THE ORDERING OF COMMUTATIVE TERMS

J. JEŽEK

Abstract

By a commutative term we mean an element of the free commutative groupoid F of infinite rank. For two commutative terms a, b write $a \leq b$ if b contains a subterm that is a substitution instance of a. With respect to this relation, F is a quasiordered set which becomes an ordered set after the appropriate factorization. We study definability in this ordered set. Among other thing, we prove that every commutative term (or its block in the factor) is a definable element. Consequently, the ordered set has no automorphisms except the identity.

0. Introduction

The investigation of definability in the quasiordered set of terms, or in the ordered set of term patterns, is motivated by an effort to solve the questions of definability in the lattice of equational theories. Let us say that a variety V has positive definability if the lattice L_{V} of equational theories of V algebras (or the lattice of all subvarieties of V, which is antiisomorphic to $\left.L_{V}\right)$ has the following properties:
(1) the lattice L_{V} has no automorphisms except the obvious ones,
(2) every finitely based element of L_{V} is definable up to the obvious automorphisms,
(3) the set of finitely based elements of L_{V} is definable,
(4) the set of one-based elements of L_{V} is definable,
(5) the equational theory of every finite algebra from V is definable in L_{V} up to the obvious automorphisms, and
(6) the set of equational theories of finite algebras of V is a definable subset of L_{V}.
It has been proved in a series of papers [1], [2], [3], [4] that for an arbitrary fixed signature, the variety of all algebras of that signature has positive definability. The series can serve as a prototype for the investigation of definability for some other interesting varieties. However, the technique used there can be applicable only to the balanced varieties, i.e., varieties based on balanced equations (equations where every variable and every operation

[^0]symbol has the same number of occurrences at the left as at the right). Examples are the variety of semigroups, the variety of commutative semigroups, the variety of commutative groupoids, the variety of medial groupoids, etc.

An attempt [5] to prove that the variety of semigroups has positive definability was not completely successful. There are many partial results in support of the conjecture, and at least the items (5) and (6) have been answered in the positive.

The least balanced variety of groupoids is the variety of commutative semigroups. Surprisingly, in the recent paper [6] it was discovered that in this case the lattice of equational theories has uncountably many automorphisms, so that the variety has negative definability.

It seems that no other balanced variety has been considered in this context. The most natural candidate is the variety of commutative groupoids. In the present paper we are going to make a first step in this direction.

When trying to imitate the process outlined in [1]-[4], one crucial step is to investigate definability in the ordered set of term patterns; it was the part [2] in which this was done for universal algebras. For semigroups, this part was quite short, as elements of the free semigroup have more simple structure than elements of the free groupoid. For commutative groupoids, the structure might seem to be of about the same complexity as in the case of (general) groupoids. There is an advantage, making the matter even less technically complicated, consisting in the absence of obvious nonidentical automorphisms, so that we will not need to introduce a special parameter in formulas for the purpose of handling those automorphisms. On the other hand, it turns out that not much from [2] can be taken over. An essential drawback is that while elements of the free groupoid can be imagined as static binary trees, where each branch has a fixed position, in the commutative case we should imagine the same trees but with all branches rotating at different speeds.

Although it is not consistent with the generally accepted terminology, by a term we mean in this paper an element of the free commutative groupoid (rather than an element of the free groupoid). If we wished to set it right, we should replace every occurrence of the word 'term' by 'commutative term' in the following text.

1. Preliminaries

Let X be a (fixed) infinite countable set. Its elements will be called variables. We denote by F the free commutative groupoid over X. Its characteristic properties are that it is a commutative groupoid generated by $X, a b \notin X$ for all $a, b \in F$, and whenever $a b=c d$ in F then either $(a, b)=(c, d)$ or $(a, b)=(d, c)$. The elements of F will be called terms.

The unique homomorphism of F into the additive semigroup of natural numbers sending all variables to 1 will be denoted by λ. The number $\lambda(a)$ is called the length of a term a.

We will write $a_{1} a_{2} \ldots a_{n}$ instead of $\left(\left(a_{1} a_{2}\right) \ldots\right) a_{n}$. Similarly, $a b \cdot c d \cdot e f g$ stands for $((a b)(c d))((e f) g)$, etc.

A term b is said to be a subterm of a term a if a can be written as $a=b c_{1} \ldots c_{n}$ for some $n \geq 0$ and some terms c_{1}, \ldots, c_{n}. We write $b \subseteq a$ if b is a subterm of a; we write $b \subset a$ if b is a proper subterm of a, i.e., $b \subseteq a$ and $b \neq a$. The set of subterms of a is a finite subset of F. It could be also defined by induction on the length of a as follows: if a is a variable, then a is the only subterm of a; if $a=b c$, then a term is a subterm of a if and only if it either equals a or is a subterm of either b or c. We denote by $\mathbf{S}(a)$ the set of the variables that are subterms of a; its elements are called variables occurring in a.

For a variable x we denote by ν_{x} the homomorphism of F into the additive semigroup of natural numbers sending x to 1 and all other variables to 0 . For $a \in F, \nu_{x}(a)$ is called the number of occurrences of x in a.

Let t, a, b be three terms. If t can be written as $t=a c_{1} \ldots c_{n}$ for some c_{1}, \ldots, c_{n} then $b c_{1} \ldots c_{n}$ is said to be a term obtained from t by replacing (one occurrence of) a with b. Observe that it is not uniquely determined by the triple t, a, b.

By a linear term we mean a term a such that $\nu_{x}(a) \leq 1$ for all variables x.
By a slim term we mean a term that can be written as $x_{1} x_{2} \ldots x_{n}$ for some $n \geq 1$ and some (not necessarily distinct) variables x_{1}, \ldots, x_{n}. A slim term $x_{1} x_{2} \ldots x_{n}$ is said to be rooted at x_{1}. (If $n \geq 2$, then it is also rooted at x_{2}.)

By a unary term we mean a term a such that $\mathbf{S}(a)=\{x\}$ for a variable x.
By the depth of a term a we mean the largest positive integer n such that a can be written as $a=b_{1} b_{2} \ldots b_{n}$ for some terms b_{1}, \ldots, b_{n}. The depth of a will be denoted by $\delta(a)$.

By a substitution we mean an endomorphism of the groupoid F. By a substitution instance of a term a we mean any term that can be expressed as $f(a)$ for a substitution f. Given a variable x and a term a, we denote by σ_{a}^{x} the substitution f such that $f(x)=a$ and $f(y)=y$ for every variable $y \neq x$.

If a term a is written as $a=a\left(x_{1}, \ldots, x_{n}\right)$ then we assume that x_{1}, \ldots, x_{n} are pairwise distinct variables and $\mathbf{S}(a) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$. In that case, for any n-tuple b_{1}, \ldots, b_{n} of terms we denote by $a\left(b_{1}, \ldots, b_{n}\right)$ the term $f(a)$ where f is (any) substitution such that $f\left(x_{i}\right)=b_{i}$ for $i=1, \ldots, n$.

For $a, b \in F$ we write $a \leq b$ if there exists a substitution f such that $f(a)$ is a subterm of b. This relation is a quasiordering of F satisfying the minimal condition. We write $a<b$ if $a \leq b$ and $b \not \leq a$. We write $a \| b$ (and say that the two terms are incomparable) if neither $a \leq b$ nor $b \leq a$.

If $a \leq b$ and $b \leq a$, we write $a \sim b$ and say that the terms a, b are similar (or also, that b can be obtained from a by renaming variables). Clearly, $a \sim b$ if and only if $b=\alpha(a)$ for an automorphism α of the groupoid F. The relation \sim is an equivalence on F (it is not a congruence).

The quasiordering \leq of F induces an ordering on the set F / \sim, which will be also denoted by \leq. The elements of F / \sim are called patterns; a / \sim is the pattern of a term a.

For a term a we denote by $O(a)$ the ordered set of the patterns that are less or equal to a / \sim. For example, if x, y, z are three distinct variables then $O(x)$ is the one-element ordered set, $O(x y)$ is the two-element chain and $O(x x)$ and $O(x y z)$ are three-element chains.

Since two similar terms have the same length, it makes sense to speak about the length of a pattern. Similarly, we can speak about the depth of a pattern and about linear, unary and slim patterns. On the other hand, there is nothing like a product of two patterns.

It is easy to see that for every term a there exists a linear term b, unique up to similarity, such that $a=f(b)$ for a substitution f sending variables to variables. This linear term will be called the linear hull of a and denoted by $\operatorname{lh}(a)$. Since it is determined only up to similarity, it is better to write $b \sim \operatorname{lh}(a)$. For example, $\mathbf{l h}(x y x \cdot z y) \sim x_{1} x_{2} x_{3} \cdot x_{4} x_{5}$.

By the unary hull of a term a we mean the term $f(a)$ where f is a substitution sending all variables to one fixed variable. It is again determined by a uniquely up to similarity. If b is the unary hull of a, we write $b \sim \mathbf{u h}(a)$.

Let P be an ordered set. An n-ary relation R on P is called definable if there exists a first-order formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ with free variables x_{1}, \ldots, x_{n} in the language of ordered sets, such that for any elements a_{1}, \ldots, a_{n} of P, $\varphi\left(a_{1}, \ldots, a_{n}\right)$ is satisfied in P if and only if $\left(a_{1}, \ldots, a_{n}\right) \in R$. A subset of P is called definable if it is definable as a unary relation. An element a of P is called definable if the set $\{a\}$ is definable.

