)w = (aw \cdot uv)w$. By the previous part of the proof (the case $a \to w$) we have $(uv \cdot aw)w = aww = aw$. Hence uvaw = aw.

3.8. **Proposition.** Let $u \in U$, $v \in V$, u || v; let $a \in U$ be such that $a \to u$ and a || uv. Then there is no element $b \in U$ with $a \to b \to uva$.

Proof. Suppose there is. We have uvav = uava = av. So, if $uva \to v$ then av = uva, a contradiction with $a \to b \to uva$ by 3.1. Since $uva \to uv \to v$, we cannot have uva||v. Hence $v \to uva$. From uvav = av we get $v \to a$. By (p3), $b \to uv$. Since $b \to uv \to v$, we cannot have b||v. Now either $b \to v$ or $v \to b$, and in each case the elements uv, v, a, b, uva constitute a subalgebra isomorphic to \mathbf{J}_3 , a contradiction.

3.9. **Proposition.** Let $u_1, u_2 \in U$, $v, w \in V$, $u_1 || u_2, u_1 \rightarrow v \rightarrow u_2$ and $u_2 || w$. Then one of the following two cases takes place:

(1) $u_1u_2 = u_2w, v \to u_1u_2, u_1 \uparrow w, v \uparrow w;$

(2) $v \to w \to u_1, v \to u_1u_2, v \to u_2w \to u_1, u_1u_2w = u_2w.$

Proof. We have $u_1 \uparrow w$ by 1.3 and $v \uparrow w$ by 1.4. Let $u_1u_2 \neq u_2w$. Since $v \to u_2$, we have $v \to u_2w$ by 1.7. Since $u_1 \to v \to u_2w \to w$, we have $u_1 \uparrow u_2w$ by 3.2. If $u_1 \to u_2w$ then $u_1 \to u_2$ by 3.3, a contradiction. Hence $u_2w \to u_1$. Since also $u_2w \to u_2$, we get $u_2w \to u_1u_2$. Since $u_2w \to u_1u_2 \to u_2$, by (p2) we get $u_1u_2w = u_2w$. If $u_1 \to w$ then $u_1u_2 = u_2w$ by (p2), a contradiction. Since $u_1 \uparrow w$, we get $w \to u_1$. It remains to prove $v \to w$. We have $v \uparrow w$, and if $w \to v$ then the elements w, v, u_1u_2, u_2w, u_1 (with respect to $w \to v \to u_1u_2$) constitute a subalgebra isomorphic to \mathbf{M}_3 , a contradiction.

3.10. **Proposition.** Let $u_1, u_2 \in U$, $v \in V$, $u_1 || u_2, u_1 \rightarrow v \rightarrow u_2$. Then for every $w \in V$ one of the following cases takes place:

- (1) $u_2 || w, u_1 u_2 = u_2 w, v \rightarrow u_1 u_2, u_1 \updownarrow w, v \updownarrow w;$
- (2) $u_2 || w, v \rightarrow w \rightarrow u_1, v \rightarrow u_1 u_2, v \rightarrow u_2 w \rightarrow u_1, u_1 u_2 w = u_2 w;$
- (3) $w \to u_2, w \to u_1u_2, v \to u_1u_2, w \uparrow u_1, and if w \to u_1 then w \uparrow v.$

Proof. By 3.2 and 3.9, it remains to consider the case $w \to u_2$. According to 1.3 we have $w \updownarrow u_1$, and according to 1.4 if $w \to u_1$ then $w \updownarrow v$. By 1.5, $v \to u_1 u_2$.

Suppose $w||u_1u_2$. By 3.4 we have $u_1u_2w \to u_1$ and $u_1u_2w \to u_2$. If $u_1 \to w$ then $u_1 \to w \to u_2$ implies $u_1 \to u_1u_2w$ by (p5), a contradiction. Hence $w \to u_1$. But then $w \to u_1u_2$, a contradiction.

