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In this paper, the essentials of the algebraic theory of left distributive
semigroups are presented.

0. Introduction

Every semilattice (i.e., an idempotent commutative semigroup) is selfdistribu-
tive. An explicit formulation of this fact (perhaps for the first time) can be found
already in C. S. Pierce [Pie,80]. A structural study of two-sided selfdistributive
semigroups was initiated in M. Petrich [Pet,69] and that of one-sided selfdistribu-
tive semigroups ten years later in S. Markovski [Mar,79].

Altogether, there are only a few papers devoted to selfdistributive semigroups.
The present article is a survey treatment on the topic.

As concerns the notation, terminology, references, comments, etc., used and
related to but neither defined nor formulated in the following text, a kind reader is
fully referred to [KepN,03] (also cited as Al.---).

I. General theory of left distributive semigroups

1.1 Basic properties of left distributive semigroups

1.1 Proposition. Let S be an LD-semigroup. Then, for all x,y,z € S:

(i
(ii
(iii
(iv) =

) xyz = xy:zcz = 2y°%.
) 2"y =x yforeveryn>2
) ()" = 2y"™ = 2y? = (zy)? for every n > 2.
) 2 = a3 for every n > 3.
Proof. (i) zyz = xyrz = xyryz = xy*2 by repeated use of the left distributive
law.
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ii) For n > 3, 2"y = za" 2zy = xz" 2y = 2" 1y,
(iii) For n > 3, (zy)" = ay™ = zyaxy"™ ! = zyzyy" 2 = oyzy" 2 = ay" L

(iv) For n > 4, 2" = zxza™ 3 = gxz" 3 =21 O

1.2 Proposition. Let S be an LD-semigroup. Then:

(i) 1d(S) is a left ideal of S and 23, xy?, zyx € 1d(S) for all x,y € S.
(ii) S is elastic.
(iii) For everyn >3, op,5 = 03,5.

Proof. (i) First, zy? € 1d(S) by 1.1(iii) and (zyz)? = zyz? = zyx. Now, Id(S)
is a left ideal of S (see also A1.I1.1.5(i)).
(ii) Every semigroup is elastic.
(iii) This is an immediate consequence of 1.1(iv). O
1.3 Proposition. The following three conditions are equivalent for an LD-semi-
group S':
(i) 1d(S) is an ideal of S.
(i) S® C1d(S).
(iii) S satisfies the (semigroup) identity x°y ~ x2y>.
If these conditions are satisfied, then S/1d(S) is an A-semigroup.
Proof. (i) implies (ii). xyz = zy?z by 1.1(i), and xy? € 1d(S) by 1.2(i).
(i) implies (iii). Since z?y € 1d(S), we have 2%y = 2%y - 2%y = 2%y>.
(iii) implies (i). By 1.2(i), Id(S) is a left ideal. Let = € S and a € Id(S). Then
ar = a’r = a’z? = a®z - a’x = (ax)?. Thus Id(S) is a right ideal. O
1.4 Definition. An LD-semigroup satisfying the equivalent conditions of 1.3
will be called an LDR-semigroup.
1.5 Proposition. The following four conditions are equivalent for an LD-semi-
group S':
(i) S2 C 1d(9).
(ii) Id(S) is an ideal of S and S/Id( ) is a Z-semigroup.
)

(iii) S satisfies the identity xy ~ zy?.
(iv) S/qs is idempotent.

If these conditions are satisfied, then S is an LDR-semigroup.
Proof. Easy. [

1.6 Definition. By an LDR;-semigroup we mean a semigroup satisfying zy ~
xyz. (Clearly, every LDR;-semigroup is left distributive.)

1.7 Proposition. FEvery LDR;-semigroup satisfies the equivalent conditions of
1.5 (hence it is an LDR-semigroup).

Proof. Let S be an LDR;j-semigroup. By 1.2(i), zy = zyz € Id(S) for all
z,y € S. Thus S? C1d(S). O
1.8 Proposition. Let S be an LD-semigroup. Then:
(i) ps is a congruence of S.

(ii) S/ps is an LDR;-semigroup.

Proof. (i) This is true for every semigroup.
(ii) We have zy - z = zyx - z for all x,y,z € S. O
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1.9 Proposition. The following four conditions are equivalent for an LD-semi-
group S':
(1) 02,5 is an endomorphism of S.
(ii) o035 is an endomorphism of S.
(iii) S satisfies the identity xy* ~ x%y>.
(iv) S is left semimedial.

Proof. By 1.1(ii) and 1.1(iii) we have (zy)3 = zy® = 2y? = (2y)? and 23y3 =
x2y? for all z,y € S. Now it is clear that the first three conditions are equivalent.
If (iii) is satisfied, then zx - yz = 2%yz = 22y%2 = 2y?2z = 2yz = 2y - 22 (use 1.1).
Conversely, if S is left semimedial, then z2y? = zyry = xy?. O
1.10 Definition. Every LD-semigroup satisfying the equivalent conditions of
1.9 will be called an LDT-semigroup.
1.11 Proposition. Let S be an LDT-semigroup. Then:
(i) 03,5 is a homomorphism of S onto 1d(S).
(ii) Ewvery block of ker(os s) is an A-semigroup.
Proof. Easy. U
1.12 Proposition. The following conditions are equivalent for an LD-semi-
group S:
(i) S satisfies the identity xy ~ x2y.
(ii) S/ps is idempotent.
Proof. Easy. [

1.13 Definition. Every LD-semigroup satisfying the equivalent conditions of
1.12 will be called an LDT,-semigroup.

1.14 Proposition. Let S be an LDT;-semigroup. Then:
(i) S is an LDT-semigroup.

(ii) og is a homomorphism of S onto 1d(S5).

(iii) Ewvery block of ker(og) is a Z-semigroup.

Proof. Easy. [

1.15 Proposition. Let S be an LD-semigroup. Then S/qs is an LDT;-semi-
group.

Proof. We have zzy = za%y for all z,y,z € S. O

1.16 Proposition. The following three conditions are equivalent for an LD-
semagroup S':
(i) S satisfies the identity vy ~ xy? (i.e., S is delightful).
(ii) S satisfies the identities 2%y ~ xy? and ryz ~ x%yz (i.e., S is strongly
delightful).
(iii) S s an LDRT-semigroup. (l.e., both LDR and LDT.)

Proof. (i) implies (ii). We have x%yz = xy?z = zyz by 1.1(i).

(ii) implies (iii). We have 2%y = z - 2%y = 2%y? by 1.1(ii), so that S is an
LDR-semigroup. Similarly, xy? = zy? - y = 22y? by 1.1(iii), so that S is an LDT-
semigroup.

(iii) implies (i). This follows immediately from the definitions. [



1.17 Proposition. Let S be an LDRT-semigroup. Then:
(i) 1d(S) is an ideal of S and S/1d(S) is an A-semigroup.
(ii) 03,5 is a homomorphism of S onto 1d(S) and every block of ker(os s) is an

A-semigroup.
(iii) ker(os,s)N =Id(s)= ids and S is a subdirect product of Id(S) and S/1d(S).

Proof. For (i) see 1.3; for (ii) see 1.11; (iii) is clear. O

1.18 Proposition. Let S be an LDR;-semigroup. Then there exists a congru-
ence v of S such that S/r is commutative and every block of r containing at least
two elements is a subsemigroup of S and an LZ-semigroup.

Proof. Define r by (a,b) € r iff either a = b or a = ¢b and b = da for some ¢,d €
S. Clearly, r is an equivalence and (a,b) € r implies (ax,bzr) € r for any = € S.
On the other hand, using the left distributive law, one can see that (a,b) € 7 also
implies (za, zb) € r. So, r is a congruence of S. Since S is an LDR4-semigroup, we
have ab = aba, ba = bab and (ab,ba) € r for all a,b € S. Thus S/r is commutative.

Now, let A be a block of r and a,b € A, a #b. We have a = ¢b and b = da for
some elements ¢,d. Then ab = ada = ad = cbd = cdad = cda = cb = a. Further,
(a,b) € r implies (aa,ab) € r, so that (aa,a) € r, and we get aa € A. If a # aa,
then a = a® according to the previous observation, so that a € Id(S) by 1.2(i), a
contradiction. [

1.19 Proposition. The following five conditions are equivalent for an LD-semi-
group S':
(i) S is right semimedial.
(ii) S is middle semimedial.
(iii) S is medial.
(iv) S/ps is right permutable.
(v) S/qs is left permutable.

Proof. (i) implies (iii). zyuv = ryu?v = ruyuv = zuyv.

(ii) implies (iii). zyuv = ryuzrv = ruyzrv = zuyv. 0

1.20 Proposition. The following conditions are equivalent for a semigroup S':
(i) S is a medial LDR-semigroup.

(ii) S is a medial LDRT-semigroup.

(iii) S is a D-semigroup.

Proof. (i) implies (iii). zyz = zyrz = zxyz = 2%y%z = 2%y?2% = 2%y2% =

r22yz = x2y2.
(iii) implies (ii). zyuv = ruyuv = zuyv, rry = vyry = v?y? and yy = ryry =
2,2 O
x2y”.
1.21 Proposition. The following conditions are equivalent for a semigroup S':
(i) S is an LD-semigroup and card(Id(S)) = 1.
(i) S is an A-semigroup.

Proof. (i) implies (ii). Let Id(S) = {0}. By 1.2(i), 0 is a right absorbing element
of S and zy? = 0 = xyx for all z,y € S. Now, Oz = 020z = 022 = 0 and hence
xyz =xyxrz =0z =0 for all x,y,z€ S. 0O
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1.22 Proposition. Let S be an LD-semigroup, C' = C(S) and D = S — C.
Then:

(i) Ewvery element of C is a left neutral element of S.
(ii) If C is nonempty, then qs = idg, S is an LDT;-semigroup and C is an
RZ-semigroup.
(iii) If D is nonempty, then D is a prime ideal of S.
(iv) If C is nonempty and S is an LDRy-semigroup, then C' = {e} is a singleton
and e is a neutral element of S.