Let Q be a quasiordered set. Then Q / \sim is an ordered set, where $a \sim b$ means $a \leq b$ and $b \leq a$. An n-ary relation R on Q is called definable if it is invariant under \sim and the relation R / \sim, defined by $\left(a_{1} / \sim, \ldots, a_{n} / \sim\right) \in R / \sim$ if and only if $\left(a_{1}, \ldots, a_{n}\right) \in R$, is definable in R / \sim. This is the same as to say that there exists a first-order formula $\varphi\left(x_{1}, \ldots, a_{n}\right)$ with free variables x_{1}, \ldots, x_{n} without equality sign in the language of ordered sets, such that for any elements a_{1}, \ldots, a_{n} of $Q, \varphi\left(a_{1}, \ldots, a_{n}\right)$ is satisfied in Q if and only if $\left(a_{1}, \ldots, a_{n}\right) \in R$.

So, to investigate definability in the quasiordered set of terms is the same as to investigate definability in the ordered set of patterns. The differences are only technical. It is more safe to think in patterns.

Clearly, the binary relations $\leq,<, \|, \sim$ are definable.
1.1. Lemma. Let a, b be two terms and f be a substitution. If $a \subseteq b$ then $f(a) \subseteq f(b)$. If $a \subset b$ then $f(a) \subset f(b)$.
Proof. It is obvious.
1.2. Lemma. Let $a \leq b$. If b is linear, then a is also linear. If b is slim, then a is also slim. All slim linear terms are comparable with each other.
Proof. This is obvious.
1.3. Lemma. Let a be a term and x_{1}, \ldots, x_{n} be pairwise distinct variables not occurring in a. Then every term b such that $a \leq b \leq a x_{1} \ldots x_{n}$ is similar to $a x_{1} \ldots x_{i}$ for some $i \in\{0, \ldots, n\}$.
Proof. By induction on the length of a. For $a \in X$ this follows from 1.2. Let $a \notin X$. Suppose that there is a term b such that $a<b<a x_{1} \ldots x_{n}$ and $b \nsim a x_{1} \ldots x_{i}$ for all i, and take a minimal such term b. There are two substitutions f, g such that $f(a) \subseteq b$ and $g(b) \subseteq a x_{1} \ldots x_{n}$. Clearly, $g(b)=a x_{1} \ldots x_{m}$ for some $1 \leq m \leq n$. From this it follows that $b=c y$ for a term c and a variable $y \notin \mathbf{S}(c)$. If $f(a) \subseteq c$ then $a \leq c<b \leq a x_{1} \ldots x_{n}$; by the minimality of $b, c \sim a x_{1} \ldots x_{i}$ for some $i<n$; but then $b \sim a x_{1} \ldots x_{i+1}$. So, $f(a) \nsubseteq c$ and then $f(a)=b$. We have $a=a_{1} a_{2}$ for two terms a_{1}, a_{2} such that $f\left(a_{1}\right)=c$ and $f\left(a_{2}\right)=y$. Since $y \notin \mathbf{S}(c), a_{2}$ is a variable not contained in $\mathbf{S}\left(a_{1}\right)$; denote this variable by x_{0}. Since $a_{1} \leq b \leq a_{1} x_{0} x_{1} \ldots x_{n}$, by the induction assumption we get $b \sim a_{1} x_{0} x_{1} \ldots x_{i}=a x_{1} \ldots a x_{i}$ for some i.

2. Covers

For two terms a, b we write $a \prec b$ if $a<b$ and there is no term c with $a<c<b$. If $a \prec b$, we say that a is covered by b or also that b is an (upper) cover of a or also that a is a lower cover of b.

We write $a \prec_{1} b$ if $b \sim a x$ for a variable $x \notin \mathbf{S}(a)$.
We write $a \prec_{2} b$ if $b \sim \sigma_{x y}^{x}(a)$ for a variable $x \in \mathbf{S}(a)$ and a variable $y \notin \mathbf{S}(a)$.

We write $a \prec_{3} b$ if $b \sim \sigma_{y}^{x}(a)$ for two different variables $x, y \in \mathbf{S}(a)$.
2.1. Theorem. Let a, b be two terms. Then $a \prec b$ if and only if either $a \prec_{1} b$ or $a \prec_{2} b$ or $a \prec_{3} b$. We can never have $a \prec_{3} b$ and $a \prec_{i} b$ for $i \in\{1,2\}$ at the same time. If $a \prec_{1} b$ and $a \prec_{2} b$ then the terms a, b are both slim and linear.

The proof of this theorem will be divided into several lemmas and will be finished at the end of this section.
2.2. Lemma. If $a \prec b$ then either $a \prec_{1} b$ or $a \prec_{2} b$ or $a \prec_{3} b$.

Proof. Let $a \prec b$. There exists a substitution f with $f(a) \subseteq b$. If $f(a) \subset b$ then $f(a) \sim a$ and we have $a<a x \leq b$, so that $b \sim a x$ and $a \prec_{1} b$. If $f(a)=b$, then f cannot map $\mathbf{S}(a)$ injectively into X; if $f(x) \notin X$ for some $x \in \mathbf{S}(a)$, then one can easily see that $a \prec_{2} b$; if $f(x) \in X$ for all $x \in \mathbf{S}(a)$, then $a \prec_{3} b$.
2.3. Lemma. Let a, b be two terms such that $a<b$. If $\lambda(a)=\lambda(b)$ then $\operatorname{Card} \mathbf{S}(b)<\operatorname{Card} \mathbf{S}(a)$. If $\lambda(b)=\lambda(a)+1$ then $\operatorname{Card} \mathbf{S}(b) \leq \operatorname{Card} \mathbf{S}(a)+1$.

Proof. We have $f(a) \subseteq b$ for a substitution f. If $\lambda(a)=\lambda(b)$ then f maps $\mathbf{S}(a)$ into X and this mapping cannot be injective, since $f(a)=b \nsim a$. Let $\lambda(b)=\lambda(a)+1$. If $f(a) \subset b$ then f maps $\mathbf{S}(a)$ into X and $b=f(a) x$ for a variable x. If $f(a)=b$ then f sends all variables from $\mathbf{S}(a)$ to variables except one, which is sent to the product of two variables.
2.4. Lemma. If either $a \prec_{1} b$ or $a \prec_{3} b$ then $a \prec b$. If $a \prec_{2} b$ and $\lambda(b)=\lambda(a)+1$ then $a \prec b$.

Proof. This follows from 2.3.
2.5. Lemma. Let a be a term, b be a subterm of $a, x \in \mathbf{S}(b), y \in X-\mathbf{S}(b)$ and let there exist a substitution f such that $f(a)=\sigma_{x y}^{x}(b)$. Then either $b=a$ or a is a slim linear term rooted at x.

Proof. By induction on the length of a. Suppose that b is a proper subterm of a. If $b=x$, then clearly a is a product of two different variables, one of which must be x. Now let $b=b_{1} b_{2}$ for two terms b_{1} and b_{2}. We have $a=a_{1} a_{2}$ for two terms a_{1}, a_{2} such that $b \subseteq a_{1}$. Since $f\left(a_{1}\right) f\left(a_{2}\right)=\sigma_{x y}^{x}\left(b_{1}\right) \sigma_{x y}^{x}\left(b_{2}\right)$, we have $f\left(a_{1}\right)=\sigma_{x y}^{x}\left(b_{i}\right)$ for an $i \in\{1,2\}$. But b_{i} is a proper subterm of a_{1}, so $x \in \mathbf{S}\left(b_{i}\right)$ and, by induction, a_{1} is a slim linear term rooted at x. We have $a_{1}=x_{1} x_{2} \ldots x_{n}$ for some pairwise different variables x_{1}, \ldots, x_{n} where $x_{1}=x$ and $b=x_{1} x_{2} \ldots x_{m}$ for some $m, 2 \leq m \leq n$. Now $f(a)$ is of depth at least $n+1$, while $\sigma_{x y}^{x}(b)$ is of depth $m+1$. Since $f(a)=\sigma_{x y}^{x}(b)$, it follows that $m=n, b=a_{1}$ and $b_{i}=x_{1} \ldots x_{n-1}$. Then $f\left(a_{2}\right)$ is a variable not occurring in $f\left(a_{1}\right)$. Consequently, a_{2} is a variable not occurring in a_{1} and a is a slim linear term rooted at x.
2.6. Lemma. Let $a \prec_{3} b \prec_{2} c$. Then either $a \prec_{2} d \prec_{3} c$ for some d or $a \prec_{2} d_{1} \prec_{2} d_{2} \prec_{3} d_{3} \prec_{3} c$ for some d_{1}, d_{2}, d_{3}.

Proof. Let $b=\sigma_{y}^{x}(a)$ and $c=\sigma_{z u}^{z}(b)$. If $z \neq y$ then $a \prec_{2} \sigma_{z u}^{z}(a) \prec_{3} c$. If $z=$ y then, for a new variable $v, a \prec_{2} \sigma_{x v}^{x}(a) \prec_{2} \sigma_{y u}^{y} \sigma_{x v}^{x}(a) \prec_{3} \sigma_{u}^{v} \sigma_{y u}^{y} \sigma_{x v}^{x}(a) \prec_{3}$ $\sigma_{y}^{x} \sigma_{u}^{v} \sigma_{y u}^{y} \sigma_{x v}^{x}(a)=c$.

