
THE FACTOR OF A SUBDIRECTLY IRREDUCIBLE
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JAROSLAV JEŽEK AND TOMÁŠ KEPKA

Abstract. A nontrivial algebra with at least one at least binary op-
eration is isomorphic to the factor of a subdirectly irreducible algebra
through its monolith if and only if the intersection of all its ideals is
nonempty.

0. Introduction

Subdirectly irreducible algebras play a very important role in many as-
pects of universal algebra. It is well known that every algebra of a signature
containing at least one at least binary operation symbol can be embed-
ded into a subdirectly irreducible one. It stands as a contrast to this fact
that (for an arbitrary signature) there exist algebras that are not homo-
morphic images of any subdirectly irreducible algebra. The investigation of
homomorphic images of subdirectly irreducible algebras was started in the
papers [1], [2] and [3]. The purpose of the present paper is to characterize
such homomorphic images and, in particular, to find a necessary and suffi-
cient condition for an algebra to be isomorphic to the factor of a subdirectly
irreducible algebra through its monolith. However, we will succeed only
in the case of a signature containing at least one at least binary operation
symbol. In Section 2 we prove that an algebra A of such a rich signature
is a homomorphic image of a subdirectly irreducible algebra if and only if
the intersection of all ideals of A is nonempty. In Section 3 we modify the
construction to obtain the subdirectly irreducible algebra finite, given that
A is finite. Finally, in Section 4, we formulate some remarks related to the
remaining case of a signature containing only unary symbols.

For the necessary background of universal algebra, the reader is referred
to [4].

1. Preliminaries

By a subdirectly irreducible algebra we mean an algebra A such that
there exists the least congruence among its nonidentical congruences; this
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congruence is then called the monolith of A. Of course, A is then necessarily
nontrivial, i.e., of cardinality at least 2.

By an ideal of an algebra A we will mean a nonempty subset I such that
F (a1, . . . , ak) ∈ I whenever F is a k-ary fundamental operation of A and
a1, . . . , ak ∈ A are elements with ai ∈ I for at least one index i. Clearly, if
I is an ideal of A, then the relation idA ∪(I × I) is a congruence of A.

1.1. Proposition. Let A be an algebra of a signature σ. The intersection

of any nonempty family of ideals of A is either empty or an ideal of A. If

σ is rich (i.e., contains at least one at least binary operation symbol) then

the intersection of any finite nonempty family of ideals of A is nonempty.

In particular, if σ is rich and A is finite, then the intersection of all ideals

of A is nonempty.

Proof. It is easy. �

1.2. Proposition. Let A be a subdirectly irreducible algebra of a rich signa-

ture. Then the intersection of all ideals of A is nonempty.

Proof. It is easy. �

1.3. Proposition. Let f be a homomorphism of an algebra A onto an alge-

bra B. Denote by I the intersection of all ideals of A and by J the intersec-

tion of all ideals of B. Then f(I) ⊆ J . Moreover, if I is nonempty, then

f(I) = J .

Proof. It is easy. �

1.4. Proposition. Let A be an algebra of a rich signature. If A is a homo-

morphic image of a subdirectly irreducible algebra, then the intersection of

all ideals of A is nonempty.

Proof. It follows from 1.2 and 1.3. �

1.5. Example. Denote by N the additive semigroup of nonnegative integers.
Since the intersection of all ideals of N is empty, it follows that N is not a
homomorphic image of any subdirectly irreducible algebra.

2. The general case

The aim of this section is to prove the following result.

2.1. Theorem. The following three conditions are equivalent for a nontrivial

algebra A of a signature containing at least one operation symbol of arity ≥ 2:

(1) A is a homomorphic image of a subdirectly irreducible algebra.

(2) A is isomorphic to the factor of a subdirectly irreducible algebra

through its monolith.

(3) The intersection of all ideals of A is nonempty.

