
THE ORDERING OF COMMUTATIVE TERMS

J. JEŽEK

Abstract. By a commutative term we mean an element of the free
commutative groupoid F of infinite rank. For two commutative terms
a, b write a ≤ b if b contains a subterm that is a substitution instance of a.
With respect to this relation, F is a quasiordered set which becomes an
ordered set after the appropriate factorization. We study definability in
this ordered set. Among other thing, we prove that every commutative
term (or its block in the factor) is a definable element. Consequently,
the ordered set has no automorphisms except the identity.

0. Introduction

The investigation of definability in the quasiordered set of terms, or in the
ordered set of term patterns, is motivated by an effort to solve the questions
of definability in the lattice of equational theories. Let us say that a variety
V has positive definability if the lattice LV of equational theories of V -
algebras (or the lattice of all subvarieties of V , which is antiisomorphic to
LV ) has the following properties:

(1) the lattice LV has no automorphisms except the obvious ones,
(2) every finitely based element of LV is definable up to the obvious

automorphisms,
(3) the set of finitely based elements of LV is definable,
(4) the set of one-based elements of LV is definable,
(5) the equational theory of every finite algebra from V is definable in

LV up to the obvious automorphisms, and
(6) the set of equational theories of finite algebras of V is a definable

subset of LV .

It has been proved in a series of papers [1], [2], [3], [4] that for an arbitrary
fixed signature, the variety of all algebras of that signature has positive
definability. The series can serve as a prototype for the investigation of de-
finability for some other interesting varieties. However, the technique used
there can be applicable only to the balanced varieties, i.e., varieties based
on balanced equations (equations where every variable and every operation
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symbol has the same number of occurrences at the left as at the right). Ex-
amples are the variety of semigroups, the variety of commutative semigroups,
the variety of commutative groupoids, the variety of medial groupoids, etc.

An attempt [5] to prove that the variety of semigroups has positive de-
finability was not completely successful. There are many partial results in
support of the conjecture, and at least the items (5) and (6) have been
answered in the positive.

The least balanced variety of groupoids is the variety of commutative
semigroups. Surprisingly, in the recent paper [6] it was discovered that in this
case the lattice of equational theories has uncountably many automorphisms,
so that the variety has negative definability.

It seems that no other balanced variety has been considered in this con-
text. The most natural candidate is the variety of commutative groupoids.
In the present paper we are going to make a first step in this direction.

When trying to imitate the process outlined in [1]–[4], one crucial step
is to investigate definability in the ordered set of term patterns; it was the
part [2] in which this was done for universal algebras. For semigroups, this
part was quite short, as elements of the free semigroup have more simple
structure than elements of the free groupoid. For commutative groupoids,
the structure might seem to be of about the same complexity as in the case
of (general) groupoids. There is an advantage, making the matter even less
technically complicated, consisting in the absence of obvious nonidentical
automorphisms, so that we will not need to introduce a special parameter
in formulas for the purpose of handling those automorphisms. On the other
hand, it turns out that not much from [2] can be taken over. An essential
drawback is that while elements of the free groupoid can be imagined as
static binary trees, where each branch has a fixed position, in the commu-
tative case we should imagine the same trees but with all branches rotating
at different speeds.

Although it is not consistent with the generally accepted terminology, by
a term we mean in this paper an element of the free commutative groupoid
(rather than an element of the free groupoid). If we wished to set it right, we
should replace every occurrence of the word ’term’ by ’commutative term’
in the following text.

1. Preliminaries

Let X be a (fixed) infinite countable set. Its elements will be called
variables. We denote by F the free commutative groupoid over X. Its
characteristic properties are that it is a commutative groupoid generated
by X, ab /∈ X for all a, b ∈ F , and whenever ab = cd in F then either
(a, b) = (c, d) or (a, b) = (d, c). The elements of F will be called terms.

The unique homomorphism of F into the additive semigroup of natural
numbers sending all variables to 1 will be denoted by λ. The number λ(a)
is called the length of a term a.
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We will write a1a2 . . . an instead of ((a1a2) . . . )an. Similarly, ab · cd · efg
stands for ((ab)(cd))((ef)g), etc.

A term b is said to be a subterm of a term a if a can be written as
a = bc1 . . . cn for some n ≥ 0 and some terms c1, . . . , cn. We write b ⊆ a if
b is a subterm of a; we write b ⊂ a if b is a proper subterm of a, i.e., b ⊆ a
and b 6= a. The set of subterms of a is a finite subset of F . It could be also
defined by induction on the length of a as follows: if a is a variable, then a
is the only subterm of a; if a = bc, then a term is a subterm of a if and only
if it either equals a or is a subterm of either b or c. We denote by S(a) the
set of the variables that are subterms of a; its elements are called variables
occurring in a.

For a variable x we denote by νx the homomorphism of F into the additive
semigroup of natural numbers sending x to 1 and all other variables to 0.
For a ∈ F , νx(a) is called the number of occurrences of x in a.

Let t, a, b be three terms. If t can be written as t = ac1 . . . cn for some
c1, . . . , cn then bc1 . . . cn is said to be a term obtained from t by replacing
(one occurrence of) a with b. Observe that it is not uniquely determined by
the triple t, a, b.

By a linear term we mean a term a such that νx(a) ≤ 1 for all variables x.
By a slim term we mean a term that can be written as x1x2 . . . xn for

some n ≥ 1 and some (not necessarily distinct) variables x1, . . . , xn. A slim
term x1x2 . . . xn is said to be rooted at x1. (If n ≥ 2, then it is also rooted
at x2.)

By a unary term we mean a term a such that S(a) = {x} for a variable x.
By the depth of a term a we mean the largest positive integer n such that

a can be written as a = b1b2 . . . bn for some terms b1, . . . , bn. The depth of
a will be denoted by δ(a).

By a substitution we mean an endomorphism of the groupoid F . By a
substitution instance of a term a we mean any term that can be expressed
as f(a) for a substitution f . Given a variable x and a term a, we denote by
σx
a the substitution f such that f(x) = a and f(y) = y for every variable

y 6= x.
If a term a is written as a = a(x1, . . . , xn) then we assume that x1, . . . , xn

are pairwise distinct variables and S(a) ⊆ {x1, . . . , xn}. In that case, for any
n-tuple b1, . . . , bn of terms we denote by a(b1, . . . , bn) the term f(a) where
f is (any) substitution such that f(xi) = bi for i = 1, . . . , n.

For a, b ∈ F we write a ≤ b if there exists a substitution f such that
f(a) is a subterm of b. This relation is a quasiordering of F satisfying the
minimal condition. We write a < b if a ≤ b and b � a. We write a || b (and
say that the two terms are incomparable) if neither a ≤ b nor b ≤ a.

If a ≤ b and b ≤ a, we write a ∼ b and say that the terms a, b are similar
(or also, that b can be obtained from a by renaming variables). Clearly,
a ∼ b if and only if b = α(a) for an automorphism α of the groupoid F . The
relation ∼ is an equivalence on F (it is not a congruence).
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The quasiordering ≤ of F induces an ordering on the set F/∼, which will
be also denoted by ≤. The elements of F/∼ are called patterns; a/∼ is the
pattern of a term a.