For a term a and a variable $x \in \mathbf{S}(a)$ denote by $\kappa_{x}(a)$ the least positive integer such that $a=x u_{2} \ldots u_{n}$ for some terms u_{2}, \ldots, u_{n}. For a term a and two positive integers n, m denote by $\mu_{n, m}(a)$ the (total) number of occurrences of the variables x in a such that $\nu_{x}(a) \geq n$ and $\kappa_{x}(a) \leq m$, i.e.,

$$
\mu_{n, m}(a)=\sum\left\{\nu_{x}(a): \nu_{x}(a) \geq n, \kappa_{x}(a) \leq m\right\}
$$

2.7. Lemma. (1) Let a be a term and $x, y \in \mathbf{S}(a)$ be two distinct variables. Then $\mu_{n, m}(a) \leq \mu_{n, m}\left(\sigma_{y}^{x}(a)\right)$ for any n, m.
(2) Let a be a term, $x \in \mathbf{S}(a)$ be a variable with k occurrences in a, $y \in X-\mathbf{S}(a)$ and n, m be two positive integers. If $k<n$ then $\mu_{n, m}\left(\sigma_{x y}^{x}(a)\right)=$ $\mu_{n, m}(a)$. If $k=n$ and $m=\kappa_{x}(a)$ then $\mu_{n, m}\left(\sigma_{x y}^{x}(a)\right)=\mu_{n, m}(a)-n<$ $\mu_{n, m}(a)$.

Proof. (1) The variables different from x and y contribute the same numbers to both sums. Since $\nu_{y}\left(\sigma_{y}^{x}(a)\right)=\nu_{x}(a)+\nu_{y}(a)$ and $\kappa_{y}\left(\sigma_{y}^{x}(a)\right)=$ $\min \left(\kappa_{x}(a), \kappa_{y}(a)\right)$, if one of x, y contributes to the sum for a then the contribution of y to the sum for $\sigma_{y}^{x}(a)$ is $\nu_{x}(a)+\nu_{y}(a)$.
(2) If $k<n$ then x does not contribute to the sum for a and neither x nor y contributes to the sum for $\sigma_{x y}^{x}(a)$; the other variables contribute the same
numbers. If $k=n$ and $m=\kappa_{x}(a)$ then again the only variables that matter are x and y; the contribution of x to the sum for a is $\nu_{x}(a)$, while neither x nor y contributes to the sum for $\sigma_{x y}^{x}(a)$, since $\kappa_{x}\left(\sigma_{x y}^{x}(a)\right)=\kappa_{y}\left(\sigma_{x y}^{x}(a)\right)=$ $m+1>m$.
2.8. Lemma. If $a \prec_{2} b$ then $a \prec b$.

Proof. Let $b=\sigma_{x y}^{x}(a)$ where $x \in \mathbf{S}(a)$ and $y \in X-\mathbf{S}(a)$ and suppose that a is not covered by b. Put $n=\nu_{x}(a)$. It follows from 2.4 that $n \geq 2$. In particular, a is not linear. It follows from 2.2 and 2.5 that whenever $a \leq u \prec v \leq \sigma_{x y}^{x}(a)$ then either $u \prec_{2} v$ or $u \prec_{3} v$. Consequently, applying 2.6 we conclude that $\sigma_{x y}^{x}(a) \sim c$ where

$$
c=\sigma_{y_{1}}^{x_{1}} \ldots \sigma_{y_{p}}^{x_{p}} \sigma_{z_{1} u_{1}}^{z_{1}} \ldots \sigma_{z_{q} u_{q}}^{z_{q}}(a)
$$

for some p, q (and some $\left.x_{i}, y_{i}, z_{j}, u_{j}\right)$ such that $p+q>1$. For $j=1, \ldots, q$ put

$$
n_{j}=\nu_{z_{j}}\left(\sigma_{z_{j+1} u_{j+1}}^{z_{j+1}} \ldots \sigma_{z_{q} u_{q}}^{z_{q}}(a)\right)
$$

Clearly, $\lambda(c)=\lambda(a)+n_{1}+\cdots+n_{q}$ and $\lambda\left(\sigma_{x y}^{x}(a)\right)=\lambda(a)+n$, so that $n=n_{1}+\ldots n_{q}$. On the other hand, we have $\operatorname{Card}(\mathbf{S}(b))=\operatorname{Card}(\mathbf{S}(a))+q-p$ and $\operatorname{Card}\left(\mathbf{S}\left(\sigma_{x y}^{x}(a)\right)\right)=\operatorname{Card}(\mathbf{S}(a))+1$, so that $p=q-1$. It follows that $q \geq 2$ and $n_{j}<n$ for all j. Put $m=\kappa_{x}(a)$. By 2.7, $\mu_{n, m}\left(\sigma_{x y}^{x}(a)\right)<\mu_{n, m}(a)$ while $\mu_{n, m}(c) \geq \mu_{n, m}(a)$. But $\mu_{n, m}$ must give the same result when applied to two similar terms and we have obtained a contradiction.
2.9. Lemma. Let a, b be two linear terms such that $a \prec_{1} b$ and $a \prec_{2} b$ at the same time. Then a, b are both slim.

Proof. By induction on the length of a. Let $a=a_{1} a_{2}$. We have $b \sim a x \sim$ $\sigma_{y z}^{y}(a)$ for some variables x, y, z. Then either $a \sim \sigma_{y z}^{y}\left(a_{1}\right)$ and $x \sim \sigma_{y z}^{y}\left(a_{2}\right)$, or vice versa; we can assume without loss of generality that this first case takes place. Then a_{2} is a variable different from y and not occurring in a_{1}. We have $a_{1} \prec_{1} a$ and $a_{1} \prec_{2} a$, so that, by induction, a_{1} is slim. Since $a_{2} \in X$, it follows that a is slim. Since $a \prec_{1} b$, also b is slim.
2.10. Lemma. Let a, b be two terms such that $a \prec_{1} b$ and $a \prec_{2} b$ at the same time. Then a, b are both slim and linear.

Proof. We have $a^{\prime} \prec_{1} b^{\prime}$ and $a^{\prime} \prec_{2} b^{\prime}$ where $a^{\prime} \sim \operatorname{lh}(a)$ and $b^{\prime} \sim \operatorname{lh}(b)$. By 2.9, a^{\prime} and b^{\prime} are slim. But then a and b are slim. We have $a=x_{1} \ldots x_{n}$ for some variables x_{1}, \ldots, x_{n}. Since $a \prec_{1} b, b \sim x_{1} \ldots x_{n} x_{n+1}$ for a variable $x_{n+1} \notin\left\{x_{1}, \ldots, x_{n}\right\}$. Since $a \prec_{2} b$, either x_{1} or x_{2} has a single occurrence in a and b is similar to either $x_{1} x_{n+1} x_{2} \ldots x_{n}$ or $x_{2} x_{n+1} x_{1} x_{3} \ldots x_{n}$. This implies that x_{1}, \ldots, x_{n+1} are pairwise different variables.

If $a \prec_{i} b$, then we say that b is a cover of a of type i.

3. Definability of Linear terms

For every positive integer n we denote by C_{n} the (up to similarity) only slim linear term of length n.

For every $n \geq 2$ we denote by D_{n} the term $x_{1} x_{2} \ldots x_{n}$ where x_{1}, \ldots, x_{n-1} are pairwise distinct variables and $x_{n}=x_{1}$. It is also determined uniquely by n up to similarity.

A term a is said to be thin if $O(a)$ is a chain, i.e., if $b \leq a$ and $c \leq a$ imply that either $b \leq c$ or $c \leq b$.
3.1. Proposition. A term a is thin if and only if one of the following four cases takes place:
(1) a is a slim linear term, i.e., $a \sim C_{n}$ for some $n \geq 1$;
(2) $a \sim D_{n}$ for some $n \geq 2$;
(3) $a=x y \cdot z u$ where x, y, z, u are four distinct variables;
(4) $a=x y \cdot x z$ where x, y, z are three distinct variables.

Proof. If (1) takes place then it follows from 1.2 that a is thin. If (2) takes place then it follows from 2.1 that a has, up to similarity, precisely one lower cover, namely, the slim linear term of the same length; since this lower cover is thin, it follows that a is thin. One can easily check that $O(a)$ is the four-element chain if (3) take place, and the five-element chain if (4) takes place.

Conversely, let a be a thin term. Since $x y z u$ and $x y \cdot z u$ are two incomparable terms both less than each of the terms $x y z \cdot u v$ and $(x y \cdot z u) v$, we have $x y z \cdot u v \not \leq a$ and $(x y \cdot z u) v \not \leq a$. Since $x x$ and $x y \cdot z$ are two incomparable terms both less than each of the terms $x x \cdot y z$ and $x y \cdot x y$, we have $x x \cdot y z \not \leq a$ and $x y \cdot x y \not \leq a$. From this it follows that if $x y \cdot z u \leq a$ then $a=x_{1} x_{2} \cdot x_{3} x_{4}$ for some variables $x_{1}, x_{2}, x_{3}, x_{4}$ such that $x_{1} \neq x_{2}, x_{3} \neq x_{4}$ and $x_{1} x_{2} \neq x_{3} x_{4}$. But then, either (3) or (4) takes place.