Clearly, (2) implies (1). According to 1.4, (1) implies (3). In order to
prove that (3) implies (2), let A be an algebra such that the intersection I



MONOLITH 3

of all ideals of A is nonempty. (This means that I is the least ideal of A.)
Let us fix one operation symbol G of arity nG ≥ 2 in the signature of A,
and consider x ◦ y an abbreviation for G(x, y, y, . . . , y).

For every n = 0, 1, 2, . . . we are going to define, by induction on n, an al-
gebra A(n) extending A and a homomorphism ϕ(n) of A(n) onto A extending
the identity on A. Put A(0) = A and ϕ(0) = idA. Now assume that A(n−1)

and ϕ(n−1) have been defined. Then A(n) is the union of A(n−1) with the set
of the following new elements:

(1) d
(n)
x,y,i,ε for any x, y ∈ A(n−1), i ∈ I and ε ∈ {1, 2, 3, 4, 5} with x 6= y;

(2) e
(n)
x,y,u,v,i,j for any x, y, u, v ∈ A(n−1) and i, j ∈ I such that x 6= y,

ϕ(n−1)(x) = ϕ(n−1)(y) = i and ϕ(n−1)(u) = ϕ(n−1)(v) = i ◦ j;

(3) f
(n)
F,x1,...,xk,y,ε

for any operation symbol F of arity k in the given sig-

nature and elements x1, . . . , xk ∈ A, y ∈ A(n−1), ε ∈ {1, . . . , k} such

that xε ∈ I and ϕ(n−1)(y) = F (x1, . . . , xk).

We define ϕ(n) on the new elements by

(1) ϕ(n)(d
(n)
x,y,i,ε) =











i for ε ∈ {1, 2},

ϕ(n−1)(x) ◦ i for ε ∈ {3, 4},

ϕ(n−1)(y) ◦ i for ε = 5;

(2) ϕ(n)(e
(n)
x,y,u,v,i,j) = j;

(3) ϕ(n)(f
(n)
F,x1,...,xk,y,ε

) = xε.

Finally, the operations on A(n) are defined as follows:

(1) x ◦ d
(n)
x,y,i,1 = d

(n)
x,y,i,3, x ◦ d

(n)
x,y,i,2 = d

(n)
x,y,i,4, y ◦ d

(n)
x,y,i,1 = y ◦ d

(n)
x,y,i,2 =

d
(n)
x,y,i,5;

(2) x ◦ e
(n)
x,y,u,v,i,j = u, y ◦ e

(n)
x,y,u,v,i,j = v;

(3) F (x1, . . . , xε−1, f
(n)
F,x1,...,xk,y,ε

, xε+1, . . . , xk) = y;

(4) F (x1, . . . , xk) = F (ϕ(n)(x1), . . . , ϕ
(n)(xk)) whenever the left side is

not yet defined.

It should be clear from these definitions that the union B of the chain of
algebras A = A(0) ⊆ A(1) ⊆ . . . is an algebra and the union ϕ of the
chain of homomorphisms ϕ(0) ⊆ ϕ(1) ⊆ . . . is a homomorphism of B onto A
extending the identity on A. So, A is isomorphic to the factor B/ ker(ϕ). We
are going to show that B is subdirectly irreducible, with monolith ker(ϕ).
We have ker(ϕ) 6= idB: for any i ∈ I, there are infinitely many elements
x ∈ B with ϕ(x) = i, e.g., the elements d for various indexes. (On the other
hand, for a ∈ A − I we have ϕ(x) = a if and only if x = a.) Let α be a
nonidentical congruence of B. In order to prove that ker(ϕ) is the monolith
of A, it remains to show that ker(ϕ) ⊆ α.