For a term a we denote by O(a) the ordered set of the patterns that are
less or equal to a/∼. For example, if x, y, z are three distinct variables then
O(x) is the one-element ordered set, O(xy) is the two-element chain and
O(xx) and O(xyz) are three-element chains.

Since two similar terms have the same length, it makes sense to speak
about the length of a pattern. Similarly, we can speak about the depth of
a pattern and about linear, unary and slim patterns. On the other hand,
there is nothing like a product of two patterns.

It is easy to see that for every term a there exists a linear term b, unique
up to similarity, such that a = f(b) for a substitution f sending variables
to variables. This linear term will be called the linear hull of a and denoted
by lh(a). Since it is determined only up to similarity, it is better to write
b ∼ lh(a). For example, lh(xyx · zy) ∼ x1x2x3 · x4x5.

By the unary hull of a term a we mean the term f(a) where f is a
substitution sending all variables to one fixed variable. It is again determined
by a uniquely up to similarity. If b is the unary hull of a, we write b ∼ uh(a).

Let P be an ordered set. An n-ary relation R on P is called definable if
there exists a first-order formula ϕ(x1, . . . , xn) with free variables x1, . . . , xn
in the language of ordered sets, such that for any elements a1, . . . , an of P ,
ϕ(a1, . . . , an) is satisfied in P if and only if (a1, . . . , an) ∈ R. A subset of P
is called definable if it is definable as a unary relation. An element a of P
is called definable if the set {a} is definable.

Let Q be a quasiordered set. Then Q/∼ is an ordered set, where a ∼ b
means a ≤ b and b ≤ a. An n-ary relation R on Q is called definable if it is
invariant under∼ and the relation R/∼, defined by (a1/∼, . . . , an/∼) ∈ R/∼
if and only if (a1, . . . , an) ∈ R, is definable in R/∼. This is the same as to
say that there exists a first-order formula ϕ(x1, . . . , an) with free variables
x1, . . . , xn without equality sign in the language of ordered sets, such that
for any elements a1, . . . , an of Q, ϕ(a1, . . . , an) is satisfied in Q if and only
if (a1, . . . , an) ∈ R.

So, to investigate definability in the quasiordered set of terms is the same
as to investigate definability in the ordered set of patterns. The differences
are only technical. It is more safe to think in patterns.

Clearly, the binary relations ≤, <, ||,∼ are definable.

1.1. Lemma. Let a, b be two terms and f be a substitution. If a ⊆ b then

f(a) ⊆ f(b). If a ⊂ b then f(a) ⊂ f(b).

Proof. It is obvious. �

1.2. Lemma. Let a ≤ b. If b is linear, then a is also linear. If b is slim,

then a is also slim. All slim linear terms are comparable with each other.

Proof. This is obvious. �
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1.3. Lemma. Let a be a term and x1, . . . , xn be pairwise distinct variables

not occurring in a. Then every term b such that a ≤ b ≤ ax1 . . . xn is similar

to ax1 . . . xi for some i ∈ {0, . . . , n}.

Proof. By induction on the length of a. For a ∈ X this follows from 1.2.
Let a /∈ X. Suppose that there is a term b such that a < b < ax1 . . . xn
and b 6∼ ax1 . . . xi for all i, and take a minimal such term b. There are
two substitutions f, g such that f(a) ⊆ b and g(b) ⊆ ax1 . . . xn. Clearly,
g(b) = ax1 . . . xm for some 1 ≤ m ≤ n. From this it follows that b = cy for a
term c and a variable y /∈ S(c). If f(a) ⊆ c then a ≤ c < b ≤ ax1 . . . xn; by
the minimality of b, c ∼ ax1 . . . xi for some i < n; but then b ∼ ax1 . . . xi+1.
So, f(a) 6⊆ c and then f(a) = b. We have a = a1a2 for two terms a1, a2 such
that f(a1) = c and f(a2) = y. Since y /∈ S(c), a2 is a variable not contained
in S(a1); denote this variable by x0. Since a1 ≤ b ≤ a1x0x1 . . . xn, by the
induction assumption we get b ∼ a1x0x1 . . . xi = ax1 . . . axi for some i. �

2. Covers

For two terms a, b we write a ≺ b if a < b and there is no term c with
a < c < b. If a ≺ b, we say that a is covered by b or also that b is an (upper)
cover of a or also that a is a lower cover of b.

We write a ≺1 b if b ∼ ax for a variable x /∈ S(a).
We write a ≺2 b if b ∼ σx

xy(a) for a variable x ∈ S(a) and a variable
y /∈ S(a).

We write a ≺3 b if b ∼ σx
y (a) for two different variables x, y ∈ S(a).

2.1. Theorem. Let a, b be two terms. Then a ≺ b if and only if either a ≺1 b
or a ≺2 b or a ≺3 b. We can never have a ≺3 b and a ≺i b for i ∈ {1, 2} at

the same time. If a ≺1 b and a ≺2 b then the terms a, b are both slim and

linear.

The proof of this theorem will be divided into several lemmas and will be
finished at the end of this section.

2.2. Lemma. If a ≺ b then either a ≺1 b or a ≺2 b or a ≺3 b.

Proof. Let a ≺ b. There exists a substitution f with f(a) ⊆ b. If f(a) ⊂ b
then f(a) ∼ a and we have a < ax ≤ b, so that b ∼ ax and a ≺1 b. If
f(a) = b, then f cannot map S(a) injectively into X; if f(x) /∈ X for some
x ∈ S(a), then one can easily see that a ≺2 b; if f(x) ∈ X for all x ∈ S(a),
then a ≺3 b. �

2.3. Lemma. Let a, b be two terms such that a < b. If λ(a) = λ(b) then

CardS(b) < CardS(a). If λ(b) = λ(a) + 1 then CardS(b) ≤ CardS(a) + 1.

Proof. We have f(a) ⊆ b for a substitution f . If λ(a) = λ(b) then f maps
S(a) into X and this mapping cannot be injective, since f(a) = b 6∼ a. Let
λ(b) = λ(a) + 1. If f(a) ⊂ b then f maps S(a) into X and b = f(a)x for
a variable x. If f(a) = b then f sends all variables from S(a) to variables
except one, which is sent to the product of two variables. �
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2.4. Lemma. If either a ≺1 b or a ≺3 b then a ≺ b. If a ≺2 b and

λ(b) = λ(a) + 1 then a ≺ b.

Proof. This follows from 2.3. �

2.5. Lemma. Let a be a term, b be a subterm of a, x ∈ S(b), y ∈ X − S(b)
and let there exist a substitution f such that f(a) = σx

xy(b). Then either

b = a or a is a slim linear term rooted at x.