It remains to consider the case when $x y \cdot z u \not \approx a$. Then $a=x_{1} x_{2} \ldots x_{n}$ for some variables $x_{1}, \ldots, x_{n}(n \geq 1)$. If $n \leq 2$ then it is clear that either (1) or (2) takes place. Let $n \geq 3$. If x_{1}, \ldots, x_{n} are pairwise distinct, then (1) takes place. So, let a be not linear. Take a variable $x_{n+1} \notin\left\{x_{1}, \ldots, x_{n}\right\}$ and for every $i=1, \ldots, n$ denote by b_{i} the term $x_{1} \ldots x_{i-1} x_{n+1} x_{i+1} \ldots x_{n}$. If $x_{1}=x_{2}$ then $x x$ and C_{n} are two incomparable terms less than a, a contradiction. Hence $x_{1} \neq x_{2}$. If $\left\{x_{1}, x_{2}\right\}$ is disjoint with $\left\{x_{3}, \ldots, x_{n}\right\}$ then $x_{i}=x_{j}$ for some $3 \leq i<j \leq n$ and $x_{1} x_{3} \ldots x_{n}, b_{j}$ are two incomparable terms both less than a, a contradiction. So, we have either $x_{1}=x_{p}$ or $x_{2}=x_{p}$ for some $p \geq 3$; since $x_{1} x_{2}=x_{2} x_{1}$, without loss of generality $x_{1}=x_{p}$. If also $x_{2}=x_{q}$ for some $q \geq 3$, then b_{p}, b_{q} are two incomparable terms less then a. So, x_{2} has a single occurrence in a. If $x_{i}=x_{j}$ for some $3 \leq i<j \leq n$ then b_{p}, b_{j} are two incomparable terms less than a. If $x_{n} \notin\left\{x_{1}, \ldots, x_{n-1}\right\}$ then $x_{1} \ldots x_{n-1}$ and b_{i} are two incomparable terms less than a, a contradiction. We see that the variables x_{1}, \ldots, x_{n} are pairwise distinct with the only exception $x_{1}=x_{n}$, so that (2) takes place.

3.2. Proposition.

(1) The set of thin terms is definable.
(2) The set of the terms similar to C_{n} for some n, i.e., the set of slim linear terms, is definable.
(3) The set of the terms similar to D_{n} for some $n \geq 2$ is definable.
(4) Every (pattern of a) thin term is definable.

Proof. Clearly, the set of thin terms is definable. It follows from 3.1 that a term a is a slim linear term if and only if there exist thin terms b, c with $a \prec b \prec c$. Consequently, the set of slim linear terms is definable and every slim linear term is definable. The term $x y \cdot z u$ is, up to similarity, the only thin term that is not slim and linear and has a thin cover; the term $x y \cdot x z$ is (again up to similarity) its unique thin cover. For $n \geq 2, D_{n}$ is the only one of the remaining thin terms that is above C_{n} but not above C_{n+1}.

By a 1-special term we mean a term a satisfying these conditions:
(1) whenever $b \prec a$ and $c \prec a$ then $b \sim c$;
(2) $x y \cdot z u \leq a$;
(3) $(x y \cdot z u) v \not \leq a$;
(4) $D_{n} \not \leq a$ for all $n \geq 2$.
3.3. Lemma. A term a can be written as $a=\left(x y_{1} \ldots y_{n}\right)\left(x z_{1} \ldots z_{m}\right)$ for some $n, m \geq 1$ and pairwise distinct variables x, y_{i}, z_{j} if and only if it is 1special, there is no 1-special term larger than a, and there exists a 1-special term $b<a$ such that all the terms t with $b \leq t \leq a$ are comparable with each other.

Proof. For $i=1,2,3$ denote by V_{i} the set of the terms that can be written as $\left(x_{1} x_{2} \ldots x_{n}\right)\left(y_{1} y_{2} \ldots y_{m}\right)$ where x_{1}, \ldots, x_{n} are pairwise distinct variables, y_{1}, \ldots, y_{m} are pairwise distinct variables and (respectively)
$\left(V_{1}\right) n=m \geq 2$ and $x_{i} \neq y_{j}$ for all i, j;
$\left(V_{2}\right) n=m \geq 3$ and there is an index $k \geq 3$ such that $x_{i}=y_{j}$ if and only if either $(i, j)=(1, k)$ or $(i, j)=(k, 1)$;
$\left(V_{3}\right) n \geq 2, m \geq 2$ and $x_{i}=y_{j}$ if and only if $i=j=1$.
One can easily see that every term belonging to $V_{1} \cup V_{2} \cup V_{3}$ is 1 -special. We are going to prove first that there are no other 1-special terms.

Let a be a 1 -special term. It follows from (2), (3) and (4) that $a=$ $\left(x_{1} x_{2} \ldots x_{n}\right)\left(y_{1} y_{2} \ldots y_{m}\right)$ where $n, m \geq 2, x_{i}$ are pairwise different variables and y_{j} are pairwise different variables. If a is linear and $n \neq m$ then $\left(x_{2} \ldots x_{n}\right)\left(y_{1} y_{2} \ldots y_{m}\right)$ and $\left(x_{1} x_{2} \ldots x_{n}\right)\left(y_{2} \ldots y_{m}\right)$ are two incomparable lower covers of a, a contradiction. Thus if a is linear, then $n=m$ and $a \in V_{1}$. Now let a be non-linear.

Suppose that each of x_{1} and x_{2} has a single occurrence in a. Since a is not linear, we have $x_{i}=y_{j}$ for some $i \geq 3$ and some j. Clearly, the term $\left(x_{2} \ldots x_{n}\right)\left(y_{1} y_{2} \ldots y_{m}\right)$ and the term obtained from a by differentiating x_{i}, y_{j} (i.e., by replacing one occurrence of this variable with a new variable) are
two incomparable lower covers of a, a contradiction. Consequently, we can assume that $x_{1}=y_{k}$ for some $k \neq 2$. Quite similarly, we can assume that $y_{1}=x_{p}$ for some $p \neq 2$.

Let $k, p \geq 3$. If $k \neq p$ then a has two incomparable lower covers, one obtained by differentiating x_{1}, y_{k} and the other by differentiating y_{1}, x_{p}. Hence $k=p$. If also $x_{i}=y_{j}$ for some $i, j \neq k$ then a has again two incomparable lower covers, one obtained by differentiating x_{1}, y_{k} and the other by differentiating x_{i}, y_{j}. Hence there are no such indexes i, j and we get $a \in V_{2}$.

It remains to consider the case $x_{1}=y_{1}$. If also $x_{2}=y_{2}$, then a has two incomparable lower covers: the term $\left(x_{2} \ldots x_{n}\right)\left(y_{2} \ldots y_{m}\right)$ and the term obtained from a by differentiating x_{1}, y_{1}. Hence $x_{2} \neq y_{2}$. If $x_{i}=y_{j}$ for some $i, j \geq 2$ then a has two incomparable lower covers, one obtained by differentiating x_{1}, y_{1} and the other by differentiating x_{i}, y_{j}. We get $x_{i} \neq y_{j}$ whenever $(i, j) \neq(1,1)$ and so $a \in V_{3}$.

Now when we have completed the description of the set of 1-special terms, one can easily see that a term is maximal among 1-special terms if and only if it belongs to $V_{2} \cup V_{3}$. If a satisfies $\left(V_{3}\right)$ and $n \leq m$, then the term b obtained from $\left(x_{1} x_{2} \ldots x_{n}\right)\left(y_{1} y_{2} \ldots y_{n}\right)$ by differentiating x_{1}, y_{1} is a 1 -special term and the interval restricted by b, a is a chain. On the other hand, for a term $a \in V_{2}$ and any 1 -special term $b<a$, the interval is at least a four-element Boolean algebra.
3.4. Theorem. The set of linear terms is definable. The binary relation $b \sim \operatorname{lh}(a)$ is definable.

Proof. Denote by U the set of the terms $\left(x y_{1} \ldots y_{n}\right)\left(x z_{1} \ldots z_{m}\right)$ where $n, m \geq$ 1 and x, y_{i}, z_{j} are pairwise distinct variables. One can easily see that a term a is linear if and only if $u \not \leq a$ for all terms $u \in U$ and $D_{n} \not \leq a$ for all $n \geq 2$. So, by 3.2 , in order to prove that the set of linear terms is definable, it is sufficient to show that U is definable. By 3.3 , the set U is definable if the set of 1 -special terms is definable. By 3.2 , definability of the set of 1 -special terms according to the definition depends only on the definability of the term $(x y \cdot z u) v$. One can easily check that $(x y \cdot z u) v$ and $x y z \cdot u v$ are the only terms that are covers of both $x y \cdot z u$ and $x y z u$ (these two last terms are definable by 3.2). But (as it can be verified easily) $x y z \cdot u v$ has nine different upper covers, while $(x y \cdot z u) v$ has only six.

We have $b \sim \operatorname{lh}(a)$ if and only if b is a linear term, $b \leq a$ and $c \leq b$ for every linear term $c \leq a$.
3.5. Theorem. The set of unary terms is definable. The binary relation $b \sim \mathbf{u h}(a)$ is definable.

Proof. A term a is unary if and only if it is maximal among the terms b such that the linear hull of a is similar to the linear hull of b.
3.6. Theorem. The set of slim terms is definable.

Proof. A term is slim if and only if its linear hull is a slim linear term, so we can use 3.2.

4. Definability of the types of covers

4.1. Proposition. The binary relation $a \prec_{3} b$ is definable.

Proof. We have $a \prec_{3} b$ if and only if $a \prec b$ and the linear hull of a is similar to the linear hull of b.
4.2. Lemma. Let a, b be two linear terms. Then $a \prec_{1} b$ if and only if $a \prec b$ and $a^{\prime}<b^{\prime}$, where a^{\prime} is the unary hull of a and b^{\prime} is the unary hull of b.