Proof. (i) For a € C and x € S, aax = aaax implies x = ax.

(ii) C' # (0 implies immediately that gs = idg, and then S is an LDT;-semigroup
by 1.15. Further, C' is a subsemigroup of S (see also A1.I1.4.1(i)) and C is an
RZ-semigroup by (i).

(iii) Since S is a semigroup, D is a left ideal of S. Let @ € D and = € S. Then
au = av for some u,v € S, u # v, and we have aru = arau = arav = axv. Hence
ax € D and we see that D is an ideal. Finally, if ab € D, then abu = abv, u # v,
and therefore either a € D or b € D.

(iv) We have az = aza and x = za for all @ € C and = € S. The rest is clear by
(i). O

1.2 Examples of left distributive semigroups

2.1 Example. There are (up to isomorphism) precisely four two-element LD-

semigroups. They are:
D(1), D(2), D(3), D(4)

(see A1.IV.4). The first three of them are idempotent; the last one is not.

2.2 Example. There are (up to isomorphism) precisely sixteen three-element
LD-semigroups. They are:

D(7),...,D(14), D(20), D(24), ..., D(28), D(36), D(46)

(see A1.IV.10). All of them, except D(20) and D(28), are distributive. The idem-
potent ones are D(7),...,D(14) and D(20).

2.3 Example. The following table shows the numbers of isomorphism types of
at most five-element LD-semigroups and LDI-semigroups:

‘ 1 2 3 4 5

LDS ‘ 1 4 16 93 682
LDIS 1 3 9 38 179

2.4 Example. Consider the following five-element groupoid S:

S| 01 2 3 4
0| 11 3 4 4
11 1 1 4 4 4
20 2 2 2 2 2
31 3 3 3 3 3
41 4 4 4 4 4
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This groupoid is an LDR;-semigroup; it is not an LDT-semigroup and it does not
satisfy the identity zyz ~ z2yz.

2.5 Example. Consider the following four-element groupoid S:

S| 01 2 3
0| 2 3 2 2
111 111
21 2 2 2 2
313 3 3 3

This groupoid is an LDR;-semigroup; it is not an LDT-semigroup; it is subdirectly
irreducible and satisfies 22 ~ x%y.

2.6 Example. Consider the following two three-element LD-semigroups:

D(20) |0 1 2 D(28) |0 1 2
0[0 0 0 0/0 0 0
10111 110 1 2
210 1 210 0 0

D(20) is an idempotent LDR;-semigroup; it is not medial. D(28) is an LDT;-
semigroup; it is medial and satisfies zy? ~ yx?. Moreover, Id(D(28)) is not an
ideal and D(28) is not an LDR-semigroup.

2.7 Example. Let f be a transformation of a nonempty set S and define mul-
tuplication on S by xy = f(y) for all z,y € S. Then S becomes a D-semigroup.

2.8 Proposition. Let S be an LD-semigroup and e ¢ S. Then:

(i) Sle] is an LD-semigroup.
(ii) S{e] is an LD-semigroup.

(iii) S[e} is an LD-semigroup iff S is an LZ-semigroup.

(iv) S{e} is an LD-semigroup iff S is an idempotent LDR;-semigroup.

Proof. Easy (see A1.IV.1.9). O

2.9 Proposition. Let S be a D-semigroup and e ¢ S. Then:
(i) Sle] is a D-semigroup.
(ii) S{e] (resp. Sle}) is a D-semigroup iff S is an RZ-semigroup (resp. LZ-
semigroup).
(iii) S{e} is a D-semigroup iff S is a semilattice.

Proof. Use 2.8. [

1.3 Basic facts on subdirectly irreducible left distributive semigroups

3.1 Proposition. Let S be a subdirectly irreducible LD-semigroup. Then just
one of the following two cases takes place:
(i) Ci(S) #0, q¢ =idg and S is an LD T -semigroup.
(ii) CZ(S) = (Z) and qs 75 ids.
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Proof. Suppose first C;(S) = (). Then, for every = € S, L, is not injective, so
that ws C ¢,,5; but then wg C gs. On the other hand, if C;(S) # 0, then (i) is true
by 1.22(ii). O

3.2 Proposition. Let S be a subdirectly irreducible LD-semigroup such that
C =C/(S)#0; put D =S —C. Then just one of the following five cases takes
place:

0 s

i) 5~ Do)

(iii) S ~ D(10).

(iv) S is neither idempotent nor an LDR-semigroup and card(D) > 2 (then
ps # ids.)

(v) S is an idempotent LDR;-semigroup, card(D) > 2, ps = idg, C = {e} for
a neutral element e of S, D is subdirectly irreducible and pp = idp # qp.

Proof. By 3.1, g5 = idg and S is an LDT;-semigroup. By 1.22, either D = () or
D is a prime ideal of S. Let (a,b) € wg, a #b. Obviously, D = {x € S : za = zb}.
If D = (0, then S is an RZ-semigroup by 1.22(ii) and one can readily see that
S ~ D(2) in that case.

Next assume that D = {0} is a singleton. Then 0 is an absorbing element of 5,
C' is an RZ-semigroup and it is easy to see that s Uidg is a congruence of S for any
congruence s of C. If card(C) = 1, then S ~ D(1). If card(C) > 2, then a,b € C,
C ~ D(2) and S ~ D(10).

Finally, assume that card(D) > 2. Since D is an ideal, =p is a congruence of S
and thus a, b both belong to D. Then aa = ab and ba = bb.

Let ps # idg. Then (a,b) € pg, ab = bb, and therefore aa = bb. It follows that
either aa # a or bb # b and we see that S is not idempotent. Suppose that S is an
LDR-semigroup. Then Id(S) is an ideal and, since either a ¢ Id(S) or b ¢ 1d(S),
we must have card(Id(S)) = 1 by the subdirect irreducibility. Then, by 1.21, S is
an A-semigroup and thus C' = (), a contradiction.

Let ps = idg. Then, by 1.8, S is an LDR;-semigroup; S is idempotent by 1.22(ii)
and 1.17(iii). The rest is clear from 1.22(iv). O

3.3 Proposition. Let S be a subdirectly irreducible delightful LD-semigroup (see
1.16). Then just one of the following four cases takes place:

(i) S~ D(2).
(ii)) S ~ D(lO)
(iii) S is an idempotent LDR;-semigroup with ps = idg.
(iv) S is an A-semigroup.

Proof. With respect to 1.16(iii) and 1.17(iii), we can assume that S is idem-
potent. Further, with respect to 3.1 and 3.2, we can assume that ¢g # idg. Let
(a,b) € wg, a # b. We have (a,b) € gg, so that a = aa = ab abd b = bb = ba.
Thus ab # ba and (a,b) ¢ ps. But then pg = idg and S is an LDR;-semigroup by
1.8(3i). O

3.4 Proposition. Let S be a subdirectly irreducible D-semigroup. Then just one
of the following two cases takes place:

(i) S is idempotent and S is isomorphic to one of the five distributive semi-
groups D(1), D(2), D(3), D(9) and D(10).
(ii) S is an A-semigroup.



Proof. With respect to 3.3, we can assume that S is an idempotent LDR;-semi-
group, i.e., S satisfies zy ~ xyx. Dually, using the right hand form of 3.3, we can
assume that S satisfies xy ~ yxy. However, then S is commutative, i.e., it is a
semilattice. A subdirectly irreducible semilattice is isomorphic to D(1). O

3.5 Remark. Let S be a subdirectly irreducible LD-semigroup. We have either
tS 7’é ids or tS = ids.

If ts # idg, then tg = ws = {(a,b),(b,a)} for some a,b € S, a # b. Then
a? = ab = ba = b2, and so either a ¢ 1d(S) or b ¢ 1d(S).

If t = idg, then either pg = idg and S is an LDR;-semigroup, or else gs = idg
and S is an LDT;-semigroup. In the latter case, 3.2 applies.

3.6 Proposition. The groupoids D(1), D(2), D(3) and D(4) are (up to iso-
morphism) the only (congruence) simple LD-semigroups.

Proof. The result follows easily from A1.I1.7.4. [

1.4 Comments and open problems

The results of this section are of introductory character and are based on the
paper [Kep,81]. The main open problems concern a more detailed description of
subdirectly irreducible LD-semigroups. In particular, their subsemigroups are not
known (cf II1.4 and 1V.3,4,5).

I1. Free left distributive semigroups

I1.1 Construction of free left distributive semigroups

1.1 Construction. Let X be a nonempty set. Denote by F the (absolutely) free
semigroup over X. Denote by F' the union of the following four pairwise disjoint
subsets A, B,C, D of F:

A={z": 2€X,1<i<3}
B={z"y rycX oy 1<i,j<2}

C={ztas...xp_12) : x1,...,2, € X pairwise different,n >3, 1 <i,j < 2}
D :{Ilfill‘g Ty 1Tp T ¢ X1, ..., 2y € X pairwise different, n > 2, 1 < k < n,
1<i<2}
For every element u of F, (uniquely) expressed as u = xlfl ...xF where n > 1,

x; € X, k; > 1 and x1 # x9 # x3 # -+ # x,, we define an element f(u) of F as
follows:
(i) If n =1, let f(u) = 2} where k = min(3, k1).
(ii) If n =2, let f(u) = x¥x} where k = min(2, k1) and [ = min(2, k).
(iii) If n > 3 and x,, & {x1,..., 001}, let f(u) = 2¥y;...ymal, where k =
min(2, k1), [ = min(2, k,,) and (by induction on 7) y; is the first member of

X1,...,Tp_1 Not contained in {x1,y1,...,Yi—1}-
(iv) If n > 3 and =, € {x1,..., 70 2}, let f(u) = ¥y ... ymx, where k =
min(2, k1) and (by induction on i) y; is the first member of z1, ..., x,_1 not

contained in {z1,y1,...,Yi—1}-
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It is easy to see that f(u) € F in any case. Also, it is easy to see that f(u) = u for
u € F. Let us define a binary operation % on F' in this way: u*v = f(uv) for any
u,v € F. We are going to prove that F'(x) is a free LD-semigroup over X.