2.2. Lemma. There is a pair (x, y) ∈ α with x 6= y and ϕ(x) = ϕ(y) ∈ I.
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Proof. There are two elements p, q ∈ B with (p, q) ∈ α and p 6= q. Take

i ∈ I arbitrarily and let n be such that p, q ∈ A(n−1). Then (p ◦ d
(n)
p,q,i,1, q ◦

d
(n)
p,q,i,1) ∈ α and (p ◦ d

(n)
p,q,i,2, q ◦ d

(n)
p,q,i,2) ∈ α, i.e., (d

(n)
p,q,i,3, d

(n)
p,q,i,5) ∈ α and

(d
(n)
p,q,i,4, d

(n)
p,q,i,5) ∈ α, so that (x, y) ∈ α for x = d

(n)
p,q,i,3 and y = d

(n)
p,q,i,4. We

have x 6= y and ϕ(x) = ϕ(y) = ϕ(p) ◦ i ∈ I. �

2.3. Lemma. Let x and y be as in 2.2. Put i = ϕ(x) = ϕ(y) and let j ∈ I.
Then (u, v) ∈ α for all u, v ∈ B with ϕ(u) = ϕ(v) = i ◦ j.

Proof. We have (u, v) = (x◦e
(n)
x,y,u,v,i,j , y◦e

(n)
x,y,u,v,i,j) for a sufficiently large n.

�

2.4. Lemma. Let i ∈ I be such that (x, y) ∈ α for all x, y ∈ B with ϕ(x) =
ϕ(y) = i. Let j ∈ I be such that there exist an operation symbol F (in
the given signature) of some arity k and an index ε ∈ {1, . . . , k} with j =
F (x1, . . . , xε−1, i, xε+1, . . . , xk) for some x1, . . . , xk ∈ A. Then (u, v) ∈ α for

all u, v ∈ B with ϕ(u) = ϕ(v) = j.

Proof. Put xε = i and take n sufficiently large. We have

(f
(n)
F,x1,...,xk,u,ε

, f
(n)
F,x1,...,xk,v,ε

) ∈ ϕ−1({i}) ⊆ α

and hence

(F (x1, . . . , xε−1, f
(n)
F,x1,...,xk,u,ε

, xε+1, . . . , xk,

F (x1, . . . , xε−1, f
(n)
F,x1,...,xk,v,ε

, xε+1, . . . , xk) ∈ α,

i.e., (u, v) ∈ α. �

Now denote by J the set of the elements i ∈ I such that (u, v) ∈ α for all
u, v ∈ B with ϕ(u) = ϕ(v) = i. By 2.2 and 2.3, J is nonempty. By 2.4, J
is an ideal of B. Hence I ⊆ J and, consequently, ker(ϕ) ⊆ α. The proof of
Theorem 2.1 is thus finished.

3. The finite case

The aim of this section is to prove the following result.

3.1. Theorem. Let A be a finite, nontrivial algebra of a signature containing

at least one operation symbol of arity ≥ 2. Then A is isomorphic to the

factor of a finite, subdirectly irreducible algebra through its monolith.

Let A = {a0, . . . , aN−1}, so that N ≥ 2. Denote by I the intersection of
all ideals of A. Since A is finite, I is nonempty. As before, let us fix one
operation symbol G of arity nG ≥ 2 in the signature of A, and consider x◦y
an abbreviation for G(x, y, y, . . . , y). Put S = {0, 1, . . . , N − 1}; for s ∈ S
put s′ = s+ 1 mod N . Put B = A ∪ (I × S) and define a mapping ϕ of B
onto A by ϕ(a) = a for a ∈ A and ϕ(i, s) = i for (i, s) ∈ I × S. Define the
operations on B as follows:

(1) A is a subalgebra of B;
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(2) ar ◦ (i, s) =

{

i ◦ i for ar = i and s = 0;

(ar ◦ i, r + s) otherwise (r + s taken mod N);

(3) (i, s) ◦ (j, t) =

{

(i ◦ i, s) for (j, t) = (i, s′);

(i ◦ j, s′) otherwise;

(4) if F (x1, . . . , xk) is not yet defined and xε ∈ I ×S for precisely one ε,
put (i, s) = xε, j = F (x1, . . . , xε−1, i, xε+1, . . . , xk) and define
F (x1, . . . , xk) = (j, s);

(5) put F (x1, . . . , xk) = F (ϕ(x1), . . . , ϕ(xk)) if the left side is not yet
defined.

Clearly, ϕ is a homomorphism of B onto A.
Let ∼ be a nonidentical congruence of B.