Proof. Let a^{\prime}, b^{\prime} be the unary hulls such that $\mathbf{S}\left(a^{\prime}\right)=\mathbf{S}\left(b^{\prime}\right)=\{x\}$ for a variable x. If $a \prec_{1} b$ then a^{\prime} is a proper subterm of b^{\prime}, so that $a^{\prime}<b^{\prime}$. In order to prove the converse, let $a \prec b$ and $a^{\prime}<b^{\prime}$. Then $\lambda(a)=\lambda\left(a^{\prime}\right)<$ $\lambda\left(b^{\prime}\right)=\lambda(b)$, so that (since a, b are linear) $\lambda(b)=\lambda(a)+1$. Consequently, $\lambda\left(b^{\prime}\right)=\lambda\left(a^{\prime}\right)+1$. But a^{\prime}, b^{\prime} are unary, so this is possible only if $b^{\prime}=a^{\prime} x$. Then $b=a y$ for a variable y and we get $a \prec_{1} b$.
4.3. Lemma. Denote by U_{1} the set of the slim terms $a=x_{1} \ldots x_{n}$ such that $n \geq 3, x_{1} \neq x_{2},\left\{x_{1}, x_{2}\right\}$ is disjoint with $\left\{x_{3}, \ldots, x_{n}\right\}$ and $x_{n} \in$ $\left\{x_{3}, \ldots, x_{n-1}\right\}$. A term a belongs to U_{1} if and only if a is slim, a is nonlinear, $a \geq x y \cdot z$, every thin term below a is linear and a has, up to similarity, precisely one lower cover not of type 3. Consequently, the set U_{1} is definable.

Proof. If $a \in U_{1}$ then $x_{1} x_{3} \ldots x_{n}$ is the only lower cover of a that is not of type 3. Conversely, let $a=x_{1} \ldots x_{n}$ be a slim term satisfying the conditions. Since $a \geq x y \cdot z$, we have $n \geq 3$. Since all the non-linear thin terms $y_{1} \ldots y_{k} y_{1}$ are not below a, we have $x_{1} \neq x_{2}$ and $x_{1}, x_{2} \notin\left\{x_{3}, \ldots, x_{n}\right\}$. So, $x_{1} x_{3} \ldots x_{n}$ is a lower cover of a and it is not of type 3 . If $x_{n} \notin\left\{x_{1}, \ldots, x_{n-1}\right\}$, then also $x_{1} x_{2} \ldots x_{n-1}$ is a lower cover of a not of type 3 ; these two lower covers are not similar, a contradiction. Hence $x_{n} \in\left\{x_{1}, \ldots, x_{n-1}\right\}$.
4.4. Proposition. The binary relation $a \prec_{1} b$ is definable.

Proof. By 4.2, this relation restricted to linear terms is definable. So, we will be done if we prove the following: $a \prec_{1} b$ if and only if $a \prec b, a^{\prime} \prec_{1} b^{\prime}$ where $a^{\prime} \sim \operatorname{lh}(a)$ and $b^{\prime} \sim \operatorname{lh}(b)$, and for every $u \in U_{1}$ we have $u \leq a$ if and only if $u \leq b$ (where U_{1} was introduced in 4.3). The direct implication is easy. For the converse, suppose that $a \prec b$ and the above conditions are satisfied. Since $\lambda\left(b^{\prime}\right)=\lambda\left(a^{\prime}\right)+1$, we have $\lambda(b)=\lambda(a)+1$ and so it is sufficient to consider the case when $b \sim \sigma_{x y}^{x}(a)$ for a variable x with a single occurrence in a and a variable $y \notin \mathbf{S}(a)$. Then also $b^{\prime} \sim \sigma_{z u}^{z}\left(a^{\prime}\right)$ for a variable $z \in \mathbf{S}\left(a^{\prime}\right)$ and a variable $u \notin \mathbf{S}\left(a^{\prime}\right)$. By 2.9, a^{\prime} and b^{\prime} are slim. But then also a and b are slim. We have $a=x_{1} x_{2} \ldots x_{n}$ for some variables x_{1}, \ldots, x_{n} where (since b is slim) $x \in\left\{x_{1}, x_{2}\right\}$. Without loss of generality, $x=x_{1}$. Then $b \sim x y x_{2} \ldots x_{n}$. Suppose that a is nonlinear and denote by j the largest index such that $x_{i}=x_{j}$ for some $i<j$, so that $j \geq 3$. Then $x y x_{2} \ldots x_{j} \in U_{1}$
is below b, so it must be also below a, which is clearly impossible. Hence a is linear. Then b is also linear and we get $a \prec_{1} b$.

4.5. Proposition. The binary relation $a \prec_{2} b$ is definable.

Proof. By 2.10, $a \prec_{2} b$ if and only if $a \prec b, a \nprec_{3} b$ and either $a \nprec_{1} b$ or a, b are both slim and linear.

5. Definability of the addition for codes of positive integers

Since for every positive integer n there is, up to similarity, precisely one slim linear term of length n, these slim linear terms C_{n} can serve as codes for positive integers.

The depth $\delta(a)$ of a term a can be also defined as the length of a maximal slim linear term b such that $b \leq a$. So, the binary relations expressing the facts that a, b are two terms with $\delta(a)=\delta(b)$, or $\delta(a)<\delta(b)$, or $\delta(b)=$ $\delta(a)+1$, are definable. This makes it possible to speak freely about the depth of a term in statements serving to prove that a given relation is definable.

For slim terms, the depth is the same as the length. So, in the case of slim terms we can also speak freely about the length.

A term a is said to be 2 -special if $a=x_{1} x_{2} \ldots x_{n}$ where $n \geq 2, x_{1}, x_{2}$ are two distinct variables and $x_{2}=x_{3}=\cdots=x_{n}$.
5.1. Lemma. A term is 2-special if and only if it is slim, has a unary cover of type 3 and has a slim cover of type 2. Consequently, the set of 2-special terms is definable.

Proof. If $a=x y \ldots y$ is 2 -special, then $x x \ldots x$ is a unary cover of a of type 3 and $x z y \ldots y$ is a slim cover of a of type 2 . Conversely, let $a=x_{1} x_{2} \ldots x_{n}$ be a slim term with a unary cover of type 3 and a slim cover of type 2 . Since a has a unary cover of type 3 , we have $n \geq 2$ and $\operatorname{Card} \mathbf{S}(a)=2$. If each of the variables x_{1}, x_{2} has more than one occurrence in a then a has no slim cover of type 2. So, without loss of generality, x_{1} has a single occurrence in a. Then $x_{2}=x_{3}=\cdots=x_{n}$.

A term a is said to be 3 -special if $a=x_{1} x_{2} \ldots x_{n}$ where $n \geq 3, x_{1}, x_{2}$ are two distinct variables, $x_{2}=x_{3}=\cdots=x_{n-1}$ and $x_{1}=x_{n}$.
5.2. Lemma. A term a is 3 -special if and only if $b \prec_{1} c \prec_{3}$ a for a 2-special term b and some term c, there is no term d with $d \prec_{1} a$, and either a is of length 3 or a is not 2-special. Consequently, the set of 3 -special terms is definable.

Proof. It is easy.
5.3. Lemma. Denote by R the set of the triples (a, b, c) such that $a \sim C_{n}$, $b \sim C_{m}$ and $c \sim C_{k}$ for some $4 \leq n \leq m$ and $k \geq n+m-2$. The ternary relation R is definable.

Proof. Let $a \sim C_{n}, b \sim C_{m}$ and $c \sim C_{k}$ where $4 \leq n \leq m$. Clearly, we will be done if we prove that $k \geq n+m-2$ if and only if there exists a term t with the following properties:
(1) t is a slim term and $\lambda(t) \leq k$;
(2) a 3 -special term of length j is below t if and only if either $j=3$ or $j=n$;
(3) the 2 -special term of length m is below t.

First we are going to prove the direct implication. Let $k \geq n+m-2$. Take two distinct variables x, y and put $t=x_{1} y_{2} \ldots y_{n-1} x_{n} \ldots x_{n+m-2}$ where $x_{1}=x_{n}=\cdots=x_{n+m-2}=x$ and $y_{2}=\cdots=y_{n-1}=y$. Clearly, t is a slim term of length $n+m-2$, so $\lambda(t) \leq k$. It is easy to check that t has also the properties (2) and (3).

For the converse, let there exist a term t satisfying (1), (2) and (3). We have $t=x_{1} x_{2} \ldots x_{p}$ for some variables x_{1}, \ldots, x_{p}. It follows from (2) that $p \geq n$ and $x_{1} x_{2} \ldots x_{n}$ is 3 -special. So, without loss of generality, $x_{1} \neq x_{2}$, $x_{1}=x_{n}$ and $x_{2}=\cdots=x_{n-1}$. (We have $x_{1} \neq x_{2}$ because, also by (2), $x x \not \leq$ t.) Denote by s the 2 -special term $x y_{1} \ldots y_{m-1}$ where $x \neq y_{1}=\cdots=y_{m-1}$. Since $s \leq t$, there is a substitution f such that $f(s) \subseteq t$. Clearly, $f\left(y_{1}\right)$ is a variable. If $f(x)$ is of length $j \leq n-2$, then $x_{n}=f\left(y_{n-j}\right)=f\left(y_{n-j-1}\right)=$ x_{n-1}, a contradiction. Hence $\lambda(f(x)) \geq n-1$. Then $\lambda(f(s)) \geq n+m-2$, so that $\lambda(t) \geq n+m-2$ and $k \geq n+m-2$.
5.4. Theorem. The set of the triples (a, b, c) such that $a \sim C_{n}, b \sim C_{m}$ and $c \sim C_{n+m}$ for some $n, m \geq 1$ is a definable ternary relation.

