
QUASIEQUATIONAL THEORIES OF FLAT ALGEBRAS

J. JEŽEK, M. MARÓTI AND R. MCKENZIE

Abstract. We prove that finite flat digraph algebras and, more gen-
erally, finite compatible flat algebras satisfying a certain condition are
finitely q-based (possess a finite basis for their quasiequations). We also
exhibit an example of a twelve-element compatible flat algebra that is
not finitely q-based.

1. Introduction

For a finite directed graph (V,E) one can define an algebra with the un-
derlying set V ∪ E ∪ {0}, one constant 0 and two binary operations ∧, · in
this way: a∧ a = a and a∧ b = 0 whenever a 6= b; ab = c whenever a, c ∈ V
and b = (a, c) ∈ E; ab = 0 in all other cases. Algebras obtained from fi-
nite directed graphs in this way are called finite flat digraph algebras. One
particular six-element flat digraph algebra (inherently non-finitely based for
equations) played a significant role in the proof of undecidability of the exis-
tence of a finite basis for the equational theory of a finite algebra ([2], [3] and
[4]). It was plausible to expect that it could serve a similar purpose in an at-
tempt to prove that also the existence of a finite basis for the quasiequations
of a finite algebra is undecidable. However, in this paper we are going to
show that all finite flat digraph algebras are finitely q-based (possess a finite
basis for their quasiequations), which makes them unsuitable. We will inves-
tigate a more general class of finite compatible flat algebras, in which (under
a modest assumption on the signature) every algebra can be embedded both
into a finitely q-based and into a non-finitely q-based algebra.

For the terminology and basic concepts of universal algebra the reader is
referred to the monograph [5]. For the literature on quasiequational theories
see, e.g., [1] and [6].

2. Compatible 0-semilattice algebras

Let σ be a finite signature containing (among other symbols) a binary
symbol ∧ (the meet) and a nullary symbol 0.
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By a 0-semilattice algebra we mean a σ-algebra satisfying the equations

(1) x ∧ (y ∧ z) = (x ∧ y) ∧ z,
(2) x ∧ y = y ∧ x,
(3) x ∧ x = x,
(4) f(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0 for every n-ary operation f of σ

and and every i ∈ {1, . . . , n}.

A 0-semilattice algebra is said to be compatible if it satisfies the equations

(5) f(z1, . . . , zi−1, x ∧ y, zi+1, . . . , zn) = f(z1, . . . , zi−1, x, zi+1, . . . , zn) ∧
f(z1, . . . , zi−1, y, zi+1, . . . , zn) for every n-ary operation f of σ and
every i ∈ {1, . . . , n}.

So, the class of compatible 0-semilattice σ-algebras is a variety.
For a variable x, basic x-terms of depth n are defined as follows. The

term x is the only basic x-term of depth 0. For n > 0, basic x-terms of
depth n are the terms f(x1, . . . , xi−1, t, xi+1, . . . , xn) such that f is an n-ary
operation of σ, 1 ≤ i ≤ n, t is a basic x-term of depth n − 1 and x1, . . .
are variables different from x. A basic x-term t will be usually denoted by
t(x), in which case t(u) stands for the term resulting from t by substituting
u for x (where u is any term).

For a σ-algebra B and a basic x-term t of depth n, any interpretation
of the variables different from x by elements of B gives rise to a unary
polynomial of B. The unary polynomials obtained in this way will be called
the basic polynomials of B of depth n.

Lemma 2.1. Let A be a compatible 0-semilattice algebra. Then p(a ∧ b) =
p(a) ∧ p(b) for all basic polynomials p of A and all elements a, b ∈ A.

Proof. It is easy. (Observe that the statement is not true for all unary
polynomials p.) �

Lemma 2.2. Let A be a compatible 0-semilattice algebra and F be a proper

filter of A (i.e., a nonempty subset closed under meet, not containing 0 and

such that b ∈ F whenever a ∈ F and a ≤ b). Then for every basic polynomial

p of A, p−1(F ) is either empty or a proper filter of A.