3.2. Lemma. There exist two elements x, y ∈ B with x ∼ y, x 6= y and

ϕ(x), ϕ(y) ∈ I.

Proof. There exist two distinct elements u, v with u ∼ v. If both ϕ(u) ∈ I
and ϕ(v) ∈ I, we can put x = u and y = v.

Consider first the case when u ∈ A and v ∈ A. Take i ∈ I arbitrarily, and
take s ∈ S−{0}. We have u◦(i, s) ∼ v◦(i, s), i.e., (u◦ i, p+s) ∼ (v◦ i, q+s)
where u = ap and v = aq; put x = (u ◦ i, p+ s) and y = (v ◦ i, q + s).

It remains to consider the case u ∈ A and v = (i, s) ∈ I × S. We have
u ◦ i ∼ (i, s) ◦ i, i.e., u ◦ i ∼ (i ◦ i, s); put x = u ◦ i and y = (i ◦ i, s). �

3.3. Lemma. There exist two elements z, w ∈ B with z ∼ w, z 6= w and

ϕ(z) = ϕ(w) ∈ I.

Proof. Let x and y be as in 3.2. We can assume that ϕ(x) 6= ϕ(y); otherwise,
we could take z = x and w = y.

Consider first the case x = i ∈ I and y = j ∈ I. We have i ◦ i ∼ j ◦ i and
i ◦ (i, 0) = i ◦ i ∼ j ◦ (i, 0) = (j ◦ i, r) where j = ar, so that j ◦ i ∼ (j ◦ i, r);
put z = j ◦ i and w = (j ◦ i, r).

Now consider the case x = i ∈ I and y = (j, s) ∈ I ×S (where i 6= j). We
have i ◦ i ∼ (j, s) ◦ i = (j ◦ i, s) and i ◦ (i, 0) = i ◦ i ∼ (j, s) ◦ (i, 0) = (j ◦ i, s′),
so that (j ◦ i, s) ∼ (j ◦ i, s′); put z = (j ◦ i, s) and w = (j ◦ i, s′).

It remains to consider the case x = (i, s) and y = (j, t) (where i 6= j).
We have (i, s) ◦ (i, s) ∼ (j, t) ◦ (i, s) and (i, s) ◦ (i, s′) ∼ (j, t) ◦ (i, s′), i.e.,
(i ◦ i, s′) ∼ (j ◦ i, t′) and (i ◦ i, s) ∼ (j ◦ i, t′), so that (i ◦ i, s) ∼ (i ◦ i, s′); put
z = (i ◦ i, s) and w = (i ◦ i, s′). �

3.4. Lemma. Let (i, s) ∼ (i, t) where s 6= t. Then (i ◦ i, s) ∼ (i ◦ i, s′) ∼
(i ◦ i, t) ∼ (i ◦ i, t′).

Proof. We have (i, s) ◦ i ∼ (i, t) ◦ i, i.e., (i ◦ i, s) ∼ (i ◦ i, t). If N = 2, this
means that also (i◦i, s′) ∼ (i◦i, t′). If N > 2, then for u ∈ I−{s′, t′} we have
(i, s)◦(i, u) ∼ (i, t)◦(i, u), i.e., (i◦i, s′) ∼ (i◦i, t′). Hence (i◦i, s′) ∼ (i◦i, t′) in
all cases. We also have (i, s)◦(i, s′) ∼ (i, t)◦(i, s′), i.e., (i◦i, s) ∼ (i◦i, t′). �

3.5. Lemma. Let i ∼ (i, s). Then (i ◦ i, s) ∼ (i ◦ i, s′).
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Proof. We have (i, s) ◦ i ∼ (i, s) ◦ (i, s), i.e., (i ◦ i, s) ∼ (i ◦ i, s′). �

3.6. Lemma. For every i ∈ I there exist s, t ∈ S with s 6= t and (i, s) ∼ (i, t).

Proof. Denote by J the set of all i ∈ I for which this is true. It is sufficient
to prove that J is an ideal of A. By 3.3 and 3.5, J is nonempty. Let F
be a symbol of arity k and x1, . . . , xk ∈ A be elements such that xε = i for
some ε and some i ∈ J . Put j = F (x1, . . . , xk), so that j ∈ I. We need to
prove j ∈ J .