1.2 Lemma. Letu € F. The identity u =~ f(u) is satisfied in any LD-semigroup.
Proof. It is easy; use 1.1.1, I.1.2 and, of course, the left distributive law. [

1.3 Lemma. Let u,v € F and u # v. Then there is an LD-semigroup not
satisfying u ~ v.

Proof. Suppose that u &~ v is satisfied in all LD-semigroups. Since every LZ-
semigroup is left distributive, the words u,v have the same first letters. Similarly,
every RZ-semigroup is left distributive and hence u,v have the same last letters.
Furthermore, every semilattice is distributive and we conclude that the set of letters
occurring in u coincides with the set of letters occurring in v. Now, we distinguish
the following cases.

Case 1: v = z° and v = 27. The LD-semigroup D(28) (see 1.2.6) satisfies
neither z ~ 2 nor r ~ z3. The LD-semigroup D(46) (see A1.IV.8.1) does not
satisfy 22 ~ x3. Using these observations, we conclude that i = j. Hence u = v, a
contradiction.

Case 2: u = 2'y? and v = 2¥y'. The LD-semigroup S from 1.2.4 satisfies none of
the identities zy ~ 2%y, zy ~ 2%y?, zy? ~ 2%y? and zy? ~ z2y. The LD-semigroup
D(28) satisfies neither zy ~ zy? nor x%y ~ z?y%. Consequently, i = k, j = [ and
u = v, a contradiction.

Case 3: u = x’ixz .. .:I;n_lzc{L € C and v = x’;(l)wp(g) .. ~$p(n_1)l’é(n) e C for
a permutation p of {1,...,n} with p(1) = 1 and p(n) = n. If n > 4, then every
idempotent LD-semigroup satisfying u ~ v is medial. However, D(20) (see 1.2.6)
is a non-medial LDI-semigroup. Consequently, n = 3. It is easy to see that either
xy? =~ 2%y? or 2%y ~ 22y? is a consequence of u ~ v, and we get a contradiction by
Case 2.

Case 4: u = xiwy... 7, 12 € C and v = x’;(l)xp(g) e Tp(n=1)Tp(n)Tp(k) € D
for a permutation p of {1,...,n} with p(1) = 1 and p(k) = n. One can easily check
that every LDI-semigroup satisfying u ~ v is distributive. However, D(20) is not
distributive, a contradiction. '

Case 5: u=2'Ty... 0y 17,20x € D and v = x;(l)xp(z) e Tp(n—1)Tp(n) Tp) € D
for a permutation p of {1,...,n} with p(1) = 1 and p(l) = k. Since D(20) is not
middle semimedial, we have p(2) = 2,...,p(n) = n. However, the LD-semigroup
from 1.2.4 does not satisfy zyz ~ 2?yz. Thus i = j and u = v, a contradiction. [

1.4 Theorem. For a nonempty set X, the groupoid F(x) constructed in 1.1 is
a free LD-semigroup over X.

Proof. Denote by ~ the set of the ordered pairs (u,v) of elements of F such
that the equation u ~ v is satisfied in all LD-semigroups. So, ~ is a (fully invariant)
congruence of F and F/ ~ is a free LD-semigroup over X. We know (by 1.2) that
f(u) ~u for any u € F, so that (by 1.3) u ~ v iff f(u) = f(v) for any u,v € F and
~ is just the kernel of f. Now, f is a homomorphism of F onto F'(x): if u,v € F,
then both f(uv) and f(u) f(v) belong to F' and are congruent modulo ~ with ww.
The result follows from the homomorphism theorem. (In particular, the operation
* is associative; this is not immediate from the definition.) [
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1.5 Corollary. FEwvery finitely generated LD-semigroup is finite. The variety of
LD-semigroups is locally finite. [

1.6 Remark. Proceeding similarly, one can construct free LDI-semigroups. In
that case we get words of two types only: words of the form z; ...z, for n > 1 and
words of the form zixy... 2,2, for n > 2 and 1 < k < n, where (in both cases)
z1,...,T, are pairwise distinct letters.

1.7 Remark. By 1.1.20, every D-semigroup is a medial LDRT-semigroup. The
words in a free D-semigroup are of the following types only: z, x2, 23, zy, 2%y,
TYT, T1X2 ... Ty and 122 ... Ty (M > 3). Of course,

L1...Tm ~~ xlxp(g) Ce xp(m_l)xm and L1 ... XmT1 xl.’L’q(Q) .. .xq(m):cl

for any permutation p of {xzo,...,x,,_1} and any permutation ¢ of {za, ..., 2}

I1.2 Auxiliary results on number-theoretic functions

2.1 Definition. Put
(i) a(n,m)=n(n—-1)...(n—m),
(i) a(n) =3, a(n,m),

(i) b(n) = Sy ma(n, m)
for all nonnegative integers n, m.

2.2 Lemma. Let n,m > 0. Then:

(i) a(n+1,m+1) = (n+ 1a(n,m).
(ii)) a(n+1)=(n+1)(a(n) +1).

(iii) b(n+1) = (n+1)(a(n) + b(n)).

(iv) b(n) = (n —2)a(n) + n.

Proof. By induction on n. [J

2.3 Lemma. For everyn > 1, a(n) +c(n) +1 = nle, where (n+1)"! < c(n) <
n~tande=73 - 1/(k!).

Proof. Indeed, nle—1=2n!+3-4-...-n+4-5-...-.n+---+(n—1)n+n+c(n) =
a(n)+c(n), where ¢c(n) = 1/(n+1)+1/(n+1)(n+2)+1/(n+1)(n+2)(n+3)+....
Clearly, 1/(n+1) <c¢(n) < 1/n. O

2.4 Lemma. For every n > 1, na(n) = [nnle] — n (here, for a positive real
number r, [r] means the entire part of r).

Proof. By 2.3, na(n) = [nnle] — n — ne(n) + u, where 0 < u < 1. Then
—1 <u—nec(n) < (n+1)"! and, since u — ne(n) is a whole number, we must have
u—nc(n)=0. O

I1.3 The number of elements of a free left distributive semigroup

3.1 Theorem. The cardinality fi(n) of the free LD-semigroup of rank n and
the cardinality fa(n) of the free LDI-semigroup of rank n are given by

fi(n) =2[n!ne] — n,
fa(n) =[nl(n—1)e] + 1.

Proof. By 1.4, 2.1 and 2.2 we have f1(n) = 4a(n)+2b(n)—n = n+2na(n). In or-
der to compute f1(n), it remains to use 2.4. The other formula is clear from 1.6. [
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3.2 Remark.

(i) fi(n) =e(n)(n + 1)!, where e(n) — 2e. Moreover, fi(n)/fa(n) — 2.
(ii) Let S be a finitely generated LD-semigroup and n = o(S) (see A1.1.1.5). If
n = 0, then card(S) = 1. If n > 1, then

n < card(S) < 2[nlne] — n.

3.3 Remark.

(i) The cardinality f3(n) of the free idempotent LDR;-semigroup of rank n is
given by
fa(n) = [nle] — 1.

(ii) The cardinality f4(n) of the free DI-semigroup of rank n is given by
fa(n) =n(n+1)2"2

(iii) The cardinality f5(n) (resp. fs(n)) of the free LDI-semigroup satisfying
xyz ~ xzy (resp. zyz ~ yxz) of rank n is given by

f5(n) = fs(n) =n2""L.
(iv) The cardinality f7(n) of the free semilattice of rank n is given by
f7(TL) =2" — 1.

(v) The cardinality fs(n) of the free idempotent semigroup satisfying = ~ zyx
of rank n is given by

fg(’rl) = n2.

(vi) The cardinality fg(n) (resp. fio(n)) of the free LZ-semigroup (resp. RZ-
semigroup) of rank n is given by

fo(n) = fio(n) = n.

3.4 Remark. Denote by f11(n) the cardinality of the free D-semigroup of rank
n. According to 1.7, fi1(n) = 3n + 2n(n — 1) + n(n — 1)((11;2) NI (n—2)) n

n—2
n((”Il) +- 4 (Zj)) After easy calculation, we find that

fii(n) = n(n + 1)(1 +2"72).

3.5 Remark. Denote by fi2(n) (resp. fis(n), fia(n), fis(n), fis(n)) the car-
dinality of the free A-semigroup (resp. free unipotent A-semigroup, free commuta-
tive A-semigroup, free unipotent commutative A-semigroup, free Z-semigroup) of
rank n. Then
12(n) = n?+n+ 1,

13 n2 —|— 1

(n)
(n)
fra(n) = (n? + 3n +2)/2,
(n) =
(n)

=

n

fis (n*+n+2)/2,
fi6 =n+1.

n

n
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3.6 Table.

1 2 3 4 5 6 7 8
fi(n) 3 18 93 516 3255 23478 191793 1753608
fa(n) 1 6 33 196 1305 9786 82201 762208
f3(n) 1 4 15 64 325 1956 13694 109600
fa(n) 1 6 24 8 240 672 1792 4608
f5,6(n) 1 4 12 32 80 192 448 1024
Fr(n) 1 3 7 15 31 63 127 255
fs(n) 1 4 9 16 25 36 49 64
fg}lo(n) 1 2 3 4 5) 6 7 8
f11(n) 3 12 36 100 270 714 1848 4680
f12(n) 3 7 13 21 31 43 57 73
f13(n) 2 ) 10 17 26 37 50 65
f1a(n) 3 6 10 15 21 28 36 45
fi5(n) 2 4 7 11 16 22 29 37

I1.4 Comments and open problems

The description 1.4 of free LD-semigroups is taken from [Mar,79] and [Zej,89b].
The numbers of elements of finitely generated free LD-semigroups (3.1) were com-
puted in [KepZ,89].

An open problem is a characterization of subsemigroups of free LD-semigroups
(LDI-semigroups, etc.).