Proof. It follows easily from Lemma 2.1. �

By a flat algebra we mean a 0-semilattice algebra A such that a ∧ b =
0 for all pairs of distinct elements a, b ∈ A. Observe that a flat alge-
bra is monotonic, i.e., satisfies x ≤ y → f(z1, . . . , zi−1, x, zi+1, . . . , zn) ≤
f(z1, . . . , zi−1, y, zi+1, . . . , zn) for every n-ary operation f of σ and every
i ∈ {1, . . . , n}.

One can easily see that a flat algebra is compatible if and only if

(5’) f(c1, . . . , ci−1, a, ci+1, . . . , cn) = f(c1, . . . , ci−1, b, ci+1, . . . , cn) 6= 0
implies a = b for every n-ary operation f of σ and every i ∈
{1, . . . , n}.

For every partial algebra G of a signature τ not containing ∧ and 0 we
can define a flat τ ∪ {∧, 0}-algebra A, called the flat algebra over G, by
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A = G ∪ {0}, f(a1, . . . , an) = a in A whenever f(a1, . . . , an) = a in G, and
f(a1, . . . , an) = 0 otherwise. This flat algebra is not necessarily compatible.
For example, if G is a finite groupoid, then the flat algebra over G is com-
patible if and only if G is a quasigroup. Finite flat digraph algebras are all
compatible.

Observation 2.3. For every finite compatible flat algebra A there exists a

first-order sentence Φ such that the finite models of Φ are precisely the finite

algebras belonging to the quasivariety generated by A.

Proof. Put K = |A|. It is easy to see that the following are equivalent for a
finite compatible 0-semilattice algebra B:

(e1) B belongs to the quasivariety generated by A;
(e2) every two elements b0, b1 of B such that b0 < b1 can be separated by

a congruence of B, the factor by which is isomorphic to a subalgebra
of A;

(e3) for every b0, b1 ∈ B with b0 < b1 there exist elements c1, . . . , cr ∈ B
for some r < K such that the principal filters F1, . . . , Fr generated by
c1, . . . , cr are pairwise disjoint, b1 ∈ F1, b0 belongs to the complement
O of F1∪· · ·∪Fr in B, the equivalence R with blocks O,F1, . . . , Fr is
a congruence of B and the factor B/R is isomorphic to a subalgebra
of A.

Clearly, the condition (e3) can be rewritten as a first-order sentence. �

3. The quasivariety Q′

A

In the following let A be a finite compatible, flat algebra. Put K = |A|.
Denote by Q′

A the quasivariety determined by the equations (1)–(5) and
the following quasiequations:

(6) x0 ≤ x1 & t(x) ≥ x1 & u(x) ≥ x1 & t(y) ≥ x1 & u(y) ∧ x1 ≤ x0 →
x0 = x1 for every pair of basic x-terms t, u of depth ≤ K;

(7) x0 ≤ x1 & Ht1,...,tK → x0 = x1 for every K-tuple of basic x-terms
t1, . . . , tK of depth ≤ K, where Ht1,...,tK is the conjunction of the
following equations:
ti(xi) ≥ x1 (i = 1, . . . ,K),
ti(xj) ∧ x1 ≤ x0 (i, j = 1, . . . ,K and i 6= j).

Lemma 3.1. Q′

A is a finitely q-based quasivariety containing A.

Proof. The set of quasiequations (6)–(7) is essentially finite, as it contains
only finitely many quasiequations that differ by not only renaming their
variables. Consequently, Q′

A is finitely q-based. It remains to prove that (6)
and (7) are satisfied in A. Suppose that (6) fails in A by some interpretation
v 7→ v′ of variables. Then x′0 < x′1, so that x′0 = 0; now t(x′) ≥ x′1 implies
t(x′) = x′1. Similarly we get u(x′) = x′1 and t(y′) = x′1. But A satisfies (5’),
so t(x′) = t(y′) 6= 0 implies x′ = y′; hence x′1 = u(x′) ∧ x′1 = u(y′) ∧ x′1 = 0,
a contradiction. Using the fact that A cannot contain K nonzero, pairwise
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distinct elements, one can similarly prove that A satisfies the quasiequa-
tions (7). �

Lemma 3.2. Let B ∈ Q′(A) and b0, b1 ∈ B be two elements such that

b1 � b0; let F be a maximal filter of B such that b1 ∈ F and b0 /∈ F .
For any two basic polynomials p, q of B of depth ≤ K, the sets p−1(F ) and
q−1(F ) are either disjoint or equal.