There are two elements s, t ∈ S with s 6= t and (i, s) ∼ (i, t), and it is
sufficient to prove

F (x1, . . . , xε−1, (i, s), xε+1, . . . , xk) 6= F (x1, . . . , xε−1, (i, t), xε+1, . . . , xk).

This is certainly true if both these elements are defined by (4). If not, then
only (2) can apply, F = G, G is of arity 2 and what we need to prove is that
ar ◦ (i, s) 6= ar ◦ (i, t). If ar = i and either s = 0 or t = 0, then one of the
two elements belongs to I while the other one belongs to I ×S. In all other
cases we have ar ◦ (i, s) = (ar ◦ i, r + s) 6= (ar ◦ i, r + t) = ar ◦ (i, t). �

Define a mapping P of I into I by P (i) = i◦ i. An element i ∈ I is said to
be cyclic if Pm(i) = i for at least one (and hence many) positive integer m.
Clearly, I contains at least one cyclic element.

3.7. Lemma. Let i be a cyclic element of I. Then (i, s) ∼ (i, t) for all

s, t ∈ S.

Proof. By 3.6 there exist two different elements s0, t0 ∈ S with (i, s0) ∼
(i, t0). By 3.4 we have (P 1(i), s0) ∼ (P 1(i), s′0), (P

2(i), s0) ∼ (P 2(i), s′0) ∼
(P 2(i), s′′0), etc., so that for all sufficiently large positive integers m we get
(Pm(i), s) ∼ (Pm(i), t) for all s, t ∈ S. Since i is cyclic, there exist suffi-
ciently large numbers m with Pm(i) = i. �

3.8. Lemma. Let i be a cyclic element of I. Then i ∼ (i, s) for all s ∈ S.

Proof. By 3.7, (i, s) ∼ (i, t) for all s, t ∈ S. In particular, (i, 0) ∼ (i, t) for
t 6= 0. Hence i ◦ (i, 0) ∼ i ◦ (i, t), i.e., i ◦ i ∼ (i ◦ i, u) for some u ∈ S. By 3.7
we have (i ◦ i, u) ∼ (i ◦ i, s) for all s ∈ S, and thus i ◦ i ∼ (i ◦ i, s) for all s.
But i ◦ i is an arbitrary cyclic element of I. �

3.9. Lemma. Let i ∈ I. Then i ∼ (i, s) for all s ∈ S.

Proof. Denote by J the set of all i ∈ I for which this is true. It is sufficient
to prove that J is an ideal of A. By 3.8, J is nonempty. Let i ∈ J ; let F be
a k-ary symbol and x1, . . . , xk ∈ A be elements such that xε = i for some ε.
Put j = F (x1, . . . , xk), so that j ∈ I. We need to prove j ∈ J . We have
i ∼ (i, s) for all s ∈ S and hence

j ∼ F (x1, . . . , xε−1, (i, s), xε+1, . . . , xk)

for all s ∈ S. If this last expression is defined by (4), we get j ∼ (j, s) for
all s ∈ S, and we are through. Otherwise, F = G is of arity 2 and we get
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j ∼ ar ◦ (i, s) for all s ∈ S, where ar is an element such that j = ar ◦ i. If
ar 6= i, this means j ∼ (j, r + s) for all s ∈ S and hence j ∼ (j, t) for all
t ∈ S. The case ar = i remains; then j = i ◦ i. We get j ∼ (j, r + s) for
all s 6= 0. Since (i, r) ∼ (i, r′), by 3.4 we have (i ◦ i, r) ∼ (i ◦ i, r′). Hence
also j ∼ (j, r + s) for s = 0, and we get j ∼ (j, r + s) for all s ∈ S. Then
j ∼ (j, t) for all t ∈ S and j ∈ J . �

By 3.9 we get ker(ϕ) ⊆ ∼ for any nonidentical congruence ∼ of B, so
that ker(ϕ) is the monolith of B and B is subdirectly irreducible. Since A
is isomorphic to B/ ker(ϕ), the proof of Theorem 3.1 is thus finished.