II1. A-semigroups and their varieties

II1.1 Basic properties of A-semigroups

1.1. An A-semigroup is a groupoid satisfying = - yz ~ uv - w. It is apparent that
A-semigroups are nothing else than semigroups nilpotent of class at most 3. Thus
every A-semigroup S contains an absorbing element 0 (= Og) such that zyz = 0
for all z,y,z € S.

1.2 Proposition. Let S be an A-semigroup and Z(S) ={a € S: Sa=0=aS}.
Then:

0, S? and Z(S) are ideals of S.

1d(S) = Int(S) = {0} = S3 C 82 C Z(S) CS.
Z(8S), S/S? and S/Z(S) are Z-semigroups.

) X Z(S) Citg.

(v) o(S) = card(S — S?).

Proof. Easy. U

IT1.2 Varieties of A-semigroups

2.1 Notation. Denote by Aq the variety of trivial groupoids, by A; the variety
of Z-semigroups, by Ay the variety of commutative unipotent A-semigroups, by
As the variety of commutative A-semigroups, by A4 the variety of unipotent A-
semigroups and by A = Ajs the variety of A-semigroups.
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2.2 Theorem. The varieties Ay, A1, As, As, Ay and As are pairwise different
varieties of A-semigroups and there are no other varieties of A-semigroups. We
have

.AoC.A1CA2C.A3CA5, A2CA4CA5

and there are no other inclusions except those which follow by transitivity. The
lattice of varieties of A-semigroups is given in Fig. 1.

As

Ay

6 Ao

Fig. 1

Proof. Let V be a variety of A-semigroups determined by an identity u ~ v,
where u, v are two semigroup words of lengths £ and [, respectively. If £ > 3 and
[ >3,thenV =A5. If £k > 3 and [ = 2, then V is either A4 or A;. If £k > 3 and
l=1,then V =Ay. If k =1=2, then V is either A5 or A4 or A3 or A;. If k =2
and [ = 1, then V = Ap. Finally, if Kk =11 = 1, then V is either A or Ay. Hence
every one-based variety of A-semigroups can be found among Ay,...,A5. Since
this collection is closed under intersection (we have Az N Ay = As), it follows that
there are no other subvarieties of A.

All the inclusions are clear. The groupoid T' given by

7 01 2 3
0 0 0 0 O
11 00 3 0
20 0 3 00
310 0 0 0

is in A2 but not in A4;. The groupoid D(46) (see A1.IV.8.1) is in .43 but not in Ay,
and the groupoid S given by
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=W = O | Wy
S oo oo | O
S O = OO

SO o wo (N}
S oo OO | W
S oo oo H~

is in A4 but not in A3. 0O

I11.3 Free A-semigroups

3.1 Construction. Let X be a nonempty set and let f : X x X — Y be a
bijective mapping, where X NY = (). Let 0 be an element not belonging to X UY".
Define a multiplication on F' = XUY U{0} by zy = f(z,y) for z,y € X and zy =0
otherwise. Then F' becomes a free A-semigroup over the set X.

3.2 Proposition. An A-semigroup S is a free A-semigroup if and only if it
satisfies the following four conditions:

(i) S is nontrivial;

i) If x,y,u,v € S are such that vy = uv # 0, then © = u and y = v;
) If x,y € S — Z(S), then xy # 0;

) Z(S) =52

(i
(iii

(iv

Proof. Easy. [

3.3 Proposition. An A-semigroup S is a subsemigroup of a free A-semigroup
if and only if it satisfies the conditions 3.2(ii) and 3.2(iii).

Proof. The direct implication is clear from 3.2 (if S C F, then S — Z(S) C F —
Z(F)). Now, assume that S satisfies both 3.2(ii) and 3.2(iii) and put A =S — Z(5)
and B = Z(S) — S?. Tt follows from 3.2(iii) that S = AU BU A2 U {0} is a disjoint
union. Further, let C' be a set such that C NS = () and card(C) = card(B), and
let g : B — C be a bijection. Put X = AU C and define a mapping h : § — F
(where F is as in 3.1) as follows: h(a) = a for every a € A; h(b) = g(b)? for every
b € B; h(zy) = zy for all z,y € A; h(0) = 0. It follows from 3.2(ii) that h is
well defined and, by 3.2(iii), h is an injective homomorphism of S onto the free
A-semigroup F. [

3.4 Corollary. Fvery Z-semigroup is a subsemigroup of a free A-semigroup. [

3.5 Remark. The A-semigroup T from the proof of 2.2 is not a subsemigroup
of any free A-semigroup.

3.6 Remark. The number of elements of a free semigroup in any subvariety of
A has been computed in I1.3.5.
I11.4 Subdirectly irreducible A-semigroups

4.1 Proposition. Let S be an A-semigroup containing at least three elements.
Then S is subdirectly irreducible if and only if the subsemigroup T = S? contains
precisely two elements and ts = (T x T) Uidg.
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Proof. Let S be subdirectly irreducible. As one can see easily, every subdirectly
irreducible Z-semigroup contains only two elements. Consequently, S is not a Z-
semigroup and card(7) > 2. On the other hand, every nonempty subset M of T is
an ideal of S, (M x M)Uidg is a congruence, and it follows easily that card(7T") = 2
and wg = (T x T) Uidg. Clearly, wg C tg. Conversely, if (a,b) € tg and a # b,
then ({a,b} x {a,b}) Uidg is a congruence of S. Thus wg =tg = (T x T') Uidg.

Now assume that 7' = {0,a} where a # 0, and that ts = (T' x T') Uidg. Let
r # idg be a congruence of S and let (x,y) € r, x # y. If zz # yz for some
z € S, then the elements xz and yz belong to T' and we see that (a,0) € r.
Similarly, zx # zy implies (a,0) € r. If xz = yz and zz = zy for all z € S,
then (z,y) € ts = (T' x T') Uidg. This proves (a,0) € r in any case, so that S is
subdirectly irreducible. [J

4.2 Corollary. Let S be a subdirectly irreducible A-semigroup containing at
least three elements. Then Z(S) = S?, wg = tg, o(S) = card(S) — 2 and every
proper homomorphic image of S is a Z-semigroup. [J

4.3 Theorem. An A-semigroup S is a subsemigroup of a subdirectly irreducible
A-semigroup if and only if S? contains at most two elements.

Proof. The direct implication follows from 4.1. Let S be an A-semigroup such
that S2 C {0,1}, where 0 is the absorbing element of S (and 1 is some other
element); let S be not subdirectly irreducible. Put K = S — {0,1}. Let f be

a bijection of K onto a set M with SN M = (. Put G = SU M and define
multiplication on G in the following way:

(i) S is a subsemigroup of G;

(ii) - f(z) = f(z) -z =1and f(x)- f(z) =0 for all z € K

(iii) f(2)-y=y-f@)=0and f(x)- f(y) = 1 for all 2,y € K,  # y;

(iv) 2:0=0-2=2-1=1-z=0forall z € G.
It is easy to check that G is an A-semigroup. Of course, S is a subsemigroup
of G. We have G? = {0,1}, so that, according to 4.1, it remains to show that
ta = ({a,b} x {a,b})Uidg.

Let (a,b) € tg, a # b. We are going to show that a,b € {0,1}. If a,b € M, then
0 = aa = ab =1, a contradiction. Therefore, we can assume that a € S.

Suppose a € K. If b ¢ M, then 1 =a- f(a) =b- f(a) =0, a contradiction. Thus
b € M and we have b = f(c) for some ¢ € K. If there exists an element d of K
different from both a and ¢, then 0 = a - f(d) =b- f(d) = 1, a contradiction. Thus
K ={a,c}. Ifa=c,thenb= f(a) and 1 =a- f(a) =b- f(a) = 0, a contradiction.
If ac = 0, then 0 = ac = be = 1, which is not true; if ca = 0, we get a contradiction
similarly. Thus ac = 1 = ca. Similarly aa = 0, and S is subdirectly irreducible by
4.1, a contradiction.

This proves that a € {0,1}. In this case, b = 0 = bz for every z € G and
b€ {0,1}. The rest is clear. O

4.4 Corollary. FEvery Z-semigroup is a subsemigroup of a (commutative and
unipotent) subdirectly irreducible A-semigroup. O

4.5 Remark. The subdirectly irreducible A-semigroup G constructed in the
proof of 4.3 is commutative (resp. unipotent), provided that S is commutative
(resp. unipotent). Hence, the analogue of 4.3 remains true for commutative (resp.
unipotent) A-semigroups.
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IT1.5 Comments

The theory of A-semigroups (i.e., semigroups nilpotent of class at most 3) is
more or less of folklore character. Anyway, the results presented here are taken
from [JezKN,81].

IV. Idempotent left distributive
semigroups and their varieties

IV.1 Basic properties of idempotent left distributive semigroups

1.1 Proposition. The following conditions are equivalent for an idempotent
semigroup S':

(i) S is middle semimedial.
(ii) S is medial.
(iii) S is distributive.

Proof. (i) implies (ii). We have abed = abed - abed = a - b-cd - a - bed =
a-cd-b-a-bed=a-c-d-bab-c-d=a-c-bab-d-c-d=a-c-ba-bd-c-d=
a-c-bd-ba-c-d=acb-d-b-ac-d=achb-d-ac-b-d=acbd-acbd = acbd for all
a,b,c,d €.

(ii) implies (iii). We have abc = aabc = abac and cba = cbaa = caba for all
a,b,ceS.

(iii) implies (i). We have abca = abcba = acba for all a,b,c € S. O

1.2 Proposition. The five pairwise nonisomorphic DI-semigroups D(1), D(2),
D(3), D(9) and D(10) are (up to isomorphism) the only subdirectly irreducible DI-
semigroups. Moreover, D(9) is right but not left permutable and D(10) is left but
not right permutable.

Proof. See1.3.4. O

1.3 Proposition. Let S be a rectangular band, i.e., an idempotent semigroup
satisfying the identity x ~ xyx. Then:
(i) S is a DI-semigroup.
(ii) S/ps is an LZ-semigroup and S/qs is an RZ-semigroup.
(iii) S~ S/ps x S/qs.