Proof. The two basic polynomials p and q correspond to two basic terms
t and u of depth ≤ K. Suppose that there exist elements x′, y′ such that
p(x′) ∈ F , p(y′) ∈ F , q(x′) ∈ F and q(y′) /∈ F . It follows from the max-
imality of F that there exists an element e ∈ F with q(y′) ∧ e ≤ b0. Put
x′1 = p(x′) ∧ p(y′) ∧ q(x′) ∧ e, so that x′1 ∈ F . Put x′0 = b0 ∧ x

′

1, so that
x′0 < x′1. But the quasiequation (e6) interpreted by x 7→ x′, y 7→ y′, x0 7→ x′0,
x1 7→ x′1 gives x′0 = x′1, a contradiction. �

Lemma 3.3. Let B ∈ Q′(A) and b0, b1 ∈ B be two elements such that

b1 � b0; let F be a maximal filter of B such that b1 ∈ F and b0 /∈ F . There

are at most K − 1 nonempty subsets of B that can be expressed as q−1(F )
for a basic polynomial q of B, and they can be arranged into a sequence

F1, . . . , Fr (for some r < K) in such a way that F1 = F and for every

i ∈ {2, . . . , r} there are an index j ∈ {1, . . . , i − 1} and a basic polynomial

pi of B of depth 1 with Fi = p−1
i (Fj). The collection F1, . . . , Fr, together

with the complement of their union, is a partition and the corresponding

equivalence is a congruence of B.

Proof. Let us define a (finite or infinite) sequence F1, p1, F2, p2, . . . of filters
Fi and basic polynomials pi of depth ≤ 1 by induction in this way: F1 = F
and p1 is the identity on B; if Fi, pi have been defined and if there exist
an element a /∈ F1 ∪ · · · ∪ Fi and a basic polynomial p of depth 1 such that
p(a) ∈ Fj for some j ≤ i, take one such pair a, p and put pi+1 = p and Fi+1 =

p−1
i+1(Fj); if there is no such pair a, p, the sequence already constructed will

have no continuation. Clearly (by induction on i), Fi = q−1
i (F ) for a basic

polynomial qi of B of depth < i. The sets Fi are pairwise disjoint filters
according to Lemmas 2.2 and 3.2.

Suppose that the sequence has at least K members F1, . . . , FK . For any
i = 1, . . . ,K take an element x′i ∈ Fi, so that qi(x

′

i) ∈ F . For every i 6= j
we have x′j /∈ Fi, i.e., qi(x

′

j) /∈ F , so that there exists an element ei,j ∈ F

with qi(x
′

j) ∧ ei,j ≤ b0. There is an element x′1 ∈ F such that x′1 ≤ qi(x
′

i)

for all i and x′1 ≤ ei,j for all i 6= j. Put x′0 = b0 ∧ x
′

1, so that x′0 < x′1. But
the quasiequation (e7), interpreted in the obvious way, says that x′0 = x′1, a
contradiction.

So, the sequence F1, p1, . . . ends with Fr, pr for some r ≤ K − 1. Clearly,
every subset of the form q−1(F ) for a basic polynomial q can be found among
F1, . . . , Fr. Put O = B − (F1 ∪ · · · ∪ Fr), so that 0 ∈ O and F1, . . . , Fr, O is
a partition of B. It remains to prove that the corresponding equivalence is
a congruence of B.
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Suppose that there exist an n-ary operation f in σ and an n-tuple a1, . . . ,
an of elements of B such that aj ∈ O for some j but f(a1, . . . , an) ∈ Fi

for some i. Then p(aj) ∈ Fi where p(x) = f(a1, . . . , aj−1, x, aj+1, . . . , an) is
a basic polynomial of depth 1 and aj /∈ F1 ∪ · · · ∪ Fr, so that (qip)

−1(F )
is nonempty and different from all F1, . . . , Fr, a contradiction. We have
proved that if at least one of the elements a1, . . . , an belongs to O, then
f(a1, . . . , an) ∈ O.

