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Abstract. The idempotent modification of a group is always a subdi-
rectly irreducible algebra.

The idempotent modification of an algebra A is the algebra A′ obtained
fromA by (preserving the underlying set and) modifying the basic operations
in the following way: if f is an n-ary basic operation of A, then the operation
f ′ defined by

f ′(a1, . . . , an) =

{

a1 if a1 = · · · = an,

f(a1, . . . , an) otherwise

is a basic operation of A′.
Let us consider the following property of a class C of algebras: the idem-

potent modification of an arbitrary algebra from C is subdirectly irreducible.
The aim of this paper is to prove that the variety of groups enjoys this prop-
erty.

Theorem 1. The idempotent modification of a group is a subdirectly irre-

ducible algebra.

The proof will be divided into several lemmas. Let (G, .) be a group and
(G, ◦) be its idempotent modification, i.e.,

a ◦ b =

{

a if a = b,

ab otherwise.

Let ∼ be a congruence of (G, ◦).

Lemma 2. a ∼ 1 if and only if a−1 ∼ 1.

Proof. It is sufficient to prove that a ∼ 1 implies a−1 ∼ 1. If a−1 = a, there
is nothing to prove. Let a−1 6= a. Then a−1 ◦ a ∼ a−1 ◦ 1 gives 1 ∼ a−1. �

Lemma 3. a ∼ 1 implies a2 ∼ 1.

1991 Mathematics Subject Classification. 08B26.
Key words and phrases. simple algebra, idempotent, group.
While working on this paper the author was partially supported by the Grant Agency

of the Czech Republic, grant 201/99/0263 and by the institutional grant MSM113200007.

1



2 J. JEŽEK

Proof. This is clear if a2 = 1. Let a2 6= 1. We have a ◦ a2 ∼ 1 ◦ a2, i.e.,
a3 ∼ a2. If a3 = 1, we are done. So, let a3 6= 1. We have a3 ◦ a−1 ∼
a2 ◦ a−1 = a2a−1 = a ∼ 1. If a3 6= a−1, this means that a2 ∼ 1. If a3 = a−1,
then a3 ∼ 1 by Lemma 2, and this together with a3 ∼ a2 gives a2 ∼ 1. �

Lemma 4. {a : a ∼ 1} is a subgroup of G.

Proof. By Lemma 2, it is sufficient to prove that a ∼ 1 and b ∼ 1 imply
ab ∼ 1. This is clear if a 6= b. If a = b, it follows from Lemma 3. �

Lemma 5. If a ∼ b where a 6= b and a2 6= 1, then a ∼ b ∼ 1.

Proof. We have a ◦ a ∼ a ◦ b, i.e., a ∼ ab. Hence a−1 ◦ a ∼ a−1 ◦ ab, i.e.,
1 ∼ a−1 ◦ ab. If a−1 6= ab, we get 1 ∼ b and we are done. If a−1 = ab then
a ∼ ab = a−1, so that a ◦ a ∼ a ◦ a−1 and thus a ∼ 1. �

Lemma 6. If a ∼ b where a 6= b and a2 6= 1, then x ∼ 1 for all x ∈ G such

that x2 6= 1.

Proof. We have a ∼ b ∼ 1 by Lemma 5. Let x2 6= 1. We have a ◦ x ∼ b ◦ x.
If either x = a or x = b, then x ∼ 1 and we are done. Otherwise, ax ∼ bx.
Hence a−1◦ax ∼ a−1◦bx. If a−1 = ax, then x = a−2 and x ∼ 1 by Lemma 4.
Otherwise, x ∼ a−1 ◦ bx. If x 6= a−1 ◦ bx, then we are done by Lemma 5. Let
x = a−1 ◦ bx. If a−1 6= bx, then x = a−1bx, so that a = b, a contradiction.
Hence a−1 = bx. But then x = a−1 ∼ 1. �

Lemma 7. If a ∼ b where a 6= b, then x ∼ 1 for all x ∈ G such that x2 6= 1.

Proof. By Lemma 6, it is sufficient to consider the case when a2 = b2 = 1.
Let x2 6= 1. We have a ◦ x ∼ b ◦ x, i.e., ax ∼ bx. Hence a ◦ ax ∼ a ◦ bx, i.e.,
x ∼ a ◦ bx. If x 6= a ◦ bx, we can use Lemma 6. So, let x = a ◦ bx.

If a 6= bx, we get x = abx, so that ab = 1 and a = b, a contradiction.
Hence a = bx, i.e., x = ba. Since a ◦ a ∼ b ◦ a, we have a ∼ ba = x and we
can use Lemma 6. �

Lemma 8. If ∼ is nontrivial, then x2 = 1 for all x ∈ G.

Proof. Suppose that ∼ is nontrivial and there exists an element x ∈ G
with x2 6= 1. By Lemma 7, the block of ∼ containing 1 contains all such
elements x. Let y be an element outside this block, so that y2 = 1 and y 6= 1.
We have y ◦ 1 ∼ y ◦ x, i.e., y ∼ yx. Hence y ◦ y ∼ y ◦ yx, i.e., y ∼ yyx = x,
a contradiction. �

Lemma 9. Let G be a group satisfying x2 = 1 for all x. Then (G−{1})2∪id
is the only nontrivial congruence of (G, ◦).

Proof. Clearly, this relation is a congruence of (G, ◦). Let ∼ be a nontrivial
congruence of (G, ◦). If x ∼ 1 for an element x 6= 1, then for any element
y /∈ {x, 1} we have xy ∼ y, xy ◦ y ∼ y, xyy ∼ y, x ∼ y, y ∼ 1. If x ∼ y
for two distinct elements x, y different from 1, then for any z /∈ {x, y, 1} we
have xz ∼ yz, xxz ∼ x ◦ yz, z ∼ x ◦ yz; if x = yz, we get z ∼ x; otherwise,
we get z ∼ xyz, z ∼ xyzz = xy ∼ x. �
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We have finished the proof of Theorem 1. In fact, we have proved more:

Theorem 10. The idempotent modification of a group G is always simple,

unless the group satisfies x2 = 1 for all x; in this last case, the congruence

lattice of the idempotent modification is the three-element chain.

It would be interesting to find other varieties with the property of Theo-
rem 1. In particular, we can ask: Does there exist a variety V of quasigroups,
not contained in the variety of groups, such that the idempotent modifica-
tion of any quasigroup from V is subdirectly irreducible?
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