Proof. It follows easily from 5.3.

6. Definability of substitution instances

6.1. Proposition. The following relations are definable:
$R_{1}(a, b, c): a$ is a term, $b \sim a x_{1} \ldots x_{n}$ for some $n \geq 1$ and pairwise distinct variables $x_{1}, \ldots, x_{n} \notin \mathbf{S}(a)$, and $c \sim C_{n}$.
$R_{2}(a, b, c): a$ is a term, $b \sim a(x y) x_{1} \ldots x_{n}$ and $c \sim C_{n}$ for some $n \geq 1$ and pairwise distinct variables $x, y, x_{1}, \ldots, x_{n} \notin \mathbf{S}(a)$.
$R_{3}(a, b, c): a$ is a term, $b \sim a x_{n} x_{1} \ldots x_{n}$ and $c \sim C_{n}$ for some $n \geq 1$ and pairwise distinct variables $x_{1}, \ldots, x_{n} \notin \mathbf{S}(a)$.
$R_{4}(a, b): a$ is a term and $b=a x x$ for a variable $x \notin \mathbf{S}(a)$.
$R_{5}(a, b, c, d): a, b$ are two terms, $c \sim a x_{1} \ldots x_{n} x_{n}$ and $d \sim b x_{1} \ldots x_{n} x_{n}$ for some $n \geq 1$ and pairwise distinct variables $x_{1}, \ldots, x_{n} \notin \mathbf{S}(a) \cup$ $\mathbf{S}(b)$.
$R_{6}(a, b): a$ is a term and b is a substitution instance of a, i.e., $b=f(a)$ for some substitution f.

Proof. Using 1.3, it is easy to prove that $R_{1}(a, b, c)$ if and only if $a<b$, $a \leq d \prec e \leq b$ implies $d \prec_{1} e, c$ is a slim linear term and $\delta(b)=\delta(a)+\lambda(c)$.

We have $R_{2}(a, b, c)$ if and only if there are terms d, e such that $a \prec_{1} d \prec_{2} e$, $R_{1}(e, b, c)$ and either $a \in X$ or there is no u with $u \prec_{1} e$.

We have $R_{3}(a, b, c)$ if and only if there exist terms d, \bar{c} such that $R_{1}(a, d, \bar{c})$, $c \prec \bar{c}, d \prec_{3} b$, there is no u with $u \prec_{1} b$, and either $a \in X$ and b is a nonlinear thin term or else there is no triple $v, a^{\prime}, v^{\prime}$ of terms with $b \prec_{2}$ $v, a^{\prime} \sim \operatorname{lh}(a), v^{\prime} \sim \operatorname{lh}(v)$ and $R_{2}\left(a^{\prime}, v^{\prime}, c\right)$. For the proof of the direct implication put $d=a x_{n+1} x_{1} \ldots x_{n}$ and suppose that $a \notin X$ and there exists a triple $v, a^{\prime}, v^{\prime}$ as above, so that $v \sim \sigma_{x y}^{x}\left(a x_{n} x_{1} \ldots x_{n}\right)$ for some x, y. It follows from $R_{2}\left(a^{\prime}, v^{\prime}, c\right)$ that $v^{\prime} \sim a^{\prime}(x y) x_{1} \ldots x_{n}$. On the other hand, if $x \in \mathbf{S}(a)$ then $v^{\prime} \sim a_{1} x_{n+1} x_{1} \ldots x_{n}$ for a term a_{1} longer than a, so that $a^{\prime}(x y) \sim a_{1} x_{n+1}$ and hence $a \in X$, a contradiction. If $x=x_{n}$, then $v^{\prime} \sim$ $a^{\prime}(x y) x_{1} \ldots x_{n} \sim a^{\prime}(x y) x_{1} \ldots x_{n-1}(x y)$, which is impossible. Finally, if $x \in$ $\left\{x_{2}, \ldots, x_{n-1}\right\}$, then $v^{\prime} \sim a^{\prime}(x y) x_{1} \ldots x_{n} \sim a^{\prime} x_{n+1} x_{1} \ldots(x y) \ldots x_{n}$, which is again impossible. It remains to prove the converse implication. Clearly, $b \sim \sigma_{y}^{x}\left(a x_{n+1} x_{1} \ldots x_{n}\right)$ for some variables $x \neq y$ from $\mathbf{S}(a) \cup\left\{x_{1}, \ldots, x_{n+1}\right\}$. Since there is no u with $u \prec_{1} b, x_{n} \in\{x, y\}$; without loss of generality, $x_{n}=$ x. If $a \notin X$ and $y \neq x_{n+1}$, then we can put $v=\sigma_{y}^{x}\left(a\left(x_{n+1} x_{n+2}\right) x_{1} \ldots x_{n}\right)$ to obtain a contradiction.

We have $R_{4}(a, b)$ if and only if $R_{3}\left(a, b, C_{1}\right)$.
The definability of R_{5} follows easily from the definability of R_{1} and R_{4}.
We have $R_{6}(a, b)$ if and only if whenever $R_{5}(a, b, c, d)$ then $c \leq d$. Indeed, if $a x_{1} \ldots x_{n} x_{n} \leq b x_{1} \ldots x_{n} x_{n}$ where n is very large and a is not a variable then $f\left(a x_{1} \ldots x_{n} x_{n}\right) \subseteq b x_{1} \ldots x_{n} x_{n}$ implies $f\left(x_{n}\right)=x_{n}, f\left(x_{n-1}\right)=x_{n-1}$, $\ldots, f(a)=b$.

7. Finite sequences of terms and code-terms

For every nonempty finite sequence a_{1}, \ldots, a_{n} of terms we denote by $H\left(a_{1}, \ldots, a_{n}\right)$ the term $x a_{1} a_{2} \ldots a_{n} x$ where x is a variable not contained in $\mathbf{S}\left(a_{1}\right) \cup \cdots \cup \mathbf{S}\left(a_{n}\right)$. This term (determined uniquely up to similarity) is called the code of the given sequence. Obviously, the sequence can be reconstructed from its code.

We have $H\left(a_{1}, \ldots, a_{n}\right) \sim H\left(b_{1}, \ldots, b_{m}\right)$ if and only if $n=m$ and there is an automorphism α of F such that $b_{i}=\alpha\left(a_{i}\right)$ for all $i=1, \ldots, n$. (This is stronger than just $a_{i} \sim b_{i}$ for all i.)

By a code-term we mean a term that is a code of some sequence. Obviously, a is a code-term if and only if $a=b x$ for a variable x and a term $b \notin X$ having precisely one occurrence of x.

If a is the code of a sequence a_{1}, \ldots, a_{n} then this sequence is called the decode of a, the number n is called the width of a, the terms a_{i} are called members of a and, for $i=1, \ldots, n$, we put $a[i]=a_{i}$.
7.1. Lemma. Let $a=H\left(a_{1}, \ldots, a_{n}\right)$ and $b=H\left(b_{1}, \ldots, b_{m}\right)$ be such that $b=f(a)$ for a substitution f. Then $n=m$ and $b_{i}=f\left(a_{i}\right)$ for $i=1, \ldots, n$.

Proof. It is obvious.
7.2. Proposition. The set of code-terms is definable.

Proof. A term a is a code-term if and only if there exist terms $b, c, d, e, a^{\prime}, d^{\prime}$ with $b \notin X, b \prec_{1} c \prec_{3} a \prec_{2} d, a^{\prime} \sim \operatorname{lh}(a), d^{\prime} \sim \operatorname{lh}(d)$ and $a^{\prime} \prec_{2} e \prec_{2} d^{\prime}$, and there is no term u with $u \prec_{1} d^{\prime}$. Indeed, if $a=b x$ and $\nu_{x}(b)=1$, then we can take $d=\sigma_{x y}^{x}(a)$ where $y \in X-\mathbf{S}(a)$. Conversely, it follows from $b \prec_{1} c \prec_{3} a$ that $a=a_{1} x$ for a term a_{1} and a variable x; since $a \prec_{2} d$, $d \sim \sigma_{z y}^{z}(a)$ for some variable $z \in \mathbf{S}(a)$ and some variable $y \notin \mathbf{S}(a)$; since $a^{\prime} \prec_{2} e \prec_{2} d^{\prime}, z$ has precisely two occurrences in a; since d^{\prime} has no lower cover of type $1, z=x$.

For every $3 \leq i<n$ denote by $E_{n, i}$ the term $x_{1} x_{2} \ldots x_{n}$ where x_{1}, \ldots, x_{n-1} are pairwise distinct variables and $x_{n}=x_{i}$.

For every $2 \leq i<j<n$ denote by $G_{n, i, j}$ the term $x_{1} x_{2} \ldots x_{n}$ where $x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n-1}$ are pairwise distinct variables, $x_{j}=x_{i}$ and $x_{n}=$ x_{1}.

7.3. Lemma.

(1) We have $D_{n} \leq E_{m, i}$ if and only if $i=m-n+2$.
(2) We have $E_{m, k} \leq G_{n, i, j}$ if and only if $m-k=j-i$ and $k \leq i$.