Proof. By induction on the length of a. Suppose that b is a proper subterm
of a. If b = x, then clearly a is a product of two different variables, one of
which must be x. Now let b = b1b2 for two terms b1 and b2. We have a = a1a2
for two terms a1, a2 such that b ⊆ a1. Since f(a1)f(a2) = σx

xy(b1)σ
x
xy(b2),

we have f(a1) = σx
xy(bi) for an i ∈ {1, 2}. But bi is a proper subterm of a1,

so x ∈ S(bi) and, by induction, a1 is a slim linear term rooted at x. We
have a1 = x1x2 . . . xn for some pairwise different variables x1, . . . , xn where
x1 = x and b = x1x2 . . . xm for some m, 2 ≤ m ≤ n. Now f(a) is of depth
at least n+1, while σx

xy(b) is of depth m+1. Since f(a) = σx
xy(b), it follows

that m = n, b = a1 and bi = x1 . . . xn−1. Then f(a2) is a variable not
occurring in f(a1). Consequently, a2 is a variable not occurring in a1 and a
is a slim linear term rooted at x. �

2.6. Lemma. Let a ≺3 b ≺2 c. Then either a ≺2 d ≺3 c for some d or

a ≺2 d1 ≺2 d2 ≺3 d3 ≺3 c for some d1, d2, d3.

Proof. Let b = σx
y (a) and c = σz

zu(b). If z 6= y then a ≺2 σ
z
zu(a) ≺3 c. If z =

y then, for a new variable v, a ≺2 σx
xv(a) ≺2 σy

yuσx
xv(a) ≺3 σv

uσ
y
yuσx

xv(a) ≺3

σx
yσ

v
uσ

y
yuσx

xv(a) = c. �

For a term a and a variable x ∈ S(a) denote by κx(a) the least positive
integer such that a = xu2 . . . un for some terms u2, . . . , un. For a term
a and two positive integers n,m denote by µn,m(a) the (total) number of
occurrences of the variables x in a such that νx(a) ≥ n and κx(a) ≤ m, i.e.,

µn,m(a) =
∑

{νx(a) : νx(a) ≥ n, κx(a) ≤ m}.

2.7. Lemma. (1) Let a be a term and x, y ∈ S(a) be two distinct variables.

Then µn,m(a) ≤ µn,m(σx
y (a)) for any n,m.

(2) Let a be a term, x ∈ S(a) be a variable with k occurrences in a,
y ∈ X−S(a) and n,m be two positive integers. If k < n then µn,m(σx

xy(a)) =
µn,m(a). If k = n and m = κx(a) then µn,m(σx

xy(a)) = µn,m(a) − n <
µn,m(a).

Proof. (1) The variables different from x and y contribute the same num-
bers to both sums. Since νy(σ

x
y (a)) = νx(a) + νy(a) and κy(σ

x
y (a)) =

min(κx(a), κy(a)), if one of x, y contributes to the sum for a then the con-
tribution of y to the sum for σx

y (a) is νx(a) + νy(a).
(2) If k < n then x does not contribute to the sum for a and neither x nor

y contributes to the sum for σx
xy(a); the other variables contribute the same
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numbers. If k = n and m = κx(a) then again the only variables that matter
are x and y; the contribution of x to the sum for a is νx(a), while neither
x nor y contributes to the sum for σx

xy(a), since κx(σ
x
xy(a)) = κy(σ

x
xy(a)) =

m+ 1 > m. �

2.8. Lemma. If a ≺2 b then a ≺ b.

Proof. Let b = σx
xy(a) where x ∈ S(a) and y ∈ X − S(a) and suppose that

a is not covered by b. Put n = νx(a). It follows from 2.4 that n ≥ 2.
In particular, a is not linear. It follows from 2.2 and 2.5 that whenever
a ≤ u ≺ v ≤ σx

xy(a) then either u ≺2 v or u ≺3 v. Consequently, applying 2.6
we conclude that σx

xy(a) ∼ c where

c = σx1

y1
. . . σ

xp
yp σ

z1
z1u1

. . . σ
zq
zquq(a)

for some p, q (and some xi, yi, zj , uj) such that p + q > 1. For j = 1, . . . , q
put

nj = νzj (σ
zj+1

zj+1uj+1
. . . σ

zq
zquq(a)).

Clearly, λ(c) = λ(a) + n1 + · · · + nq and λ(σx
xy(a)) = λ(a) + n, so that

n = n1+. . . nq. On the other hand, we have Card(S(b)) = Card(S(a))+q−p
and Card(S(σx

xy(a))) = Card(S(a)) + 1, so that p = q − 1. It follows that
q ≥ 2 and nj < n for all j. Put m = κx(a). By 2.7, µn,m(σx

xy(a)) < µn,m(a)
while µn,m(c) ≥ µn,m(a). But µn,m must give the same result when applied
to two similar terms and we have obtained a contradiction. �

2.9. Lemma. Let a, b be two linear terms such that a ≺1 b and a ≺2 b at

the same time. Then a, b are both slim.

Proof. By induction on the length of a. Let a = a1a2. We have b ∼ ax ∼
σy
yz(a) for some variables x, y, z. Then either a ∼ σy

yz(a1) and x ∼ σy
yz(a2),

or vice versa; we can assume without loss of generality that this first case
takes place. Then a2 is a variable different from y and not occurring in a1.
We have a1 ≺1 a and a1 ≺2 a, so that, by induction, a1 is slim. Since
a2 ∈ X, it follows that a is slim. Since a ≺1 b, also b is slim. �

2.10. Lemma. Let a, b be two terms such that a ≺1 b and a ≺2 b at the

same time. Then a, b are both slim and linear.

Proof. We have a′ ≺1 b′ and a′ ≺2 b′ where a′ ∼ lh(a) and b′ ∼ lh(b).
By 2.9, a′ and b′ are slim. But then a and b are slim. We have a = x1 . . . xn
for some variables x1, . . . , xn. Since a ≺1 b, b ∼ x1 . . . xnxn+1 for a variable
xn+1 /∈ {x1, . . . , xn}. Since a ≺2 b, either x1 or x2 has a single occurrence
in a and b is similar to either x1xn+1x2 . . . xn or x2xn+1x1x3 . . . xn. This
implies that x1, . . . , xn+1 are pairwise different variables. �

If a ≺i b, then we say that b is a cover of a of type i.
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3. Definability of linear terms

For every positive integer n we denote by Cn the (up to similarity) only
slim linear term of length n.

For every n ≥ 2 we denote by Dn the term x1x2 . . . xn where x1, . . . , xn−1

are pairwise distinct variables and xn = x1. It is also determined uniquely
by n up to similarity.

A term a is said to be thin if O(a) is a chain, i.e., if b ≤ a and c ≤ a imply
that either b ≤ c or c ≤ b.

3.1. Proposition. A term a is thin if and only if one of the following four

cases takes place:

(1) a is a slim linear term, i.e., a ∼ Cn for some n ≥ 1;
(2) a ∼ Dn for some n ≥ 2;
(3) a = xy · zu where x, y, z, u are four distinct variables;

(4) a = xy · xz where x, y, z are three distinct variables.

Proof. If (1) takes place then it follows from 1.2 that a is thin. If (2) takes
place then it follows from 2.1 that a has, up to similarity, precisely one
lower cover, namely, the slim linear term of the same length; since this lower
cover is thin, it follows that a is thin. One can easily check that O(a) is the
four-element chain if (3) take place, and the five-element chain if (4) takes
place.

Conversely, let a be a thin term. Since xyzu and xy ·zu are two incompa-
rable terms both less than each of the terms xyz ·uv and (xy · zu)v, we have
xyz · uv 6≤ a and (xy · zu)v 6≤ a. Since xx and xy · z are two incomparable
terms both less than each of the terms xx ·yz and xy ·xy, we have xx ·yz 6≤ a
and xy · xy 6≤ a. From this it follows that if xy · zu ≤ a then a = x1x2 · x3x4
for some variables x1, x2, x3, x4 such that x1 6= x2, x3 6= x4 and x1x2 6= x3x4.
But then, either (3) or (4) takes place.