Hence $w \updownarrow u_1 u_2$. It follows that if $u_1 \to w$ then $w \to u_1 u_2$. If $w \to u_1$, then $w \to u_1 u_2$ is clear. So, $w \to u_1 u_2$ in all cases.

3.11. **Proposition.** Let $u_1, u_2 \in U$, $v \in V$, $u_1 || u_2, u_1 \rightarrow v \rightarrow u_2$. Then there is no element $u \in A$ with $u_2 \rightarrow u \rightarrow u_1 u_2$, and there is no element $u \in A$ with $u_2 \rightarrow u \rightarrow u_1$.

Proof. In each case, we would have $u \in U$ according to 3.2. By 1.5 we have $v \to u_1 u_2$. Suppose $u_2 \to u \to u_2 u_2$. By (p3), $u \to u_1$. Since $u \to u_2 u_2$.

 $u_1 \to v$, by 1.2 we cannot have u || v. But then, the elements $u_1, u, u_2, u_1 u_2, v$ constitute a subalgebra isomorphic to \mathbf{J}_3 , a contradiction.

Now suppose $u_2 \to u \to u_1$. Then $u_2 \to u_1 u_2 u \to u_1 u_2$, which has been proved to be impossible.

3.12. **Proposition.** Let $u \in U$, $v \in V$, u || v and $c_i \in U$ (i = 1, ..., n) be elements with $c_n \to c_{n-1} \to ... c_1 \to u$. Then $uvc_1 ... c_n v = c_n v$.

Proof. The quasiequation $z_n \to z_{n-1} \to \cdots \to z_1 \to x \implies xyz_1 \dots z_n y = z_n y$ is satisfied in all tournaments and is equivalent to an equation, so it is satisfied in A.

3.13. **Proposition.** Let n be the least number for which there exist elements $u \in U, v \in V, w \in V$ and $c_i \in U$ (i = 1, ..., n) such that $u || v, c_n \to c_{n-1} \to \cdots \to c_1 \to u$ and $uvc_1 \to c_n w \neq c_n w$. Then

(1) $v \to c_i$ and $v \to uvc_1 \dots c_i$ for all $i \ge 1$.

- (2) $w \to c_{n-1}, w \to uvc_1 \dots c_{n_1}$ and $w \to uvc_1 \dots c_n$.
- (3) It is sufficient to consider only the case $c_n \to w$.

Proof. By 3.7 we have $n \geq 2$. Suppose that for some $i, v \not\rightarrow uvc_1 \dots c_i$. By 3.12, $uvc_1 \dots c_i v = c_i v$. If $c_i v = c_i$ then $uvc_1 \dots c_i v = c_i$, so that $c_i \rightarrow uvc_1 \dots c_i$ and hence $uvc_1 \dots c_i = c_i$, a contradiction. Hence $c_i || v$. By the minimality of $n, c_n w = c_i vc_{i+1} \dots c_n w = uvc_1 \dots c_i vc_{i+1} \dots c_n w$. Hence $uvc_1 \dots c_i v \neq uvc_1 \dots c_i$. Using $uvc_1 \dots c_n \rightarrow uvc_1 \dots c_{n-1} \rightarrow \dots \rightarrow uvc_1 \dots c_i$, by the minimality of n we have

$$uvc_1 \dots c_n w = uvc_1 \dots c_i v(uvc_1 \dots c_{i+1}) \dots (uvc_1 \dots c_n) w$$
$$= vc_i(uvc_1 \dots c_{i+1}) \dots (uvc_1 \dots c_n) w.$$

But this last expression equals $vc_ic_{i+1}\ldots c_n w$, since the quasiequation

 $z_n \to \ldots z_1 \to x \implies uz_i \ldots z_n = yz_i(xyz_1 \ldots z_{i+1}) \ldots (xyz_1 \ldots z_n)$

is satisfied in all tournaments and is equivalent to an equation. We get $uvc_1 \ldots c_n w = vc_i c_{i+1} \ldots c_n w = c_n w$, a contradiction.