Proof. (i) We have abed = aca-bed = a-cabe-d = acd = a-cbe-d = ac-bdb-cd =
acb-dbed = acbd for all a,b,c,d € S. Thus S is medial, and hence distributive by 1.1.

(ii) By (i), xy = zzxy = xzy for all x,y,z € S and it follows that (y, zy) € gqs
and S/qg is an RZ-semigroup. Quite similarly, S/pg is an LZ-semigroup.

(iii) Since S is idempotent, we have ts = pg N ¢gs = idg. On the other hand, by
(ii), a/p = ab/p and b/q = ab/q for all a,b € S. O

1.4 Proposition. Let S be a subdirectly irreducible LDI-semigroup. Then either
S is a DI-semigroup (and so S is isomorphic to one of D(1), D(2), D(3), D(9),
D(10)) or S is an idempotent LDR;-semigroup such that ps = idg.

Proof. See1.3.3 and 1.2. O
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IV.2 Varieties of idempotent LD-semigroups

2.1 Notation. Consider the following varieties of idempotent semigroups:

Ty ... trivial semigroups;

7; ... semigroups satisfying zy =~ x;

I ... semilattices;

I3 ... semigroups satisfying zy = y;

7y ... left permutable idempotent semigroups;

Zs ... rectangular bands (idempotent semigroups satisfying x ~ xyz);

I ... right permutable idempotent semigroups;

Z; ... normal bands (idempotent medial semigroups or DI-semigroups, see 1.1);

Zg ... idempotent LDR;-semigroups (idempotent semigroups satisfying xy ~
rya);

Ty =71 ... LDI-semigroups.

2.2 Theorem. The ten pairwise different varieties Zg,...,Zg are just all sub-
varieties of the variety Z of LDI-semigroups. We have

I0C1-1CI4CI8CI9, 1-1CI5CI7, IQCIGCI'y,
IoCIQCI4CI7CIQ, I()CI;),CI5, I3 C Ig

and there are no other inclusions (except those that follow by transitivity). The
lattice of subvarieties of I is given in Fig. 2.

Proof. All the non-sharp versions of the indicated inclusions are clear (use 1.1
and 1.3).

No nontrivial RZ-semigroup is in Zg. Therefore, Z3 € Zs.

No nontrivial semilattice is in Zs. Therefore, Zo € Zs.

No nontrivial LZ-semigroup is in Zg. Therefore, 7y € Zg.

We have D(20) € Zg — Z7. This completes the inclusions part of the proof.

Now let V' be a variety of LDI-semigroups determined (in Z) by a single identity
u .

Assume first that V' C Z;. The variety V is generated by its subdirectly irre-
ducible members. Using 1.2, we easily conclude that V' is one of the varieties Zo,
1y, 1z, 13, 14, Is, Ls, 17.

Let V C Zg. We can restrict ourselves to the case when v = z;...z, and
v=11...Yn Where x1,...,x, are pairwise different and also y1, ..., y,, are pairwise
different. If var(u) # var(v), then V' C 75 and, in fact, V is either Zy or Zj.
So, assume that var(u) = var(v). Then n = m and there is a permutation p of
{1,2,...,n} such that y; = z,;). If p(1) # 1, then V is either Zy or 7. Let
p(1) =1, p #1id, and let 2 < k < n — 1 be the smallest number with p(k) # k.
Using the substitution zq,...,2xx-1 — x, xx — y and zg41,...,2, — 2, We can
show that the identity zyz ~ zzy is satisfied in V', and so V' C Z,. Thus V is either
Iy or Iy or Iy or 1y.

Assume, finally, that V' & Z; and V € Zg. By 1.4, every subdirectly irreducible
member of V' is either in Z7 or in Zg. Consequently, V =Zy. [

IV.3 Subdirectly irreducible idempotent LDR-semigroups

3.1 Remark. According to 1.4, there exist (up to isomorphism) only two sub-
directly irreducible LDI-semigroups that are not LDR;-semigroups, namely, D(2)
and D(10).



18

1y

Fig. 2

3.2 Proposition. Let S be a subdirectly irreducible LDRy I-semigroup such that
qs = idg. Then just one of the following two cases takes place:
(i) S~ D(1);
(ii) S possesses at least three elements, among them a neutral element e, such
that T = S — {e} is a subsemigroup of S, qr # idr and T is a subdirectly
wrreducible LDRy I-semigroup possessing no neutral element.

Proof. See 1.3.2. O

3.3 Proposition. Let T be a nontrivial semigroup and e be an element not
belonging to T'. Then T{e} is a subdirectly irreducible LDRy I-semigroup if and only
if T is a subdirectly irreducible LDRyI-semigroup possessing no neutral element.

Proof. See 1.2.8(iv). O

3.4 Proposition. Let T' be a nontrivial semigroup and o be an element not
belonging to T'. Then To] is a subdirectly irreducible LDRy I-semigroup if and only
if T is a subdirectly irreducible LDRy I-semigroup possessing no absorbing element.

Proof. Easy. U

3.5 Proposition. Let S be a subdirectly irreducible LDR1 I-semigroup possessing
an absorbing element o. Then just one of the following two cases takes place:

(i) S~ D(1);
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(ii) S contains at least three elements, T = S — {o} is a subsemigroup of S, T
1s a subdirectly irreducible LDRI-semigroup and T contains no absorbing
element.

Proof. Assume that card(S) > 3 and that (a,b) € ws, a # b, a # 0. Let u € T}
put I = {z € S : zu = o} and J = Su. Then both I and J are ideals of S and
card(J) > 2; we have o,u € J. Consequently, ws C (J x J)Uidg and a = vu for
some v € S. We have a = vu = vuu = au, and so a ¢ I. Thus wg € (I x I)Uidg,
card(I) = 1 and I = {o}. We have proved that T is a subsemigroup of S and the
rest is clear from 3.4. 0

3.6 Definition. A subdirectly irreducible LDR;I-semigroup S will be called
primary if S contains no neutral element and no absorbing element either.

3.7 Theorem. Let S be a subdirectly irreducible LDR;I-semigroup. Then just
one of the following five cases takes place:
(i) S~ D(1).

(ii) S is primary.

(iii) S contains at least three elements, among them a neutral element e, no
absorbing element, T'= S — {e} is a subsemigroup of S =T{e} and T is a
primary subdirectly irreducible LDR1 I-semigroup.

(iv) S contains at least three elements, among them an absorbing element o, no
neutral element, T = S — {o} is a subsemigroup of S = To] and T is a
primary subdirectly irreducible LDRy I-semigroup.

(v) S contains at least four elements, among them both a neutral element e and
an absorbing element o, T = S—{e, o} is a subsemigroup of S = (T'{e})[o] =
(T'[o]){e} and T is a primary subdirectly irreducible LDRy I-semigroup.

Proof. Combine 3.2, 3.3, 3.4 and 3.5 [

3.8 Notation. For a semigroup S, let LA(S) denote the set of left absorbing
elements of S, i.e., LA(S) ={a € S:aS = {a}}. If L = LA(S) is nonempty, then
L is an ideal of S and L = Int(S). Moreover, L is equal to the intersection of all
left ideals of S and every nonempty subset of L is a right ideal of S.

3.9 Lemma. Let S be an idempotent semigroup and I be a right ideal of S.
Then I C LA(S) iff I is an LZ-semigroup.

Proof. If I is an LZ-semigroup and if a € I and = € S, then axr € I and
ar=a-ar =a. [

IV.4 Subdirectly irreducible semigroups in Zg

4.1 Remark. Recall that Zg is the variety of LDR;I-semigroups, i.e., the vari-
ety of idempotent semigroups satisfying xyx ~ xy. The aim of this section is to
prove that every semigroup from Zg can be embedded into a subdirectly irreducible
semigroup from Zg. This is a special case of a more general result by Goralcik and
Koubek [GorK,?]. The proof contained in [GorK,?] contains several inaccuracies,
making it almost unreadable.

4.2 Definition. We fix two distinct elements «, 5. A semigroup S € Zg will be
called admissible if {«, 5} € LA(S) and sa = sf8 € {a, B} for all s € S — LA(S5).

An admissible semigroup S € Zg will be called reductive if for every pair u, v of
distinct elements of S there exists an element s € LA(S) with us # vs.
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4.3 Proposition. Every semigroup S € Ig containing neither o nor B can be
extended to an admissible semigroup in Zg.

Proof. Put T'= S U {«, 8} and define multiplication on 7" as follows: S is a
subsemigroup of T; as = a and fs = for all s € T; sa = s =« for all s € S. It
is easy to see that T € Zg, LA(T') = {«a, f} and T is admissible. [

4.4 Proposition. FEvery admissible semigroup S € Zg can be extended to a
reductive admissible semigroup in Zg.

Proof. Take an element e ¢ S and put R = S{e}. Let z — 2’ be a bijection of
R onto a set R’ with RN R’ = {«a, B}, such that o/ = and f' = 5. Put T' = SUR’
and define multiplication on T as follows:

(i) S is a subsemigroup of T

(ii) st’ = (st)’ for s,t € S;

(iii) se’ =¢ for s € S;

(iv) s'w=s"for s € S, w e T;

(v) €w=¢€ forweT.
It is easy to see that the multiplication is correctly defined, T' € Zg, LA(T) = R/,
and T is admissible. It remains to prove that T is reductive. Let s,t € T', s # t. If
s,t € S, then se/’ =" #t' =te'. If s,t € R', then ss = s #t =ts. Finally, if s € S
and t € R' — {a, B}, then sa #t =ta. O

4.5 Notation. In the next lemmas we suppose that S € Zg is a given admissible
reductive semigroup and ¢, d is a pair of distinct elements of LA(S) with d ¢ {«, 5}.

Take two distinct elements x,y not belonging to S and denote by Z the LZ-
semigroup with the underlying set {x,y}. Denote by F' the free product of S and
Z in Zg, so that S and Z are disjoint subsemigroups of F', F' is generated by S U Z
and for any A € Zg, any pair of homomorphisms S — A, Z — A can be extended
to a homomorphism F — A.