Now it remains to show that if f is n-ary, f(a1, . . . , an) ∈ Fj and ai, a
′

i ∈
Fk for some j, k ∈ {1, . . . , r} and i ∈ {1, . . . , n}, then f(a1, . . . , ai−1, a

′

i, ai+1,
. . . , an) ∈ Fj . Put q(x) = qj(f(a1, . . . , ai−1, x, ai+1, . . . , an)), so that q is
a basic polynomial of B of depth at most K. We have q(ai) ∈ F and
qk(ai) ∈ F , so that q−1(F ) = q−1

k (F ). Since a′i belongs to this set, we get
q(a′i) ∈ F , i.e., f(a1, . . . , ai−1, a

′

i, ai+1, . . . , an) ∈ Fj . �

Theorem 3.4. Let A be a finite compatible, flat algebra with K elements.

Then Q′

A is a finitely q-based and locally finite quasivariety containing A;
every algebra in Q′

A is isomorphic to a subdirect product of algebras of car-

dinality at most K. Consequently, A is not inherently nonfinitely q-based.

Proof. Let B ∈ Q′

A. For every pair b0, b1 of distinct elements of B (we can
assume that b1 � b0) there exists a maximal filter of B containing b1 but
not b0, so that by Lemma 3.3 these two elements can be separated by a
congruence with at most K blocks. It follows that every algebra from B
is isomorphic to a subdirect product of algebras of cardinality at most K.
Thus Q′

A is contained in a finitely generated variety and hence it is locally
finite. According to Lemma 3.1, Q′

A is finitely q-based and contains A. �

4. Finitely q-based compatible flat algebras

Let A be a finite compatible flat algebra. By a segment of A we will mean
a nonempty subset of A, the elements of which can be arranged into a finite
sequence 0, c1, . . . , cr in such a way that c1 6= 0 and for every i = 2, . . . , r
there exists a basic polynomial p of A of depth 1 with p(ci) = cj for some
j ∈ {1, . . . , i− 1}.

Let S be a segment of A. The algebra obtained from S, considered as a
partial subalgebra of A, by setting all the undefined operations to 0 will be
called the 0-completion of S.

Let S be a segment of A and S′ be the subalgebra of A generated by S.
The segment S is said to be regular if the equivalence on S′ with the only
non-singleton block {0} ∪ (S′ − S) is a congruence of S′. In that case, the
factor of S′ by this congruence is isomorphic to the 0-completion of S.

Theorem 4.1. Let A be a finite compatible flat algebra such that the 0-
completion of every regular segment of A belongs to the quasivariety gener-

ated by A. Then A is finitely q-based.

Proof. Denote by Q′′

A the subquasivariety of Q′

A determined by the quasi-
equations (1)–(7) and all quasiequations in at most K variables that are
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satisfied in A. (Here K = |A|.) Since Q′

A is locally finite by Theorem 3.4,
Q′′

A is locally finite. Since only finitely many equations are needed to reduce
the terms in at most K variables to a finite set T0 of such terms, and then
quasiequations in at most K variables correspond to subsets of T 2

0 with
distinguished elements, Q′′

A is finitely q-based. Of course, A ∈ Q′′

A. We are
going to prove that Q′′

A is the quasivariety generated by A. It is sufficient to
show that every finite algebra from Q′′

A belongs to the quasivariety generated
by A.

Let B be a finite algebra from Q′′

A; let b0, b1 ∈ B be such that b1 � b0.
By 3.3 there is a congruence with at most K blocks O,F1, . . . , Fr, yielding a
quotient algebra C, such that F1, . . . , Fr are filters (now they are principal
filters), F1 = F , b1 ∈ F1, b0 ∈ O, and for every i ∈ {2, . . . , r} there exist an
index j < i and a basic polynomial pi of length 1 with Fi = p−1

i (Fj). But all
the coefficients occurring in pi belong to F1∪ · · ·∪Fr, so there exists a basic
x-term ui(x, x1, . . . , xr) of depth 1 such that ui(Fi, F1, . . . , Fr) ⊆ Fj . Now
we can combine these terms ui together to obtain, for each i, a basic x-term
ti(x, x1, . . . , xr) such that ti(Fi, F1, . . . , Fr) ⊆ F , i.e., tCi (Fi, F1, . . . , Fr) =
F1. (We take t1 = x.) For any term u denote by ti(u) the term obtained
from ti by replacing the only occurrence of x with u. Now consider the
quasiequation

x0 ≤ x1 & D → x0 = x1
where D is the conjunction of all these equations:

(i) ti(xi) ≥ x1, for any i = 1, . . . , r;
(ii) ti(xj) ∧ x1 ≤ x0, for any i, j ∈ {1, . . . , r} with i 6= j;
(iii) ti(f(xi1 , . . . , xin)) ≥ x1, for any n-ary operation f of σ and any i, i1,

. . . , in with fC(Fi1 , . . . , Fin) = Fi;
(iv) ti(u) ∧ x1 ≤ x0, for any i = 1, . . . , r and any term u in variables

x1, . . . , xr containing a subterm f(xi1 , . . . , xin) with f
C(Fi1 , . . . , Fin)

= O (it is possible to consider only finitely many such terms u).

Clearly, this quasiequation fails in B; since it is a quasiequation in at most
K variables x0, . . . , xr, it must fail in A by some elements a0, a1, . . . , ar.
But then the subset {a0, a1, . . . , ar} is a regular segment of A, and the 0-
completion of this subset is isomorphic to C. Since C belongs to the quasi-
variety generated by A, the elements b0, b1 were separated by a congruence,
the factor by which belongs to the quasivariety. �

Corrollary 4.2. Every finite flat digraph algebra is finitely q-based.

Proof. In this case, all segments are subalgebras. �

Corrollary 4.3. The flat algebra over any finite quasigroup (considered as

a groupoid) is finitely q-based.

Proof. In this case, all regular segments are subalgebras. �

Corrollary 4.4. If σ is the signature containing only one unary symbol in

addition to ∧ and 0, then every finite compatible flat σ-algebra is finitely

q-based.
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Proof. In this case, the 0-completion of every segment is isomorphic to a
subalgebra. �

5. The embedding theorem

Theorem 5.1. Let σ be a finite signature containing, in addition to ∧ and 0,
at least two unary symbols f and g (and, possibly, some other operation

symbols). Then every finite compatible flat σ-algebra can be embedded into

two finite compatible flat σ-algebras, one finitely q-based and the other one

not finitely q-based.

Proof. Let G be a finite compatible flat algebra.
Denote by S1, . . . , Sr all the segments of G. (It would be sufficient to

take just those with the 0-completions not belonging to the quasivariety
generated by G.) For every i = 1, . . . , r let us take an isomorphic copy Ti
of the partial algebra Si − {0}, in such a way that the sets G, T1, . . . , Tr
are pairwise disjoint. Denote by G′ the flat algebra with the underlying
set G ∪ T1 ∪ · · · ∪ Tr, with the operations evaluated to 0 in all cases except
when needed to define them in such a way that G is a subalgebra and Ti are
partial subalgebras. It follows from Theorem 4.1 that G′ is finitely q-based.

Next we are going to construct a non-finitely q-based extension of G. Let
us take one fixed positive integer k such that k ≥ 2 and there is no sequence
u0, u1, . . . , uk of pairwise distinct elements of G−{0} such that g(ui−1) = ui
for i = 1, . . . , k. Denote by A the flat algebra, with G as a subalgebra,
containing k+10 additional elements u0, u1, . . . , uk, a, b, c, v2, a2, b2, v3, a3, c3
with all operations not inside G evaluated to 0 except for

g(ui−1) = ui for i = 1, . . . , k,

f(u0) = a, f(a) = b, g(a) = c,

f(v2) = a2, f(a2) = b2, f(v3) = a3, g(a3) = b3.

(Fig. 1, in which the elements not belonging to G are pictured for k = 2,
may help to understand this definition.)

Denote by Q the quasivariety generated by A. A σ-algebra B belongs
to Q if and only if every two distinct elements of B can be separated by a
homomorphism of B into A.