Hence $v \to uvc_1 \dots c_i$ for all *i*. From this we get $v \to c_i$ by (p3).

We have $c_{n-1}w = uvc_1 \dots c_{n-1}w$ by the minimality of n. If $w||c_{n-1}$ then $c_nw = uvc_1 \dots c_{n-1}c_nw$ by 3.6, a contradiction. Hence $w \to c_{n-1}$. Consequently, $w \to uvc_1 \dots c_{n-1}$.

Suppose $w \not\rightarrow uvc_1 \dots c_n$. Then $uvc_1 \dots c_n w \rightarrow uvc_1 \dots c_n \rightarrow c_n$ implies $uvc_1 \dots c_n w \rightarrow c_n$; hence $uvc_1 \dots c_n w \rightarrow wc_n$. We get

 $uvc_1 \dots c_{n-1}wc_n = (uvc_1 \dots c_{n-1}w \cdot uvc_1 \dots c_n)(uvc_1 \dots c_{n-1}w \cdot wc_n),$

i.e.,

 $wc_n = uvc_1 \dots c_n w \cdot wc_n = uvc_1 \dots c_n,$

a contradiction.

Hence $w \to uvc_1 \ldots c_n$. Then $w \not\to c_n$ and $wc_{\to}c_{n-1}$. The quasiequation

$$y \to z_n \to \dots \to z_1 \to x \implies xyz_1 \dots z_{n-1} \cdot uz_{n-1}z_n z_{n-1} =$$

 $xyz_1 \dots z_n \cdot uz_{n-1}z_n z_{n-1}$

is satisfied in all tournaments and is equivalent to an equation; we get $uvc_1 \ldots c_{n-1} \cdot wc_n = uvc_1 \ldots c_n \cdot wc_n$. From this it follows that if c_n is replaced with wc_n , all the above conditions are satisfied and, moreover, $c_n \to w$.

3.14. **Proposition.** Let $u \in U$, $v \in V$, $u || v, c_1, c_2 \in U$, $c_2 \rightarrow c_1 \rightarrow u$. Then $uvc_1c_2w = c_2w$ for all $w \in V$.

Proof. Suppose $uvc_1c_2w \neq c_2w$. By 3.13 we have $v \to c_1, v \to c_2, v \to uvc_1, v \to uvc_1c_2, w \to c_1, w \to uvc_1, w \to uvc_1c_2$ and it is sufficient to consider the case $c_2 \to w$. Since $uv \to v \to uvc_1c_2$ and (by (p5)) $uvc_1c_2 \to uv \cdot uvc_1c_2 \cdot uvc_1 \to uv \cdot uvc_1c_2$, by 3.11 we have $uv \uparrow uvc_1c_2$. Since $uv \to v \to c_2$ and $c_2 \to w$, by 3.2 we have $uv \uparrow c_2$. If $c_2 \to uv$ then $c_2 \to uvc_1$, so that $uvc_1c_2 = c_2$, a contradiction. Hence $uv \to c_2$. Then $uv \to uvc_1c_2$ give a contradiction by 3.11.

References

- [1] J. Ježek, Constructions over tournaments. (To appear in Czechoslovak Math. J.)
- [2] J. Ježek, P. Marković, M. Maróti and R. McKenzie, Equations of tournaments are not finitely based. (To appear in Discrete Mathematics.)
- [3] J. Ježek, P. Marković, M. Maróti and R. McKenzie, The variety generated by tournaments. Acta Univ. Carolinae 40 (1999), 21–41.
- [4] R. McKenzie, G. McNulty and W. Taylor, Algebras, Lattices, Varieties, Volume I. Wadsworth & Brooks/Cole, Monterey, CA, 1987.

MFF UK, SOKOLOVSKÁ 83, 18600 PRAHA 8 *E-mail address*: jezek@karlin.mff.cuni.cz