By a canonical form of an element u € F' we mean an expression u = uj ... Uy,
where

(i) 1 <n <3,
(ii) if n = 2, then either u; € Z, us € Sor u; € S, ugy € Z,
(iii) if n =3, then uy € S, ugs € Z, uz € S and ujuz # uy.

Observe that for n = 3, u; € S — LA(S) (in particular, if n = 3, then u; ¢ {«, 5}).
4.6 Lemma. Fvery element of F' can be expressed in a canonical form.

Proof. As this is clear for the elements of SU Z, it is sufficient to show that the
set of the elements expressible in a canonical form is a subsemigroup of F'. For this
sake, it is certainly sufficient to show that if w = u; ... u, canonically, then each of
the elements ux, uy and us (for s € ) also has a canonical form. This can be done
easily by considering the possible cases. For example, zsy = xsxy = xsx = xs.
Also, if st = s, then szt = sxst = sxs = sx. [

4.7 Lemma. Letu = uy...u, and u = vy ...v,, be two canonical expressions
of the same element uw € F. Then n = m and either uy = vy,...,u, = v, or else
n =3, uy = v, Uy = vy and U U3z = V3.

Proof. Denote by h; the homomorphism of F' onto the two-element semilattice
{0,1} (where 01 = 0) such that hy(S) = {1} and h1(Z) = {0}; define ho similarly,
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but setting ho(S) = {0} and ho(Z) = {1}. Clearly, hi(uy...u,) = 0 iff Z N
{ut,...,un} # 0; also, ha(uy...u,) = 0 iff SN {uy,...,u,} # 0. From this it
follows that it is sufficient to consider the case when n > 2 and m > 2.

For every e € LA(S) denote by h. the homomorphism of F' into S extending
the identity on S and the constant homomorphism of Z onto {e}. If u; € S, then
he(uy...u,) = uje. vy € Z, then he(vy...vy) =e. So, if uy € S and v, € Z,
then uje = e for any e € LA(S); in particular, ujov = « and w1 8 = 3, contradicting
the admissibility of S. We conclude that ui,v; either belong both to S or belong
both to Z. In the case when uy, vy € S, we get uje = vie for all e € LA(S), so that
u1 = v1 by the reductivity of S.

Denote by hg the homomorphism of F' into Z{1} extending the constant homo-
morphism of S onto {1} and the identity on Z. If u; = v; € S, then h3(uy ... u,) =
ug and hg(vy...0,) = vg, so that ug = vy, If uy,v; € Z, then hg(uy ... u,) = ug
and hs(vy ...v,) = v1, so that uy = v;.

So far we have proved that u; = vy and if u1 = v; € S, then us = vs.

Denote by h4 the homomorphism of F' into S{1} extending the identity on S and
the constant homomorphism of Z onto {1}. If u; = vy € Z, then hy(uy ... uy) = ug
and hy(vy...0,) = v2. S0, us = vs.

Let s,t,t’ be elements of S. If sx = sxt, then zsx = zszt, i.e., xs = xst and
hence s = st, so that szt is not a canonical form. If szt = sxt’, then (similarly)
st=st'. O

4.8 Notation. We have seen that every element u € F' can be expressed canon-
ically, u = uq ... u,, and u; is uniquely determined by u; we say that u begins with
Uui.

Denote by R the relation, containing the following pairs of elements of F':

(o, zc), (B, ye), (za, xB), (yo, yB), (o, ax), (o, ), (B, Bz), (B, BY), (xd, yd).

Denote by p the congruence of F' generated by R.
Put Ay ={seS:sa=a}and Ag ={se S:sp=p}
Put B, ={a}U{zs:se€ S —{d}} UALZS (notice that A,Z C A, ZS).
Put Bg ={f}U{ys:seS—{d}} UAZS.
For s € LA(S) — {«, 8} put Bs = {s, sz, sy}.
For s € S — LA(S) put By = {s}.

4.9 Lemma. Let (v,w) € RUR™! and let p,q be two elements of F{1} such
that pvq € By, (or pvg € Bg). Then pwq € B, (or pwq € Bg, respectively).

Proof. Let pvg € B, (the other case is similar). Consider first the case pvg =
a. Then clearly p,q € S{1}, v € {a,B}, w € {zc,yc,azx,ay}. If p # 1, then
a = pv = pa, so that p € A, and pwqg € A, ZS. If p =1, then a = vqg = v, so
that w € {xc, ax} and we have either pwq = xcq = xc or pwqg = axq = ax; in both
cases, pwq € B,,.

Let pvg € {zs:s€ S—{d}}UALZS. If p ¢ S{1}, it follows easily from 4.7 that
p, and then also pwq belong to {zs:se€ S —{d}} UALZS. So, let p € S{1}.

Let p € S. Then pvg € A,ZS; since v either begins with an element of Z
or belongs to {a, 8, ax,ay, fx, By}, we get p € A,. If w either begins with an
element of Z or is one of the elements ax, ay, Bx, By, we get pwq € A, ZS. So,
let w € {a,B}. Then pw = a. If ¢ € S{1}, we get pwg = a € B,. Otherwise,
pwq =aq € A, ZS C B,,.
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Finally, let p = 1. Then pvg = vgq, so that v does not begin with y and v ¢
{zd, B, Bz, By}. Hence both v and w belong to {«,zc,za, x5, ax,ay}. But then
pwq =wq € B,. U

4.10 Lemma. Let (v,w) € RUR™! and let p,q be two elements of F{1} such
that pvq € B, where s € S —{«a, f}. Then pwq € B;.

Proof. Consider first the case pvg = s. Then p,v,q € S{1}, v € {a,(}, s =
pv ¢ {a, B}, so by the admissibility of S we get p = s € LA(S) — {«, 5}. Hence
pwq = swq € {s, sz, sy} = Bs.

It remains to consider the case s € LA(S) — {a, 8}, pvq € {sz, sy}.

Let p ¢ S{1}. It follows easily from 4.7 and from s € LA(S) that p = pvq. Then
pwq = pvq € Bs.

Let p € S{1}. If v begins with either z or y, then from pvq € {sz, sy} we get
p = s and then pwq = swq € {s, sz, sy}. So, let v € {a, B, az,ay, Sz, y}. Then
either pa or pf does not belong to {«, 5}, so p € LA(S) and we again obtain p = s
and pwq = swq € {s,sx,sy}. O

4.11 Lemma. Let (s,t) € pN (S x S). Then s =t.

Proof. Since (s,t) € p, there is a finite sequence s, ..., s, of elements of F
such that sg = s, s, =t and for every ¢ = 1,...,n we have s;_1 = pvq, s; = pwq
for some p,q € F{1} and (v,w) € RU R~ It remains to use 4.9 and 4.10. O

4.12 Lemma. FEvery congruence of F' containing p and containing the pair (c,d)
contains (o, ).

Proof. Let ~ be a congruence containing p and (c,d). We have a ~ z¢c ~ xd ~
yd ~ yc ~ 3. U

4.13 Proposition. Let S be a reductive admissible semigroup from Zg and let
c,d €S, c#d. Then S can be extended to an admissible semigroup T € Ig such
that (o, B) € 0.4, where 0. q is the congruence of T' generated by (c,d).

Proof. Since S is reductive, it is sufficient to consider the case {c,d} C LA(S).
If {¢c,d} = {a, B}, we can put T' = S. So, we can assume that d ¢ {a, 8}.

Let us keep the notation introduced in 4.5 and 4.8. Denote by T' the semigroup
F/p, in which we identify (or replace) every element s/p (for s € S) with s (this
is possible according to 4.11). So, T' is an extension of S. We have T € Zg, since
F es.

We have {«a, §} C LA(T): this follows from (azx, «) € p, (ay,a) € p, (B, ) € p
and (By, B) € p.

Let s € LA(S). Then (a,ax) € p implies (sa,sax) € p, ie., (s,sx) € p.
Similarly, (s, sy) € p. From this it follows that (s, st) € p for any t € F, so that
s € LA(T). This proves LA(S) C LA(T). Now it is easy to see that LA(T) also
contains all the elements sxz/p, sy/p, xs/p and ys/p with s € LA(S).

Let w = uy ...u, (canonically) be an element of F' such that u/p € T — L(T).
We have u; ¢ LA(S) for all i.

We have (o, zc) € p, so that (za, zzc) € p, i.e., (za,zc) € p and hence (a, za) €
p. Hence also («,zf) € p. Similarly, (8,ya) € p and (5,y8) € p. This shows
that if u;, € {x,y}, then (u;a)/p = (wiB)/p € {e,B}. If u; € S —LA(S), then
u;a = u; 5 € {a, B} by the admissibility of S. Now it is easy to see that (ua)/p =
(uB)/p € {o, BY.

We see that T is admissible. The rest follows from 4.12. [
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4.14 Proposition. Let S be an admissible semigroup from Zs. Then S can be
extended to an admissible semigroup T' € Ig such that for any c,d € S with ¢ # d,
the congruence of T generated by (c,d) contains («, f3).

Proof. By 4.4 and 4.14, for every admissible semigroup S € Zg and every ¢, d €
S with ¢ # d there exists an admissible semigroup 7,4 € Zg such that (o, )
belongs to the congruence of T, 4 generated by (c¢,d). The result follows by a
standard argument using transfinite construction; observe that the union of a chain
of admissible semigroups from Zg is an admissible semigroup from Zg. [J

4.15 Theorem. FEvery semigroup S € Ig can be extended to a subdirectly irre-
ducible semigroup from Ig.

Proof. By 4.3, it is enough to consider the case when S is admissible. Define
a countable chain of admissible semigroups Sy, S1,... as follows: Sy = S5 S;41 is
an extension of 5; claimed by 4.14. The union of this chain is the desired semi-
group. [J

IV.5 Comments and open problems

The first three sections of the chapter are based on [Kep,81]. The main result
of the last section (4.15) is a special case of a more general result by Goraléik and
Koubek [GorK,82]. The original proof contained in [GorK,82] is rather inaccurate
and almost unreadable.