It remains to consider the case when xy ·zu � a. Then a = x1x2 . . . xn for
some variables x1, . . . , xn (n ≥ 1). If n ≤ 2 then it is clear that either (1) or
(2) takes place. Let n ≥ 3. If x1, . . . , xn are pairwise distinct, then (1) takes
place. So, let a be not linear. Take a variable xn+1 /∈ {x1, . . . , xn} and for
every i = 1, . . . , n denote by bi the term x1 . . . xi−1xn+1xi+1 . . . xn. If x1 = x2
then xx and Cn are two incomparable terms less than a, a contradiction.
Hence x1 6= x2. If {x1, x2} is disjoint with {x3, . . . , xn} then xi = xj for
some 3 ≤ i < j ≤ n and x1x3 . . . xn, bj are two incomparable terms both
less than a, a contradiction. So, we have either x1 = xp or x2 = xp for some
p ≥ 3; since x1x2 = x2x1, without loss of generality x1 = xp. If also x2 = xq
for some q ≥ 3, then bp, bq are two incomparable terms less then a. So, x2
has a single occurrence in a. If xi = xj for some 3 ≤ i < j ≤ n then bp, bj are
two incomparable terms less than a. If xn /∈ {x1, . . . , xn−1} then x1 . . . xn−1

and bi are two incomparable terms less than a, a contradiction. We see
that the variables x1, . . . , xn are pairwise distinct with the only exception
x1 = xn, so that (2) takes place. �
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3.2. Proposition.

(1) The set of thin terms is definable.

(2) The set of the terms similar to Cn for some n, i.e., the set of slim

linear terms, is definable.

(3) The set of the terms similar to Dn for some n ≥ 2 is definable.

(4) Every (pattern of a) thin term is definable.

Proof. Clearly, the set of thin terms is definable. It follows from 3.1 that a
term a is a slim linear term if and only if there exist thin terms b, c with
a ≺ b ≺ c. Consequently, the set of slim linear terms is definable and every
slim linear term is definable. The term xy · zu is, up to similarity, the only
thin term that is not slim and linear and has a thin cover; the term xy · xz
is (again up to similarity) its unique thin cover. For n ≥ 2, Dn is the only
one of the remaining thin terms that is above Cn but not above Cn+1. �

By a 1-special term we mean a term a satisfying these conditions:

(1) whenever b ≺ a and c ≺ a then b ∼ c;
(2) xy · zu ≤ a;
(3) (xy · zu)v � a;
(4) Dn � a for all n ≥ 2.

3.3. Lemma. A term a can be written as a = (xy1 . . . yn)(xz1 . . . zm) for

some n,m ≥ 1 and pairwise distinct variables x, yi, zj if and only if it is 1-

special, there is no 1-special term larger than a, and there exists a 1-special

term b < a such that all the terms t with b ≤ t ≤ a are comparable with each

other.

Proof. For i = 1, 2, 3 denote by Vi the set of the terms that can be written
as (x1x2 . . . xn)(y1y2 . . . ym) where x1, . . . , xn are pairwise distinct variables,
y1, . . . , ym are pairwise distinct variables and (respectively)

(V1) n = m ≥ 2 and xi 6= yj for all i, j;
(V2) n = m ≥ 3 and there is an index k ≥ 3 such that xi = yj if and only

if either (i, j) = (1, k) or (i, j) = (k, 1);
(V3) n ≥ 2, m ≥ 2 and xi = yj if and only if i = j = 1.

One can easily see that every term belonging to V1∪V2∪V3 is 1-special. We
are going to prove first that there are no other 1-special terms.

Let a be a 1-special term. It follows from (2), (3) and (4) that a =
(x1x2 . . . xn)(y1y2 . . . ym) where n,m ≥ 2, xi are pairwise different vari-
ables and yj are pairwise different variables. If a is linear and n 6= m
then (x2 . . . xn)(y1y2 . . . ym) and (x1x2 . . . xn)(y2 . . . ym) are two incompara-
ble lower covers of a, a contradiction. Thus if a is linear, then n = m and
a ∈ V1. Now let a be non-linear.

Suppose that each of x1 and x2 has a single occurrence in a. Since a is
not linear, we have xi = yj for some i ≥ 3 and some j. Clearly, the term
(x2 . . . xn)(y1y2 . . . ym) and the term obtained from a by differentiating xi, yj
(i.e., by replacing one occurrence of this variable with a new variable) are
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two incomparable lower covers of a, a contradiction. Consequently, we can
assume that x1 = yk for some k 6= 2. Quite similarly, we can assume that
y1 = xp for some p 6= 2.

Let k, p ≥ 3. If k 6= p then a has two incomparable lower covers, one
obtained by differentiating x1, yk and the other by differentiating y1, xp.
Hence k = p. If also xi = yj for some i, j 6= k then a has again two
incomparable lower covers, one obtained by differentiating x1, yk and the
other by differentiating xi, yj . Hence there are no such indexes i, j and we
get a ∈ V2.

It remains to consider the case x1 = y1. If also x2 = y2, then a has
two incomparable lower covers: the term (x2 . . . xn)(y2 . . . ym) and the term
obtained from a by differentiating x1, y1. Hence x2 6= y2. If xi = yj for
some i, j ≥ 2 then a has two incomparable lower covers, one obtained by
differentiating x1, y1 and the other by differentiating xi, yj . We get xi 6= yj
whenever (i, j) 6= (1, 1) and so a ∈ V3.

Now when we have completed the description of the set of 1-special terms,
one can easily see that a term is maximal among 1-special terms if and only if
it belongs to V2∪V3. If a satisfies (V3) and n ≤ m, then the term b obtained
from (x1x2 . . . xn)(y1y2 . . . yn) by differentiating x1, y1 is a 1-special term
and the interval restricted by b, a is a chain. On the other hand, for a term
a ∈ V2 and any 1-special term b < a, the interval is at least a four-element
Boolean algebra. �

3.4. Theorem. The set of linear terms is definable. The binary relation

b ∼ lh(a) is definable.

Proof. Denote by U the set of the terms (xy1 . . . yn)(xz1 . . . zm) where n,m ≥
1 and x, yi, zj are pairwise distinct variables. One can easily see that a term
a is linear if and only if u � a for all terms u ∈ U and Dn � a for all
n ≥ 2. So, by 3.2, in order to prove that the set of linear terms is definable,
it is sufficient to show that U is definable. By 3.3, the set U is definable
if the set of 1-special terms is definable. By 3.2, definability of the set of
1-special terms according to the definition depends only on the definability
of the term (xy · zu)v. One can easily check that (xy · zu)v and xyz · uv
are the only terms that are covers of both xy · zu and xyzu (these two last
terms are definable by 3.2). But (as it can be verified easily) xyz · uv has
nine different upper covers, while (xy · zu)v has only six.

We have b ∼ lh(a) if and only if b is a linear term, b ≤ a and c ≤ b for
every linear term c ≤ a. �

3.5. Theorem. The set of unary terms is definable. The binary relation

b ∼ uh(a) is definable.