4. Algebras with unary operations only

Let us now consider a signature containing no operation symbols of arity≥
2. Since nullary operations play no role in the investigation of congruences,
we can assume without loss of generality that the signature consists of unary
operation symbols only. If the signature is empty, then there exists, up
to isomorphism, just one subdirectly irreducible algebra, the two-element
one. If the signature contains precisely one unary symbol, then we can also
describe all the subdirectly irreducible algebras:

4.1. Proposition. An algebra of the signature consisting of a single unary

operation symbol F is subdirectly irreducible if and only if it is isomorphic

to one of the algebras in the following list:

(1) U∞ = {0, 1, 2, . . . } with F (i) = max(0, i− 1);
(2) Un = {0, 1, . . . , n} for n ≥ 1, with F (i) = max(0, i− 1);
(3) Vp,k = {0, 1, . . . , pk − 1} for p a prime number and k ≥ 1, with

F (i) = i+ 1 mod pk;
(4) W0 = {0, 1} with F (0) = 0, F (1) = 1;
(5) Wp,k = {0, 1, . . . , pk} for p a prime number and k ≥ 1, with F (i) =

i+ 1 for i < pk and F (pk) = pk.

An algebra of the given signature is a homomorphic image of a subdirectly

irreducible algebra if and only if it is isomorphic to the factor of a subdirectly

irreducible algebra through its monolith if and only if it is either trivial or

subdirectly irreducible itself.

Proof. It is easy. �

4.2. Example. Define an algebra A = {0, 1, . . . , 5} with a single unary
operation F by F (i) = i + 1 mod 6. The intersection of the ideals of A is
nonempty (it equals A). On the other hand, A is not a homomorphic image
of any subdirectly irreducible algebra.

In the case of a signature containing at least two unary (and no other)
operation symbols, the situation is more complicated.

4.3. Example. For every n ≥ 1, define an algebra Zn = {a, b, c1, . . . , cn}
with unary operations F,G, . . . in this way: for every P = F,G, . . . put
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P (a) = P (b) = c1, P (ci) = ci+1 if i < n, and P (cn) = cn. The intersection
of all ideals of Zn is nonempty: it is the one-element set {cn}. While Z1

is isomorphic to the factor of a four-element subdirectly irreducible algebra
through its monolith, we are going to show that for n ≥ 2, the algebra Zn

cannot be embedded into the factor of any subdirectly irreducible algebra
through its monolith (even if we allow the subdirectly irreducible algebra to
be infinite).

Suppose that there exists a subdirectly irreducible algebra S with mono-
lith µ such that Zn can be embedded into S/µ. Denote by A,B,C1, . . . , Cn

the blocks of µ corresponding to the elements a, b, c1, . . . , cn, respectively.
Then α = ((Cn−1 ∪ Cn) × (Cn−1 ∪ Cn)) ∪ idS is a nonidentical congruence
of S, from which we get |A| = |B| = |C1| = · · · = |Cn−2| = 1. Further,
if |Cn| ≥ 2, then (Cn × Cn) ∪ idS is a nonidentical congruence of S and
we get |C1| = 1. But then β = ((A ∪ B) × (A ∪ B)) ∪ idS is a noniden-
tical congruence of S and α ∩ β = idS , a contradiction. Thus |Cn| = 1,
|C1| ≥ 2 and n = 2. If C2 = {w} and u, v are two different elements of C1,
then γ = ({u,w} × {u,w}) ∪ idS and δ = ({v, w} × {v, w}) ∪ idS are two
nonidentical congruences of S and γ ∩ δ = idS , a contradiction.

4.4. Problem. For a signature containing at least two unary operation sym-
bols (and no other ones), characterize those algebras that are isomorphic to
the factor of a subdirectly irreducible algebra through its monolith.
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