According to 1.4 and 4.15, a semigroup S is a subsemigroup of a subdirectly
irreducible LDI-semigroup if and only if either S is an LDR;I-semigroup (i.e., S
satisfies zx ~ = and zyxr =~ zy) or S is isomorphic to either D(2) or D(10). It is
an open problem to determine which semigroups are available as subsemigroups of
finite subdirectly irreducible LDI-semigroups.

V. The lattice of varieties of left distributive semigroups

V.1 The subvarieties of T N R

1.1 Notation. We denote by L the variety of LD-semigroups, by Z the variety of
idempotent LD-semigroups (so that Z = Zg), by R the variety of LDR-semigroups
and by 7T the variety of LDT-semigroups.

1.2 Lemma. 7T NR = AVZ and every subvariety of T N'R is equal to A; VI
for some 0 <1 <5 and 0 <35 <9.

Proof. By 1.1.17, every semigroup in 7 N 'R is a subdirect product of an A-
semigroup and an idempotent LD-semigroup. Now, use Theorems III.2.2 and
v.2.2. O

1.3 Lemma. For j ¢ {0,2} we have AoV T; =A4VI; and A3V I; = A5V I;.

Proof. Let G be the free semigroup in Az V Z; over two generators x and y.
Clearly, zy # yx in G and zy,yx ¢ Id(G). From this it follows that G/Id(G) ¢ As
and hence (As VZ;) N As € As. Consequently, (As VZ;) N As = As, which means
that A3 VZ; = As VZ;. One can prove Ay VI; = Ay VZ; similarly. O
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1.4 Lemma. Let either i ¢ {2,3} or j € {0,2}. Then a semigroup S belongs to
A; VI if and only if S € T N'R, 1d(S) € Z; and S/1d(S) € A;.

Proof. Denote by V the class of all semigroups S with this property. It is easy
to see that V is a variety, and hence V = A; VZ;. 0O

1.5 Lemma. Let (i,7) and (k,1) be two ordered pairs from {0, ...,5}x{0,...,9}.
Then A; VZI; C A, VI if and only if Z; C I; and one of the following three cases
takes place: either A; C A, orl ¢ {0,2},i=4,k=2orl ¢ {0,2},i=5, k=3.

Proof. Apply 1.2, 1.3 and 1.4. [

1.6 Lemma. The variety T N'R has the following 44 subvarieties:

Lo=AoVZIy= Ay =T,
Li=AyVvIi =1,

Ly = AgV Iy =1y,
Lig=A1VIy= A,

Ly =A V1,
Lig = Ay VI,
Loy = A VI,
Loy = Ay VI, =A4\/Il,
Loy = Ay VI,

Loz = Ay VI3 = A4V I3,

Log = Ay VIg= Ay V Iy,

L3y = A3z V 1y,
L3 = A3V = A5V I,
L3y = A3 V1,

L33 :./43 \/Ig :A5 \/1—3,

Lyg=A3VITyg=A5VIg=TNR,

Lyo = A4 V1,
Ly = Ay Vo,
Ly = A5 V1,
Ly = A5 V.

Proof. It follows from 1.5. O

V.2 The varieties S, ;, R; ; and T; ;

2.1 Notation. We denote by M(u; ~ v1,...) the variety of LD-semigroups
satisfying u; ~ v,.... Put
S1 = M(2? = 23, 2y? ~ xyz),
Sy = M(2? =~ x?),
S3 = M(zy? ~ xyz),
S4 = L (the variety of all LD-semigroups),
Si;=4{5€8;:1d(S)eZ;} for1<i<4and 0<j <9,
Rl = M(:Ey ~ $yl’),
RZ = M(.ﬁlfy ~ xy2)7
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R3 = M(2? ~ 23, a:yQmex 22y ~ 2%y?) = RN Sy,
Ry = M(2? ~ 23, 2%y ~ 22y?) = RN Ss,

Rs = M(22%y ~ 22y?, 2y* ~ xyz) = RN Ss,

Rg = M(22%y ~ 2%y?) = R,

Rij=RiNS,;for1<i<6and0<j<9,
Ty = M(zy ~ 2°y),

T, =M(e® ~ o, ay? = 2%%) = TN Sy,
Ty = M(zy® ~ 2°y*) = T,
ng—TﬂS4Jfor1§ i <3and 0 <j <09.

2.2 Lemma. The following are true:

(1) Si,; is a subvariety of L and S; ; NT = T;.

(11) Sl SQ N S3 and SQ V Sg C S4
(111) .A5CS§,JCS4],A5Q;91] cmd.A5ZSQJ
(IV) Slj—SzjﬂSg)J,Slo—Szo—Azland330—340—./45
(V) R1 RQﬂRg, R3 R4ﬂR5, RQQR4 cde4vR5§R6
(vi)

T, C Ty CT;3.
Proof. It is easy. [J
V.3 Auxiliary results

3.1 Notation. Let X be a countably infinite set of variables. As before, we
denote by F the free semigroup over X; the elements of F will be called words.
Recall that F' is a subset of F', and every word is equivalent to a unique word from
F with respect to the equational theory of LD-semigroups.

We denote by W the set of the words t such that f(¢) € 1d(S) for all LD-
semigroups S and all homomorphisms f of F into S. Denote by W5 the subsemi-
group of F generated by {23 : z € X}. Clearly, Wy C Wj.

The first variable in a word ¢ will be denoted by o(t). Denote by var(t) the set
of variables occurring in t¢.

3.2 Lemma. Let r,s be two words with o(r) # o(s) and let x be a variable such
that x # o(r). Then M(xr ~ xzs) C T.

Proof. Let y be a variable not occurring in zrs. Denote by y; the first variable
in s. Consider the substitution f with f(z) = f(y1) = x and f(z) = y for all
variables z ¢ {x,y1}. Applying f to the equation zry ~ zsy (which is a consequence
of zr ~ xs), it is easy to see that either xy? ~ xy or xy? ~ 22y? is a consequence
of xr ~ xs. However, M(xy? ~ 2%y) = T N'R and M(zy? ~ 2%y?) =T. O

3.3 Lemma. Let r,s be two words.
(i) If o(r) # o(s), then M(r ~s) CT.
(i) If o(r) # o(s) = x and s starts with x* (i.e., either s = x* or s = x*t for
some t), then M(xr ~s) CT.
(iii) If z,y, z are variables and y # z, then M(xyr ~ xzs) C T.

Proof. (i) Let z be a variable not occurring in rs. Then M(r ~ s) C M(zr ~
xs) C T by 3.2.

(ii) This follows from 3.2.

(iii) Let u be a variable not occurring in zyzrs. Consider the substitution f
with f(z) = f(2) = 2 and f(v) = y for all variables v ¢ {x, z}. Applying f to the
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equation zyru ~ wzsu, it is easy to see that either zy? ~ 2%y or zy? ~ 2%y? is a
consequence of xyr ~ rzs. [

3.4 Lemma. Let r,s be two words.

(i) If z is a variable not occurring in r and if s ¢ {x,2*} and s # tx for any
word t with x ¢ var(t), then M(rx ~ s) C R.
(i1) If var(r) # var(s), then M(r =~ s) C R.

Proof. (i) Consider the substitution f with f(x) = y and f(v) = =z for all
variables v # x. Applying f to rx ~ s, we see that the equation rx ~ s has a
consequence t ~ u, where

t € {zy, 2%y}

and
2 3 3 2 2 29 2 9 9 9
ue{x?x ?x 7y 7xyx7xyx7$y 7xy7yx7yx 7y x7yx}'

Every one of these 24 equations implies 22y = x2y2.

(ii) By symmetry, we can assume that there is a variable z € var(s) — var(r). If
s = x, then M(r = s) is the trivial variety. In the opposite case we have sx ¢ {z, x*}
and M(r ~ s) C M(rz ~ sx) CR by (i). O

3.5 Lemma. LetV be a variety of LD-semigroups. If VNT C Zg, then V C T.
If VNI CIs, then V CR.

Proof. First, let VNZ C Zg. Then abc = bac for all a,b,c € 1d(S), for any
S € V. Consequently, V C M(z2yz? ~ y?x2?) C T by 3.3(i).
Now, let VNZ C Zs. Then V C M(2?® ~ 22yxz?) C R by 3.4(ii). O

3.6 Lemma. The following are true:

(i) Let r,s be two words such that o(r) # o(s) and var(r) # var(s). Then
M(r~s) CTNR.
(ii) LetV be a variety of LD-semigroups such that VNZ C Z3. ThenV C TNR.

Proof. Use 3.3(i), 3.4(ii) and 3.5. O

3.7 Lemma. Letr,s be two words.
(i) If r,s € Wy, then M(r ~ s) = Sy ; for some j.
(i) Ifr,s € Wy, then M(r ~ s)NT = T3, for some j.
(iii) If r € Wy, then either M(r = s) N T C R or M(r = s) N T = T3, or
M(r ~ s) T =15 ; for some j.

Proof. Put V =M(r ~ s)andlet VNZ =7Z;. Then V C Sy and VNT C T3 ;.

(i) Let S € S4; and let f be a homomorphism of F into S. Then f(Ws) C Id(S)
and hence f(r) = f(s). Thus S € V and V = 54 ;.

(ii) Let S € T3 ; and let f be a homomorphism of F into S. Denote by g the
substitution with g(z) = x3 for all variables z. Put h(a) = a® for all a € S, so that
h is an endomorphism of S. We have g(F) = W and h(S) = Id(S). Moreover,
Id(S) e Z; CV NT and fg(F) C Id(S). Consequently, fg(r) = fg(s). On the
other hand, it is easy to see that fg = hf. Therefore hf(r) = hf(s). But both
f(r) and f(s) belong to Id(.S), and so f(r) = f(s).