Proof. A term a is unary if and only if it is maximal among the terms b such
that the linear hull of a is similar to the linear hull of b. �

3.6. Theorem. The set of slim terms is definable.
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Proof. A term is slim if and only if its linear hull is a slim linear term, so
we can use 3.2. �

4. Definability of the types of covers

4.1. Proposition. The binary relation a ≺3 b is definable.

Proof. We have a ≺3 b if and only if a ≺ b and the linear hull of a is similar
to the linear hull of b. �

4.2. Lemma. Let a, b be two linear terms. Then a ≺1 b if and only if a ≺ b
and a′ < b′, where a′ is the unary hull of a and b′ is the unary hull of b.

Proof. Let a′, b′ be the unary hulls such that S(a′) = S(b′) = {x} for a
variable x. If a ≺1 b then a′ is a proper subterm of b′, so that a′ < b′. In
order to prove the converse, let a ≺ b and a′ < b′. Then λ(a) = λ(a′) <
λ(b′) = λ(b), so that (since a, b are linear) λ(b) = λ(a) + 1. Consequently,
λ(b′) = λ(a′) + 1. But a′, b′ are unary, so this is possible only if b′ = a′x.
Then b = ay for a variable y and we get a ≺1 b. �

4.3. Lemma. Denote by U1 the set of the slim terms a = x1 . . . xn such

that n ≥ 3, x1 6= x2, {x1, x2} is disjoint with {x3, . . . , xn} and xn ∈
{x3, . . . , xn−1}. A term a belongs to U1 if and only if a is slim, a is nonlin-

ear, a ≥ xy · z, every thin term below a is linear and a has, up to similarity,

precisely one lower cover not of type 3. Consequently, the set U1 is definable.

Proof. If a ∈ U1 then x1x3 . . . xn is the only lower cover of a that is not of
type 3. Conversely, let a = x1 . . . xn be a slim term satisfying the conditions.
Since a ≥ xy ·z, we have n ≥ 3. Since all the non-linear thin terms y1 . . . yky1
are not below a, we have x1 6= x2 and x1, x2 /∈ {x3, . . . , xn}. So, x1x3 . . . xn
is a lower cover of a and it is not of type 3. If xn /∈ {x1, . . . , xn−1}, then
also x1x2 . . . xn−1 is a lower cover of a not of type 3; these two lower covers
are not similar, a contradiction. Hence xn ∈ {x1, . . . , xn−1}. �

4.4. Proposition. The binary relation a ≺1 b is definable.

Proof. By 4.2, this relation restricted to linear terms is definable. So, we will
be done if we prove the following: a ≺1 b if and only if a ≺ b, a′ ≺1 b

′ where
a′ ∼ lh(a) and b′ ∼ lh(b), and for every u ∈ U1 we have u ≤ a if and only
if u ≤ b (where U1 was introduced in 4.3). The direct implication is easy.
For the converse, suppose that a ≺ b and the above conditions are satisfied.
Since λ(b′) = λ(a′) + 1, we have λ(b) = λ(a) + 1 and so it is sufficient to
consider the case when b ∼ σx

xy(a) for a variable x with a single occurrence
in a and a variable y /∈ S(a). Then also b′ ∼ σz

zu(a
′) for a variable z ∈ S(a′)

and a variable u /∈ S(a′). By 2.9, a′ and b′ are slim. But then also a and
b are slim. We have a = x1x2 . . . xn for some variables x1, . . . , xn where
(since b is slim) x ∈ {x1, x2}. Without loss of generality, x = x1. Then
b ∼ xyx2 . . . xn. Suppose that a is nonlinear and denote by j the largest
index such that xi = xj for some i < j, so that j ≥ 3. Then xyx2 . . . xj ∈ U1
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is below b, so it must be also below a, which is clearly impossible. Hence a
is linear. Then b is also linear and we get a ≺1 b. �

4.5. Proposition. The binary relation a ≺2 b is definable.

Proof. By 2.10, a ≺2 b if and only if a ≺ b, a 6≺3 b and either a 6≺1 b or a, b
are both slim and linear. �

5. Definability of the addition for codes of positive integers

Since for every positive integer n there is, up to similarity, precisely one
slim linear term of length n, these slim linear terms Cn can serve as codes
for positive integers.

The depth δ(a) of a term a can be also defined as the length of a maximal
slim linear term b such that b ≤ a. So, the binary relations expressing
the facts that a, b are two terms with δ(a) = δ(b), or δ(a) < δ(b), or δ(b) =
δ(a)+1, are definable. This makes it possible to speak freely about the depth
of a term in statements serving to prove that a given relation is definable.

For slim terms, the depth is the same as the length. So, in the case of
slim terms we can also speak freely about the length.

A term a is said to be 2-special if a = x1x2 . . . xn where n ≥ 2, x1, x2 are
two distinct variables and x2 = x3 = · · · = xn.

5.1. Lemma. A term is 2-special if and only if it is slim, has a unary cover

of type 3 and has a slim cover of type 2. Consequently, the set of 2-special
terms is definable.

Proof. If a = xy . . . y is 2-special, then xx . . . x is a unary cover of a of type
3 and xzy . . . y is a slim cover of a of type 2. Conversely, let a = x1x2 . . . xn
be a slim term with a unary cover of type 3 and a slim cover of type 2. Since
a has a unary cover of type 3, we have n ≥ 2 and CardS(a) = 2. If each of
the variables x1, x2 has more than one occurrence in a then a has no slim
cover of type 2. So, without loss of generality, x1 has a single occurrence
in a. Then x2 = x3 = · · · = xn. �

A term a is said to be 3-special if a = x1x2 . . . xn where n ≥ 3, x1, x2 are
two distinct variables, x2 = x3 = · · · = xn−1 and x1 = xn.

5.2. Lemma. A term a is 3-special if and only if b ≺1 c ≺3 a for a 2-special
term b and some term c, there is no term d with d ≺1 a, and either a is

of length 3 or a is not 2-special. Consequently, the set of 3-special terms is

definable.

Proof. It is easy. �

5.3. Lemma. Denote by R the set of the triples (a, b, c) such that a ∼ Cn,

b ∼ Cm and c ∼ Ck for some 4 ≤ n ≤ m and k ≥ n +m − 2. The ternary

relation R is definable.
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Proof. Let a ∼ Cn, b ∼ Cm and c ∼ Ck where 4 ≤ n ≤ m. Clearly, we will
be done if we prove that k ≥ n +m − 2 if and only if there exists a term t
with the following properties:

(1) t is a slim term and λ(t) ≤ k;
(2) a 3-special term of length j is below t if and only if either j = 3 or

j = n;
(3) the 2-special term of length m is below t.

First we are going to prove the direct implication. Let k ≥ n + m − 2.
Take two distinct variables x, y and put t = x1y2 . . . yn−1xn . . . xn+m−2 where
x1 = xn = · · · = xn+m−2 = x and y2 = · · · = yn−1 = y. Clearly, t is a slim
term of length n+m− 2, so λ(t) ≤ k. It is easy to check that t has also the
properties (2) and (3).