Proof. It is easy.
7.4. Lemma. The following relations are definable:
$R_{7}(a, b, c): a \sim C_{n}, b \sim C_{i}$ and $c \sim E_{n, i}$ for some $3 \leq i<n$.
$R_{8}(a, b, c, d): a \sim C_{n}, b \sim C_{i}, c \sim C_{j}, d \sim G_{n, i, j}$ for some $2 \leq i<j<n$.
Proof. The definability of R_{7} and R_{8} follows from 7.3 and from the following two observations. Given an n, a term t is similar to $E_{n, i}$ for some i if and only if $C_{n} \prec_{3} t, t$ is not thin and there is no term u with $u \prec_{1} t$. Given an n, a term t is similar to $G_{n, i, j}$ for some i, j if and only if $D_{n} \prec_{3} t, x x \not \leq t$ and there is no pair m, k with $R_{6}\left(E_{m, k}, t\right)$.
7.5. Proposition. The following relations are definable:
$R_{9}(a, b):$ for some $n, a \sim C_{n}$ and b is a code-term of width n.
$R_{10}(a, b, c, d): a \sim C_{n}, b \sim C_{i}, c \sim C_{j}$ for some $1 \leq i<j \leq n$ and d is a code-term of width n such that $d[i]=d[j]$.
$R_{11}(a, b, c)$: for some $n, a \sim C_{n}, b$ is a code-term of width $n, b[1] \sim c$ and $b[2], \ldots, b[n]$ are pairwise distinct variables not occurring in $b[1]$.
$R_{12}(a, b, c):$ for some $n, a \sim C_{n}, b$ is a code-term of width n and $c \sim b[1]$.
$R_{13}(a, b, c, d): a \sim C_{n}, b \sim C_{i}$ for some $2 \leq i \leq n, c$ is a code-term of width n such that $c[1]=c[i] \sim d$ and $c[2], \ldots, c[i-1], c[i+1], \ldots, c[n]$ are pairwise distinct variables not occurring in c[1].
$R_{14}(a, b, c, d): a \sim C_{n}, b \sim C_{i}$ for some $2 \leq i \leq n$ and c is a code term of width n such that $c[i] \sim d$ and $c[1], \ldots, c[i-1], c[i+1], \ldots, c[n]$ are pairwise distinct variables not occurring in $c[i]$.
$R_{15}(a, b, c, d): a \sim C_{n}, b \sim C_{i}$ for some $1 \leq i \leq n, c$ is a code-term of width n and $d \sim c[i]$.

Proof. We have $R_{9}\left(C_{n}, b\right)$ if and only if b is a code-term and b is a substitution instance of D_{n+2}.

We have $R_{10}\left(C_{n}, C_{i}, C_{j}, d\right)$ if and only if $R_{9}(a, d)$ and d is a substitution instance of $G_{n+2, i+1, j+1}$.

We have $R_{11}(a, b, c)$ if and only if $R_{3}(c, b, a)$.
We have $R_{12}(a, b, c)$ if and only if there is a term b^{\prime} with $R_{11}\left(a, b^{\prime}, c\right)$ such that b is a substitution instance of b^{\prime} and whenever $R_{11}(a, u, v)$ and b is a substitution instance of u then c is a substitution instance of v.

We have $R_{13}(a, b, c, d)$ if and only if $R_{11}(a, c, d), R_{10}\left(a, C_{1}, b, c\right)$ and every term t satisfying $R_{12}(a, t, d)$ and $R_{10}\left(a, C_{1}, b, t\right)$ is a substitution instance of c.

We have $R_{14}\left(C_{n}, C_{i}, c, d\right)(2 \leq i \leq n)$ if and only if either d is a variable and c is a smallest term of width n, or else d is not a variable, c is a code-term of width $n, c[1]$ is a variable and there exists a term e with $R_{13}(a, b, e, d)$ such that e is a substitution instance of c and whenever e is a substitution instance of a code-term c^{\prime} of width n with $c^{\prime}[1] \in X$ then c is a substitution instance of c^{\prime}.
$R_{15}\left(C_{n}, C_{i}, c, d\right)$ can be definably reformulated by $R_{12}(a, c, d)$ if $i=1$; if $i \geq 2$, we can use R_{14} in the same way as R_{11} was used in the reformulation of R_{12}.
7.6. Proposition. The following relations are definable:
$R_{16}(a, b, c, d): a \sim C_{n}, b \sim C_{i}, c \sim C_{j}$ where $1 \leq i, j \leq n$ and d is a code-term of width n such that $\mathbf{S}(d[i]) \subseteq \mathbf{S}(d[j])$.
$R_{17}(a, b, c, d, e): a \sim C_{n}, b \sim C_{i}, c \sim C_{j}, d \sim C_{k}$ where $1 \leq i, j, k \leq n$, $k \notin\{i, j\}$ and e is a code-term of width n such that $e[k]=e[i] e[j]$.
Proof. We have $R_{16}\left(C_{n}, C_{i}, C_{j}, d\right)$ if and only if d is a code-term of width n and for every code-term e of width n that is a substitution instance of d, $d[j] \sim e[j]$ implies $d[i] \sim e[i]$.

We have $R_{17}\left(C_{n}, C_{i}, C_{j}, C_{k}, e\right)$ if and only if e is a code-term of width n and e is a substitution instance of a code-term u of width n such that $u[i]$ and $u[j]$ are variables, $u[i] \neq u[j]$ if $i \neq j$, and $u[k]=u[i] u[j]$; this equality can be expressed by saying that there is a cover v of a variable such that $v \sim u[k]$ if $i \neq j$ and $v \prec_{3} u[k]$ if $i=j$, and using R_{16} to require that $\mathbf{S}(u[i]) \subseteq \mathbf{S}(u[k])$ and $\mathbf{S}(u[j]) \subseteq \mathbf{S}(u[k])$.
7.7. Proposition. The following relations are definable:
$R_{18}(a, b, c): a \sim C_{n}$ for some $n \geq 1, b \sim H\left(a_{1}, \ldots, a_{n}\right)$ is a code-term of width n and $c \sim H\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)$ for some term a_{n+1}.
$R_{19}(a, b, c, d): a \sim C_{n}, b \sim C_{m}$ where $1 \leq n \leq m, c$ is a code-term of width n and d is a code-term of width m such that the decode of c is a beginning of the decode of d.
$R_{20}(a, b, c, d): a \sim C_{n}, b \sim C_{i}$ where $1 \leq i \leq n, c \sim H\left(a_{1}, \ldots, a_{n}\right)$ is a code-term of width n and $d \sim\left(H, a_{i}, a_{1}, \ldots, a_{n}\right)$.
$R_{21}(a, b, c, d, e): a \sim C_{n}, b \sim C_{i}, c \sim C_{j}$ where $1 \leq i, j \leq n, d \sim$ $H\left(a_{1}, \ldots, a_{n}\right)$ is a code-term of width n and $e \sim H\left(a_{i}, a_{j}\right)$.
$R_{22}(a, b): a \sim H(p, q)$ is a code-term of width 2 and $b \sim H(p y, q y)$ for a variable $y \notin \mathbf{S}(p q)$.
$R_{23}(a, b): a \sim H(p, q)$ is a code-term of width 2 and $b \sim H\left(p y_{1} \ldots y_{n}\right.$, $\left.q y_{1} \ldots y_{n}\right)$ for some pairwise distinct variables $y_{1}, \ldots, y_{n} \notin \mathbf{S}(p q)$ $(n \geq 0)$.
$R_{24}(a, b): a \sim H(p, q)$ and $b \sim H(u, v)$ are two code-terms of width 2 such that v can be obtained from u by replacing one occurrence of a subterm $f(p)$, for some substitution f, with the term $f(q)$.
$R_{25}(a, b, c, d): a \sim C_{n}, b \sim C_{i}, c \sim C_{j}$ where $1 \leq i, j \leq n$ and d is a code-term of width n such that $d[i]$ is a subterm of $d[j]$.
Proof. Perhaps we should start by explaining why the obvious proof for the definability of R_{18} does not work. One would be tempted to take the unique expression $b=x a_{1} \ldots a_{n} x$ for the term b, delete the outer occurrence of x to obtain the term $x a_{1} \ldots a_{n}$ and say that c is an arbitrary term obtained from the last one if it is multiplied first by an arbitrary term not containing x and then by x. The trouble is that if we delete the outer occurrence of x, much of the information about the sequence a_{1}, \ldots, a_{n} is lost; the variable x may not be the only variable in $x a_{1} \ldots a_{n}$ with a single occurrence. For a working proof we can exploit the technique of code-terms in such a way that the variable x is stored together with the term b at a different place.

We have $R_{18}\left(C_{n}, b, c\right)$ if and only if b is a code-term of width n, c is a codeterm of width $n+1$ and there exists a code-term $u \sim H\left(u_{1}, \ldots, u_{7}\right)$ of width 7 such that $u_{1} \sim b, u_{2} \sim c, u_{3}$ is a variable, $u_{1}=u_{3} u_{4}, u_{2}=u_{3} u_{5}, u_{5}=u_{6} u_{7}$, $u_{3} \in \mathbf{S}\left(u_{7}\right)$ and $u_{4}=u_{7}$. To see this, observe that if $u_{1}=x a_{1} \ldots a_{n} x$ and $u_{2}=x b_{1} \ldots b_{n} b_{n+1} x$ then necessarily $u_{3}=x, u_{4}=x a_{1} \ldots a_{n}, u_{5}=$ $x b_{1} \ldots b_{n} b_{n+1}, u_{6}=b_{n+1}$ and $u_{7}=x b_{1} \ldots b_{n}$.