For every positive integer n let An be the σ-algebra with elements 0, u0,
. . . , uk, αi,j , βi, γj (0 ≤ i ≤ n, 0 ≤ j ≤ n− 1, i− 1 ≤ j ≤ i) and with opera-
tions defined in this way: An is a semilattice with the only comparabilities
0 < ui (i = 0, . . . , k), 0 < βn < βn−1 < · · · < β0, 0 < γn−1 < γn−2 < · · · <
γ0, 0 < αn,n−1 < αn−1,n−1 < αn−1,n−2 < · · · < α1,0 < α0,0; the other oper-
ations evaluate to 0 except that g(ui−1) = ui (i = 1, . . . , k), f(u0) = α0,0,
f(αi,j) = βi, g(αi,j) = γj . (Fig. 2, in which the situation is illustrated for
k = 2 and n = 3, may help to understand this definition. In the picture
lines with arrows indicate unary operations, while the other lines represent
coverings but the covers between 0 and the elements ui are not indicated.)
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Denote by rn the equivalence on An with the only non-singleton block
{0, βn}. Clearly, rn is a congruence of An. Denote the factor An/rn by Bn.
For a ∈ An − {0, βn}, the element a/rn will be identified with a.

Suppose that there exists a homomorphism H : Bn → A such that
H(uk) 6= H(0/rn), i.e., H(uk) 6= 0. Since gk(u0) = uk in Bn and there
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is no other element e in A with gk(e) 6= 0 and gk+1(e) = 0 other than u0,
we get H(u0) = u0 and then H(ui) = H(gi(u0)) = gi(H(u0)) = gi(u0) = ui
for all i. Now H(α0,0) = H(f(u0)) = f(H(u0)) = f(u0) = a. Consequently,
H(β0) = b and H(γ0) = c. Since g(α1,0) = γ0 and a is the only element of A
with g(a) = c, it follows that H(α1,0) = a. If H(αi,i−1) = a for some i < n,
then using f in a similar way we can show that H(αi,i) = a, and then using
g to show that H(αi+1,i) = a. By induction we get H(αn,n−1) = a. But
then H(0/rn) = H(βn/rn) = H(f(αn,n−1)) = f(a) = b, a contradiction.

Since the element uk cannot be separated from 0/rn by a homomorphism
of Bn into A, we conclude that Bn does not belong to Q.

Let αm,m′ be an element of Bn such that 0 < m < n. Clearly, the set
C = Bn − {αm,m′} is a subalgebra of Bn. We are going to prove that C
belongs to Q. For this purpose, it is sufficient to show that whenever e, e′

are two elements of C such that e is covered by e′, then e, e′ can be separated
by a homomorphism of C into A.

For every i ≤ n − 1 define a mapping ψi of Bn into A by ψi(u0) =
v2, ψi(e) = a2 for e ≥ αi,i, ψi(e) = b2 for e ≥ βi and ψi(e) = 0 for all
other elements e. Also, for every i ≤ n − 1 define a mapping χi of Bn

into A by χi(u0) = v3, χi(e) = a3 for e ≥ αi+1,i, χi(e) = c3 for e ≥
γi and χi(e) = 0 for all other elements e. It is easy to check that both
ψi and χi are homomorphisms. Consequently, their restrictions to C are
homomorphisms of C into A. The only pairs of covers not separated by any
of these homomorphisms are the pairs (0, u1), . . . , (0, uk). So, it remains to
separate these pairs of elements.

Ifm = m′, then these pairs are separated by the homomorphism φ defined
in this way: φ(u0) = u0, . . . , φ(uk) = uk, φ(e) = a for e ≥ αm,m−1, φ(e) = b
for e ≥ βm, φ(e) = c for e ≥ γm−1 and φ(e) = 0 for all other elements e. If
m′ = m − 1, then they are separated by the homomorphism φ′ defined in
this way: φ′(u0) = u0, . . . , φ

′(uk) = uk, φ
′(e) = a for e ≥ αm′,m′ , φ′(e) = b

for e ≥ βm′ , φ′(e) = c for e ≥ γm′ and φ′(e) = 0 for all other elements e.
We have proved that C belongs to Q. Since every subalgebra of Bn

generated by at most n− k elements is contained in at least one such C, it
follows that every subalgebra generated by at most n− k elements belongs
to Q. Consequently, there is no base for the quasiequations of Q that would
contain only quasiequations in at most n − k variables. Since k was fixed
while n was arbitrary, there is no finite base at all. �

Remark 5.2. In the above construction of the algebra A it was not essential
that the elements b2 and c3 are distinct.
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MFF UK, Sokolovská 83, 18600 Praha 8, Czech Republic

Department of Mathematics, Vanderbilt University, 1326 Stevenson Cen-

ter, Nashville, TN 37240