For the converse, let there exist a term t satisfying (1), (2) and (3). We
have t = x1x2 . . . xp for some variables x1, . . . , xp. It follows from (2) that
p ≥ n and x1x2 . . . xn is 3-special. So, without loss of generality, x1 6= x2,
x1 = xn and x2 = · · · = xn−1. (We have x1 6= x2 because, also by (2), xx �
t.) Denote by s the 2-special term xy1 . . . ym−1 where x 6= y1 = · · · = ym−1.
Since s ≤ t, there is a substitution f such that f(s) ⊆ t. Clearly, f(y1) is a
variable. If f(x) is of length j ≤ n − 2, then xn = f(yn−j) = f(yn−j−1) =
xn−1, a contradiction. Hence λ(f(x)) ≥ n − 1. Then λ(f(s)) ≥ n +m − 2,
so that λ(t) ≥ n+m− 2 and k ≥ n+m− 2. �

5.4. Theorem. The set of the triples (a, b, c) such that a ∼ Cn, b ∼ Cm and

c ∼ Cn+m for some n,m ≥ 1 is a definable ternary relation.

Proof. It follows easily from 5.3. �

6. Definability of substitution instances

6.1. Proposition. The following relations are definable:

R1(a, b, c): a is a term, b ∼ ax1 . . . xn for some n ≥ 1 and pairwise distinct

variables x1, . . . , xn /∈ S(a), and c ∼ Cn.

R2(a, b, c): a is a term, b ∼ a(xy)x1 . . . xn and c ∼ Cn for some n ≥ 1 and

pairwise distinct variables x, y, x1, . . . , xn /∈ S(a).
R3(a, b, c): a is a term, b ∼ axnx1 . . . xn and c ∼ Cn for some n ≥ 1 and

pairwise distinct variables x1, . . . , xn /∈ S(a).
R4(a, b): a is a term and b = axx for a variable x /∈ S(a).
R5(a, b, c, d): a, b are two terms, c ∼ ax1 . . . xnxn and d ∼ bx1 . . . xnxn for

some n ≥ 1 and pairwise distinct variables x1, . . . , xn /∈ S(a) ∪
S(b).

R6(a, b): a is a term and b is a substitution instance of a, i.e., b = f(a) for
some substitution f .

Proof. Using 1.3, it is easy to prove that R1(a, b, c) if and only if a < b,
a ≤ d ≺ e ≤ b implies d ≺1 e, c is a slim linear term and δ(b) = δ(a) + λ(c).

We have R2(a, b, c) if and only if there are terms d, e such that a ≺1 d ≺2 e,
R1(e, b, c) and either a ∈ X or there is no u with u ≺1 e.
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We have R3(a, b, c) if and only if there exist terms d, c̄ such that R1(a, d, c̄),
c ≺ c̄, d ≺3 b, there is no u with u ≺1 b, and either a ∈ X and b is a
nonlinear thin term or else there is no triple v, a′, v′ of terms with b ≺2

v, a′ ∼ lh(a), v′ ∼ lh(v) and R2(a
′, v′, c). For the proof of the direct

implication put d = axn+1x1 . . . xn and suppose that a /∈ X and there exists
a triple v, a′, v′ as above, so that v ∼ σx

xy(axnx1 . . . xn) for some x, y. It
follows from R2(a

′, v′, c) that v′ ∼ a′(xy)x1 . . . xn. On the other hand, if
x ∈ S(a) then v′ ∼ a1xn+1x1 . . . xn for a term a1 longer than a, so that
a′(xy) ∼ a1xn+1 and hence a ∈ X, a contradiction. If x = xn, then v′ ∼
a′(xy)x1 . . . xn ∼ a′(xy)x1 . . . xn−1(xy), which is impossible. Finally, if x ∈
{x2, . . . , xn−1}, then v′ ∼ a′(xy)x1 . . . xn ∼ a′xn+1x1 . . . (xy) . . . xn, which
is again impossible. It remains to prove the converse implication. Clearly,
b ∼ σx

y (axn+1x1 . . . xn) for some variables x 6= y from S(a)∪{x1, . . . , xn+1}.
Since there is no u with u ≺1 b, xn ∈ {x, y}; without loss of generality, xn =
x. If a /∈ X and y 6= xn+1, then we can put v = σx

y (a(xn+1xn+2)x1 . . . xn)
to obtain a contradiction.

We have R4(a, b) if and only if R3(a, b, C1).
The definability of R5 follows easily from the definability of R1 and R4.
We have R6(a, b) if and only if whenever R5(a, b, c, d) then c ≤ d. Indeed,

if ax1 . . . xnxn ≤ bx1 . . . xnxn where n is very large and a is not a variable
then f(ax1 . . . xnxn) ⊆ bx1 . . . xnxn implies f(xn) = xn, f(xn−1) = xn−1,
. . . , f(a) = b. �

7. Finite sequences of terms and code-terms

For every nonempty finite sequence a1, . . . , an of terms we denote by
H(a1, . . . , an) the term xa1a2 . . . anx where x is a variable not contained
in S(a1) ∪ · · · ∪ S(an). This term (determined uniquely up to similarity)
is called the code of the given sequence. Obviously, the sequence can be
reconstructed from its code.

We have H(a1, . . . , an) ∼ H(b1, . . . , bm) if and only if n = m and there is
an automorphism α of F such that bi = α(ai) for all i = 1, . . . , n. (This is
stronger than just ai ∼ bi for all i.)

By a code-term we mean a term that is a code of some sequence. Ob-
viously, a is a code-term if and only if a = bx for a variable x and a term
b /∈ X having precisely one occurrence of x.

If a is the code of a sequence a1, . . . , an then this sequence is called the
decode of a, the number n is called the width of a, the terms ai are called
members of a and, for i = 1, . . . , n, we put a[i] = ai.

7.1. Lemma. Let a = H(a1, . . . , an) and b = H(b1, . . . , bm) be such that

b = f(a) for a substitution f . Then n = m and bi = f(ai) for i = 1, . . . , n.

Proof. It is obvious. �

7.2. Proposition. The set of code-terms is definable.
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Proof. A term a is a code-term if and only if there exist terms b, c, d, e, a′, d′

with b /∈ X, b ≺1 c ≺3 a ≺2 d, a′ ∼ lh(a), d′ ∼ lh(d) and a′ ≺2 e ≺2 d′,
and there is no term u with u ≺1 d′. Indeed, if a = bx and νx(b) = 1, then
we can take d = σx

xy(a) where y ∈ X − S(a). Conversely, it follows from
b ≺1 c ≺3 a that a = a1x for a term a1 and a variable x; since a ≺2 d,
d ∼ σz

zy(a) for some variable z ∈ S(a) and some variable y /∈ S(a); since
a′ ≺2 e ≺2 d′, z has precisely two occurrences in a; since d′ has no lower
cover of type 1, z = x. �

For every 3 ≤ i < n denote by En,i the term x1x2 . . . xn where x1, . . . , xn−1

are pairwise distinct variables and xn = xi.
For every 2 ≤ i < j < n denote by Gn,i,j the term x1x2 . . . xn where

x1, . . . , xj−1, xj+1, . . . , xn−1 are pairwise distinct variables, xj = xi and xn =
x1.