We have $R_{19}\left(C_{n}, C_{m}, c, d\right)$ if and only if c is a code-term of width n, d is a code term of width $m \geq n$ and there exists a code-term u of width $k=m-n+1$ such that $u[1] \sim c, u[k] \sim d$ and $R_{18}(u[i], u[i+1])$ for every $i<k$.

We have $R_{20}\left(C_{n}, C_{i}, c, d\right)$ if and only if c is a code-term of width n and there exists a code-term $u \sim H\left(u_{1}, \ldots, u_{3 n+4}\right)$ of width $3 n+4$ such that $u_{1} \sim c, u_{3 n+4} \sim d, u_{n+2}$ is a variable, $u_{1}=u_{2} u_{n+2}, u_{j}=u_{j+1} u_{n+j+1}$ for $2 \leq j \leq n+1, u_{2 n+3}=u_{n+2} u_{2 n-i+3}$ and $u_{j}=u_{j-1} u_{4 n+6-j}$ for $2 n+4 \leq j \leq$ $3 n+4$. To see this, observe that if $u_{1}=x a_{1} \ldots a_{n} x$ then

```
\(u_{2}=x a_{1} \ldots a_{n}, u_{3}=x a_{1} \ldots a_{n-1}, \ldots, u_{n+1}=x a_{1}, u_{n+2}=x\),
\(u_{n+3}=a_{n}, u_{n+4}=a_{n-1}, \ldots, u_{2 n+2}=a_{1}\),
\(u_{2 n+3}=x a_{i}, u_{2 n+4}=x a_{i} a_{1}, u_{2 n+5}=x a_{i} a_{1} a_{2}, \ldots, u_{3 n+3}=x a_{i} a_{1} \ldots a_{n}\),
\(u_{3 n+4}=x a_{i} a_{1} \ldots a_{n} x\).
```

We have $R_{21}\left(C_{n}, C_{i}, C_{j}, d, e\right)$ if and only if d is a code-term of width n, e is a code-term of width 2 and there exist two terms u, v such that $R_{20}\left(C_{n}, C_{j}\right.$, $d, u), R_{20}\left(C_{n+1}, C_{i+1}, u, v\right)$ and $R_{19}\left(C_{2}, C_{n+2}, e, v\right)$.

We have $R_{22}(a, b)$ if and only if a, b are code-terms of width 2 and there exists a code-term $u=H\left(u_{1}, \ldots, u_{12}\right)$ of width 12 such that $u_{1} \sim a, u_{12} \sim b$ and, where $u_{1}=x p q x$, we have $u_{2}=x, u_{3}=x p q, u_{4}=x p, u_{5}=p$,
$u_{6}=q, u_{7}=y$ for a variable $y \notin \mathbf{S}\left(u_{1}\right), y_{8}=p y, u_{9}=q y, u_{10}=x(p y)$, $u_{11}=x(p y)(q y)$ and $u_{12}=x(p y)(q y)$. (Each step should be reformulated using the previous relations.)

We have $R_{23}(a, b)$ if and only if a, b are two code-terms of width 2 and there exists a code-term u of some width n such that $u[1] \sim a, u[n] \sim b$ and $R_{22}(u[i], u[i+1])$ for all $i<n$.

We have $R_{24}(a, b)$ if and only if a, b are two code-terms of width 2 and b is a substitution instance of some code-term u of width 2 such that $R_{23}(a, u)$.

We have $R_{25}\left(C_{n}, C_{i}, C_{j}, d\right)$ if and only if d is a code-term of width n and there exist a code-term u of some width m and a number k with $n<k \leq m$ such that $R_{19}\left(C_{n}, C_{m}, d, u\right), u[k]=u[i], u[m]=u[j]$ and whenever $k \leq l<$ m then $R_{17}\left(C_{m}, C_{l}, C_{p}, C_{l+1}, u\right)$ for some $p<l$.

8. Main Results

8.1. Theorem. Every term pattern is definable.

Proof. By a C-sequence we will mean a finite sequence $c_{1}, \ldots, c_{n}(n \geq 1)$ such that for every $i=1, \ldots, n$ either c_{i} is a variable or c_{i} is an ordered pair of positive integers, both of them less than i. Given such a C-sequence, for every $i=1, \ldots, n$ we define a term t_{i} by induction as follows: if c_{i} is a variable, then $t_{i}=c_{i}$; if $c_{i}=(p, q)$ then $t_{i}=t_{p} t_{q}$. The term t_{n} is called the value of the given C-sequence. It is easy to see (prove it by induction on the length of t) that every term t is the value of some C-sequence. Now if t is the value of a C-sequence c_{1}, \ldots, c_{n}, then t is, up to similarity, the only term u for which there exists a code-term v of width n such that $v[n] \sim u$, whenever c_{i} is a variable then $v[i]$ is a variable, whenever c_{i} and c_{j} are two distinct variables then $v[i] \neq v[j]$, and whenever $c_{i}=(p, q)$ then $v[i]=v[p] v[q]$.
8.2. Corollary. The ordered set of term patterns has no automorphisms except the identity.
8.3. Theorem. The set of the pairs (a, b) such that a is similar to a subterm of b is a definable binary relation.

Proof. A term a is similar to a subterm of b if and only if there exists a codeterm u of width 2 such that $u[1] \sim a, u[2] \sim b$ and $R_{25}\left(C_{2}, C_{1}, C_{2}, u\right)$. We did not succeed to find a more straightforward proof, not relying so heavily on the technique of code-terms.
8.4. Theorem. The following binary relation $S(a, b)$ is definable: $S(a, b)$ if and only if $a \sim H\left(H\left(p_{1}, q_{1}\right), \ldots, H\left(p_{n}, q_{n}\right)\right)$ and $b \sim H(u, v)$ for some $n \geq 1$ and some equations (i.e., ordered pairs of terms) $\left(p_{i}, q_{i}\right)$ and (u, v) such that (u, v) is a consequence of $\left\{\left(p_{1}, q_{1}\right), \ldots,\left(p_{n}, q_{n}\right)\right\}$.

Proof. We have $S(a, b)$ if and only if a is a code-term of some width $n, a[i]$ is a code-term of width 2 for every $1 \leq i \leq n$ and there exists a code-term u of some width m such that $R_{21}\left(C_{m}, C_{1}, C_{m}, u, b\right)$ and for every $1 \leq i<m$ there
exist a number j with $1 \leq j \leq n$ and a code-term v of width 2 such that $R_{24}(a[j], v)$, and either $R_{21}\left(C_{m}, C_{i}, C_{i+1}, v\right)$ or $R_{21}\left(C_{m}, C_{i+1}, C_{i}, v\right)$.

9. Concluding Remarks

Theorem 8.4 may not seem to be a suitable candidate for the list of main results, but it is here because it is the result that will be used most often in a next paper on definability in the lattice of equational theories of commutative groupoids, a continuation of the present paper. We will later also rely on the definability of some similar relations, involving a more detailed syntactic structure of an equation. We hope that in all cases it would be apparent how to use the above presented technique in a similar way to obtain the desired concern.

In [2] we did not succed to obtain an analog of Theorem 8.1 and its corollary 8.2. After proving an analog of Theorem 2.1 and a few auxiliary results, it seemed difficult to continue working in the ordered set of (general) term patterns and so we escaped from the ordered set to a larger lattice of full sets of terms (sets U such that $a \geq b \in U$ implies $a \in U$). For applications to equational theories, this escape did not matter. However, the investigation of definability in the ordered set of term patterns may be interesting in itself, so there remained a gap. We still do not know if the ordered set of (noncommutative) groupoid terms has automorphisms other than the identity and the second obvious one. Perhaps this gap could now be filled. It would also answer the fourth of the open problems formulated in [3].

We hope that the present paper also shows that the structure of commutative terms, although in many respects similar to that of general terms, can be a subject of independent interest. There are questions with trivial answers for general terms but difficult to answer in the commutative case. The author was not able to decide whether the following is true: If a, b are two (commutative) terms such that $f(a) \sim f(b)$ for all substitutions f, then $a=b$.

References

[1] J. Ježek, The lattice of equational theories. Part I: Modular elements. Czechoslovak Math. J. 31, 1981, 127-152.
[2] J. Ježek, The lattice of equational theories. Part II: The lattice of full sets of terms. Czechoslovak Math. J. 31, 1981, 573-603.
[3] J. Ježek, The lattice of equational theories. Part III: Definability and automorphisms. Czechoslovak Math. J. 32, 1982, 129-164.
[4] J. Ježek, The lattice of equational theories. Part IV: Equational theories of finite algebras. Czechoslovak Math. J. 36, 1986, 331-341.
[5] J. Ježek and R. McKenzie, Definability in the lattice of equational theories of semigroups. Semigroup Forum 46, 1993, 199-245.
[6] A. Kisielewicz, Definability in the lattice of equational theories of commutative semigroups. To appear in Trans. Amer. Math. Soc.
[7] R. McKenzie, G. McNulty and W. Taylor, Algebras, Lattices, Varieties, Volume I. Wadsworth \& Brooks/Cole, Monterey, CA, 1987.

MFF UK, Sokolovská 83, 18600 Praha 8
E-mail address: jezek@karlin.mff.cuni.cz

[^0]: 1991 Mathematics Subject Classification. 03C40,06A07,08B20.
 Key words and phrases. definable, term.
 While working on this paper the author was partially supported by the Grant Agency of the Czech Republic, grant \#201/02/0594 and by the institutional grant MSM113200007.