7.3. Lemma.

(1) We have Dn ≤ Em,i if and only if i = m− n+ 2.
(2) We have Em,k ≤ Gn,i,j if and only if m− k = j − i and k ≤ i.

Proof. It is easy. �

7.4. Lemma. The following relations are definable:

R7(a, b, c): a ∼ Cn, b ∼ Ci and c ∼ En,i for some 3 ≤ i < n.
R8(a, b, c, d): a ∼ Cn, b ∼ Ci, c ∼ Cj, d ∼ Gn,i,j for some 2 ≤ i < j < n.

Proof. The definability of R7 and R8 follows from 7.3 and from the following
two observations. Given an n, a term t is similar to En,i for some i if and
only if Cn ≺3 t, t is not thin and there is no term u with u ≺1 t. Given
an n, a term t is similar to Gn,i,j for some i, j if and only if Dn ≺3 t, xx � t
and there is no pair m, k with R6(Em,k, t). �

7.5. Proposition. The following relations are definable:

R9(a, b): for some n, a ∼ Cn and b is a code-term of width n.
R10(a, b, c, d): a ∼ Cn, b ∼ Ci, c ∼ Cj for some 1 ≤ i < j ≤ n and d is a

code-term of width n such that d[i] = d[j].
R11(a, b, c): for some n, a ∼ Cn, b is a code-term of width n, b[1] ∼ c and

b[2], . . . , b[n] are pairwise distinct variables not occurring in b[1].
R12(a, b, c): for some n, a ∼ Cn, b is a code-term of width n and c ∼ b[1].
R13(a, b, c, d): a ∼ Cn, b ∼ Ci for some 2 ≤ i ≤ n, c is a code-term of width

n such that c[1] = c[i] ∼ d and c[2], . . . , c[i − 1], c[i + 1], . . . , c[n]
are pairwise distinct variables not occurring in c[1].

R14(a, b, c, d): a ∼ Cn, b ∼ Ci for some 2 ≤ i ≤ n and c is a code term of

width n such that c[i] ∼ d and c[1], . . . , c[i−1], c[i+1], . . . , c[n] are
pairwise distinct variables not occurring in c[i].

R15(a, b, c, d): a ∼ Cn, b ∼ Ci for some 1 ≤ i ≤ n, c is a code-term of width

n and d ∼ c[i].

Proof. We have R9(Cn, b) if and only if b is a code-term and b is a substitu-
tion instance of Dn+2.
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We have R10(Cn, Ci, Cj , d) if and only if R9(a, d) and d is a substitution
instance of Gn+2,i+1,j+1.

We have R11(a, b, c) if and only if R3(c, b, a).
We have R12(a, b, c) if and only if there is a term b′ with R11(a, b

′, c) such
that b is a substitution instance of b′ and whenever R11(a, u, v) and b is a
substitution instance of u then c is a substitution instance of v.

We have R13(a, b, c, d) if and only if R11(a, c, d), R10(a, C1, b, c) and every
term t satisfying R12(a, t, d) and R10(a, C1, b, t) is a substitution instance
of c.

We have R14(Cn, Ci, c, d) (2 ≤ i ≤ n) if and only if either d is a variable
and c is a smallest term of width n, or else d is not a variable, c is a code-term
of width n, c[1] is a variable and there exists a term e with R13(a, b, e, d)
such that e is a substitution instance of c and whenever e is a substitution
instance of a code-term c′ of width n with c′[1] ∈ X then c is a substitution
instance of c′.

R15(Cn, Ci, c, d) can be definably reformulated by R12(a, c, d) if i = 1; if
i ≥ 2, we can use R14 in the same way as R11 was used in the reformulation
of R12. �

7.6. Proposition. The following relations are definable:

R16(a, b, c, d): a ∼ Cn, b ∼ Ci, c ∼ Cj where 1 ≤ i, j ≤ n and d is a

code-term of width n such that S(d[i]) ⊆ S(d[j]).
R17(a, b, c, d, e): a ∼ Cn, b ∼ Ci, c ∼ Cj, d ∼ Ck where 1 ≤ i, j, k ≤ n,

k /∈ {i, j} and e is a code-term of width n such that e[k] = e[i]e[j].

Proof. We have R16(Cn, Ci, Cj , d) if and only if d is a code-term of width n
and for every code-term e of width n that is a substitution instance of d,
d[j] ∼ e[j] implies d[i] ∼ e[i].

We have R17(Cn, Ci, Cj , Ck, e) if and only if e is a code-term of width n
and e is a substitution instance of a code-term u of width n such that u[i]
and u[j] are variables, u[i] 6= u[j] if i 6= j, and u[k] = u[i]u[j]; this equality
can be expressed by saying that there is a cover v of a variable such that
v ∼ u[k] if i 6= j and v ≺3 u[k] if i = j, and using R16 to require that
S(u[i]) ⊆ S(u[k]) and S(u[j]) ⊆ S(u[k]). �

7.7. Proposition. The following relations are definable:

R18(a, b, c): a ∼ Cn for some n ≥ 1, b ∼ H(a1, . . . , an) is a code-term of

width n and c ∼ H(a1, . . . , an, an+1) for some term an+1.

R19(a, b, c, d): a ∼ Cn, b ∼ Cm where 1 ≤ n ≤ m, c is a code-term of

width n and d is a code-term of width m such that the decode of c
is a beginning of the decode of d.

R20(a, b, c, d): a ∼ Cn, b ∼ Ci where 1 ≤ i ≤ n, c ∼ H(a1, . . . , an) is a

code-term of width n and d ∼ (H, ai, a1, . . . , an).
R21(a, b, c, d, e): a ∼ Cn, b ∼ Ci, c ∼ Cj where 1 ≤ i, j ≤ n, d ∼

H(a1, . . . , an) is a code-term of width n and e ∼ H(ai, aj).
R22(a, b): a ∼ H(p, q) is a code-term of width 2 and b ∼ H(py, qy) for a

variable y /∈ S(pq).
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R23(a, b): a ∼ H(p, q) is a code-term of width 2 and b ∼ H(py1 . . . yn,
qy1 . . . yn) for some pairwise distinct variables y1, . . . , yn /∈ S(pq)
(n ≥ 0).

R24(a, b): a ∼ H(p, q) and b ∼ H(u, v) are two code-terms of width 2 such

that v can be obtained from u by replacing one occurrence of a

subterm f(p), for some substitution f , with the term f(q).
R25(a, b, c, d): a ∼ Cn, b ∼ Ci, c ∼ Cj where 1 ≤ i, j ≤ n and d is a

code-term of width n such that d[i] is a subterm of d[j].

Proof. Perhaps we should start by explaining why the obvious proof for the
definability of R18 does not work. One would be tempted to take the unique
expression b = xa1 . . . anx for the term b, delete the outer occurrence of x
to obtain the term xa1 . . . an and say that c is an arbitrary term obtained
from the last one if it is multiplied first by an arbitrary term not containing
x and then by x. The trouble is that if we delete the outer occurrence of x,
much of the information about the sequence a1, . . . , an is lost; the variable
x may not be the only variable in xa1 . . . an with a single occurrence. For
a working proof we can exploit the technique of code-terms in such a way
that the variable x is stored together with the term b at a different place.

We have R18(Cn, b, c) if and only if b is a code-term of width n, c is a code-
term of width n+1 and there exists a code-term u ∼ H(u1, . . . , u7) of width 7
such that u1 ∼ b, u2 ∼ c, u3 is a variable, u1 = u3u4, u2 = u3u5, u5 = u6u7,
u3 ∈ S(u7) and u4 = u7. To see this, observe that if u1 = xa1 . . . anx
and u2 = xb1 . . . bnbn+1x then necessarily u3 = x, u4 = xa1 . . . an, u5 =
xb1 . . . bnbn+1, u6 = bn+1 and u7 = xb1 . . . bn.

We have R19(Cn, Cm, c, d) if and only if c is a code-term of width n, d
is a code term of width m ≥ n and there exists a code-term u of width
k = m − n+ 1 such that u[1] ∼ c, u[k] ∼ d and R18(u[i], u[i+ 1]) for every
i < k.

We have R20(Cn, Ci, c, d) if and only if c is a code-term of width n and
there exists a code-term u ∼ H(u1, . . . , u3n+4) of width 3n + 4 such that
u1 ∼ c, u3n+4 ∼ d, un+2 is a variable, u1 = u2un+2, uj = uj+1un+j+1 for
2 ≤ j ≤ n+1, u2n+3 = un+2u2n−i+3 and uj = uj−1u4n+6−j for 2n+4 ≤ j ≤
3n+ 4. To see this, observe that if u1 = xa1 . . . anx then

u2 = xa1 . . . an, u3 = xa1 . . . an−1, . . . , un+1 = xa1, un+2 = x,

un+3 = an, un+4 = an−1, . . . , u2n+2 = a1,

u2n+3 = xai, u2n+4 = xaia1, u2n+5 = xaia1a2, . . . , u3n+3 = xaia1 . . . an,

u3n+4 = xaia1 . . . anx.

We have R21(Cn, Ci, Cj , d, e) if and only if d is a code-term of width n, e is
a code-term of width 2 and there exist two terms u, v such that R20(Cn, Cj ,
d, u), R20(Cn+1, Ci+1, u, v) and R19(C2, Cn+2, e, v).

We have R22(a, b) if and only if a, b are code-terms of width 2 and there
exists a code-term u = H(u1, . . . , u12) of width 12 such that u1 ∼ a, u12 ∼ b
and, where u1 = xpqx, we have u2 = x, u3 = xpq, u4 = xp, u5 = p,
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u6 = q, u7 = y for a variable y /∈ S(u1), y8 = py, u9 = qy, u10 = x(py),
u11 = x(py)(qy) and u12 = x(py)(qy). (Each step should be reformulated
using the previous relations.)

We have R23(a, b) if and only if a, b are two code-terms of width 2 and
there exists a code-term u of some width n such that u[1] ∼ a, u[n] ∼ b and
R22(u[i], u[i+ 1]) for all i < n.

We have R24(a, b) if and only if a, b are two code-terms of width 2 and b is
a substitution instance of some code-term u of width 2 such that R23(a, u).

We have R25(Cn, Ci, Cj , d) if and only if d is a code-term of width n and
there exist a code-term u of some width m and a number k with n < k ≤ m
such that R19(Cn, Cm, d, u), u[k] = u[i], u[m] = u[j] and whenever k ≤ l <
m then R17(Cm, Cl, Cp, Cl+1, u) for some p < l. �

8. Main results

8.1. Theorem. Every term pattern is definable.

Proof. By a C-sequence we will mean a finite sequence c1, . . . , cn (n ≥ 1)
such that for every i = 1, . . . , n either ci is a variable or ci is an ordered
pair of positive integers, both of them less than i. Given such a C-sequence,
for every i = 1, . . . , n we define a term ti by induction as follows: if ci is a
variable, then ti = ci; if ci = (p, q) then ti = tptq. The term tn is called the
value of the given C-sequence. It is easy to see (prove it by induction on the
length of t) that every term t is the value of some C-sequence. Now if t is the
value of a C-sequence c1, . . . , cn, then t is, up to similarity, the only term u
for which there exists a code-term v of width n such that v[n] ∼ u, whenever
ci is a variable then v[i] is a variable, whenever ci and cj are two distinct
variables then v[i] 6= v[j], and whenever ci = (p, q) then v[i] = v[p]v[q]. �

8.2. Corollary. The ordered set of term patterns has no automorphisms

except the identity.

8.3. Theorem. The set of the pairs (a, b) such that a is similar to a subterm

of b is a definable binary relation.

Proof. A term a is similar to a subterm of b if and only if there exists a code-
term u of width 2 such that u[1] ∼ a, u[2] ∼ b and R25(C2, C1, C2, u). We
did not succeed to find a more straightforward proof, not relying so heavily
on the technique of code-terms. �

8.4. Theorem. The following binary relation S(a, b) is definable: S(a, b) if
and only if a ∼ H(H(p1, q1), . . . , H(pn, qn)) and b ∼ H(u, v) for some n ≥ 1
and some equations (i.e., ordered pairs of terms) (pi, qi) and (u, v) such that

(u, v) is a consequence of {(p1, q1), . . . , (pn, qn)}.

Proof. We have S(a, b) if and only if a is a code-term of some width n, a[i] is
a code-term of width 2 for every 1 ≤ i ≤ n and there exists a code-term u of
some width m such that R21(Cm, C1, Cm, u, b) and for every 1 ≤ i < m there
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exist a number j with 1 ≤ j ≤ n and a code-term v of width 2 such that
R24(a[j], v), and either R21(Cm, Ci, Ci+1, v) or R21(Cm, Ci+1, Ci, v). �

9. Concluding remarks

Theorem 8.4 may not seem to be a suitable candidate for the list of
main results, but it is here because it is the result that will be used most
often in a next paper on definability in the lattice of equational theories
of commutative groupoids, a continuation of the present paper. We will
later also rely on the definability of some similar relations, involving a more
detailed syntactic structure of an equation. We hope that in all cases it
would be apparent how to use the above presented technique in a similar
way to obtain the desired concern.

In [2] we did not succed to obtain an analog of Theorem 8.1 and its
corollary 8.2. After proving an analog of Theorem 2.1 and a few auxiliary
results, it seemed difficult to continue working in the ordered set of (general)
term patterns and so we escaped from the ordered set to a larger lattice
of full sets of terms (sets U such that a ≥ b ∈ U implies a ∈ U). For
applications to equational theories, this escape did not matter. However,
the investigation of definability in the ordered set of term patterns may be
interesting in itself, so there remained a gap. We still do not know if the
ordered set of (noncommutative) groupoid terms has automorphisms other
than the identity and the second obvious one. Perhaps this gap could now
be filled. It would also answer the fourth of the open problems formulated
in [3].

We hope that the present paper also shows that the structure of com-
mutative terms, although in many respects similar to that of general terms,
can be a subject of independent interest. There are questions with trivial
answers for general terms but difficult to answer in the commutative case.
The author was not able to decide whether the following is true: If a, b are
two (commutative) terms such that f(a) ∼ f(b) for all substitutions f , then
a = b.
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[4] J. Ježek, The lattice of equational theories. Part IV: Equational theories of finite alge-

bras. Czechoslovak Math. J. 36, 1986, 331–341.
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