(iii) By the construction of free LD-semigroups given in II.1.1 we can assume
that s = 2{xs...2, where n > 1, x1,..., 7, are pairwise different variables and
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i < 2. Put U=M(s =~ s*). Clearly, VNT =UNTNM(r ~ s®). Since the words r
and s3 belong to W1, we have M(r & s3)NT = Ty, for some k. If n =1 and i = 1,
then U =Zand VNT =Z;. f n=1and i =2, then U = Sy and VNT =Ty .
Let n > 2. Then

i o i 2
U=M(zize...2p ®xiTs...2n17;,) CR

by 3.4(3i). O

3.8 Lemma. Let x,y be two variables and r,s be two words with x & var(rs).
Let V.= M(zyr = zys). If either V. C R or xyr,xys € W1, then either V. = Sy ;
or'V = Rg ; for some j.

Proof. Put r =u; ... u, and s = vy ... vy, (u;,v; € X).

Let V C R. It is enough to show that a semigroup S € R satisfies zyr ~ xys
if and only if Id(S) satisfies zyr ~ xys. The direct implication is clear. Let Id(S5)
satisfy zyr ~ xys. In S we have

zyr =zyr = (zy)?*r = (zy)?r? = (zy)>y>r® = (zy)>y>u .. 03

=(zy)*y*v} .. 02, = wys.
Let xyr,zys € Wi. Then V = M(zyu3 ... ud ~ zyvs...v3). If z =y, then the
result follows from 3.7(i). Hence suppose that z # y and put Z; = V NZ. Then
Z; satisfies yuq ... up, = yv1...v, and V C Sy ;. Conversely, let S € Sy ;. Then S

satisfies y2u$ ... ud ~ y3v}...v3 and hence S € V. O

3.9 Lemma. Leti,j <2 <mn, letzy,...,x, be pairwise different variables and
let p be a permutation of {1,...,n} such that p(1) # 1. Put

_ i —
r=x1T2...Tn, S = xp(l)xp@) .o -wp(n)

and V. =M(r ~ s). Then either VCTNR orV ="Tsg.

Proof. By 3.3(i), V C T. If p(n) # n, then V C R by 3.4(i). So, we can assume
that p(n) =n. Thenn >3,7; ZV,VNZ =Zs and we get V C T5 . Conversely,
let S €136 and ay,...,a, €.S. Then

3 3 3 _ 3 3 3
al P a,n_lan_l = ap(l) e ap(n_l)an_l

and

_ 2 .33 3 3 _ 3 3 3
ay...0an —a1a2 e Qp = CL1G2 e an_lan_lan = ap(l) “e ap(n_l)an_lan

:ap(l) .. .ap(n_l)an,lan = ap(l) e ap(n_l)an. D

3.10 Lemma. Letr,s be two words such that o(r) # o(s) and let V = M(r = s).
Then either V.CTNR orV ="T5; orV ="1T3; for some j.

Proof. By 3.3(i) we have V' C T and by 3.6(i) we can assume that var(r) =
var(s). Taking into account 3.7(iii), we may restrict ourselves to the case r,s €
F —Wji. Then r = aﬂixg ...Tp and s = y’fyg ...Ym. We have n = m and there is
a permutation p of {1,...,n} with p(1) # 1, such that y1 = z,1),...,Un = Tp(n)-
The result now follows from 3.9. [
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3.11 Lemma. Let i1 < 2, 3 < n, let x1,...,x, be pairwise distinct variables
and let p be a permutation of {2,...,n} such that p(2) # 2. Put r = x129...2,,
s = aiTp) .. Tpn) and V = M(r =~ s). Then:

i) VCT.
(ii) If p(n) #n, then VC T NR.

(iii) If p(n) =n, then V = T3 .

(
Proof. (i) Use 3.3(iii).
(ii) Use (i) and 3.4(i).

(iii) It is easy to see that VNZ = Z7 and V C T3 7. Conversely, let S € T5 7 and
let aq,...,a, be elements of S. Then

_ .3 3 3 _ 3.3 3 3
CL1 “ e an — CLl “ e an_la,lan — ala/p(2) “ e ap(n_l)ala/n

= a%ap(g) NP ap(n_l)an. [

3.12 Lemma. Let n > 3, let x1,...,x, be pairwise different variables and
let p be a non-identical permutation of {1,...,n} such that p(1) = 1. Put V =
M(23i2s ... &y & 21Tpe) - . Tp)). Then:

(i) If p(n) #n, then V = Rg 4.

(ii) If p(n) =n, then V.= Sy 7.

Proof. If p(n) # n, then V. C R according to 3.4(i). The rest is similar
to 3.11. O

3.13 Lemma. Letik,q,t <2 <mn, let x1,...,x, be patrwise distinct variables
and let p be a permutation of {1,...,n}. Put

V =M(zizy... .z, 12" = xZ(l)xp(Q) e xp(nfl)x;(n))'

Then either V.CTNR orV =254 orV =T, orV = Rg; for somem and j.

Proof. The result can be put together from the following nine cases.

(i) Let p(1) # 1. Then we can apply 3.10.

(ii) Let p(1) =1, k =t =1 and i = ¢ = 2. This case is clear from 3.12.

(iii) Let p(1) =1, p(2) # 2, k =t =1 and i+ ¢ < 3. In this case we can use 3.11.

(iv) Let p(1) =1, p(2) = 2, k =t =1 and i = ¢ = 1. If p is the identical
permutation, then V' = L. Hence assume that p is non-identical. Then n > 4. If
p(n) # n, then V.C R by 3.4(i), VN Z = I, and it is easy to see that V = Rg 4.
Now, let p(n) =n. Then VNI =Z; and V C Sy 7. Conversely, if S € Sy 7 and if
ai,...,an are elements of .S, then

3

_ 3 3.3 _ 3.3 3 3
a]_ “e. an — a]_a2 “e an_lazan — a1a2ap(3) . e ap(n_l)a2an

= alagap(g,) NP ap(n_l)an

and S V.

(v) Let p(1) =1, p(2) =2, k=t =1,i=1and ¢ = 2. We have V. C T by
3.3(ii). If p(n) # n, then V.C T NR follows from 3.4(i). Let p(n) =n and n > 3.
Then it is easy to see that V = T N M(zizs...xp = 2iwoxps) .. Tp)). I pis
non-identical, then V' = T3 7 by 3.12; if p is the identity, then V = T3 9.
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(vi) Let p(1) =1, k=t =2,i=2and ¢ =1. Then V C 7T by 3.3(ii) and we
can use 3.7(ii).

(vii) Let p(1) = 1, k =t =2 and i = ¢ = 1. If p(2) = 2, then the result
follows from 3.8. If p(2) # 2, then n > 3, V C T by 3.3(iii) and the result follows
from 3.7(ii).

(viii) Let p(1) = 1, k =t = 2 and ¢ = ¢ = 2. In this case, it is possible to
use 3.7(i).

(ix) Let p(1) = 1, k = 2 and t = 1. If p(n) # n, then V. C R by 3.4(i). If
p(n) = n, then the inclusion V' C R is obvious. Hence we have

V=RNM@izs...2p 127 =zl ... xp(n—l)xz%(n))'

The result is now clear from (vi), (vii) and (viii). O

3.14 Lemma. Let r,s be two words and let V.= M(r ~ s). Then either V C
TNR orV =T, for somei and j.

Proof. According to 3.4(ii) and 3.7(iii), we can assume that var(r) = var(s) and
r,s € F'— W;. However, then 3.13 can be applied. [
V.4 The lattice of subvarieties of T

4.1 Lemma. The following are true:

(1) Tl,j ﬁ.A = .Al, TQ,]' ﬂ.A = .A4, Tg’j ﬂA = ./45 and Tl,j NZLZ = TQJ' NZLZ =
T5; NI =1; for every 0 < j <9.
(ii) Tl:j = Al \/Ij, TQJ‘ = .A4 \/Ij and T37j = .A5 \/Ij fOT‘j € {O, 1,3,5}.

Proof. Use 1.5 and 3.5. O

4.2 Lemma. Let1<14,j <3 and0<p,q<9. ThenT; ,NT};, =T, for some
r,s. Moreover, T; , C T} 4 if and only if i < j and I, C I,.

Proof. It is easy. [J
4.3 Lemma. The varieties T; ; (1 <i<3,0<j <9) are pairwise distinct.
Proof. Use 4.2. [

4.4 Lemma. Let V be a subvariety of T. Then either V is contained in T N'R
or V=T, ; for somei and j.

Proof. If V C R, then V C T NR. So, let V& R. Then, by 3.14, V is the
intersection of some varieties T ;, so that V = T; ; for some ¢,j by 4.2. [

4.5 Proposition. The variety T has the following 62 subvarieties:

LO’ “ o 7L43}
Ly =T,
Lys =159,
Ly = T3,
Ly7 =T 4,
Lyg =T34,
Lyg =T34,
Lso =T16,
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Lsy = T35,
Lsz =117,
Lsy =T,
L55 - T3,7;
Lsg =11 3,
Ls7 =T 3,
Lsg =T33,
Lsg =T 9,
Leg =159,
L61 = T379 - T

We have Lya,...,Le1 € Lag =T NR. We have T; , C Tj 4 if and only if i < j and
1, C1,. We have A, VI, CT, if and only if I,, C Iy and either r =3 orr = 2,
m € {0,1,2,4} orr =1, m € {0,1}.

Proof. Let V be a subvariety of 7 such that V' ¢ R. By 4.4 and 4.1(ii), V =T, ;
where i € {1,2,3} and j € {2,4,6,7,8,9}. Conversely, if i and j are such numbers,
then T 2 C T; ; and hence T; ; £ R. The rest is easy. [

V.5 Auxiliary results

5.1 Lemma. Leti,5,k <2, n >0, z,x1,...,z, be pairwise distinct variables
and let p be a permutation of {1,...,n}. Put

V =M@z ... ap a2, ~ a0y aymn).

Then either V.CT or V. =2S5,, orV = R, for somet and q.

Proof. We distinguish six cases.
(i) n =0. Then either S=Lor V=539 or V =1.
(i) n > 1 and i = j = k = 2. Then 3.7(i) can be applied.
(iii) n >1,i=k=2and j = 1. By 3.4(i), V C R and then clearly V=R NU
where
U=Ma's1... 00125 & T°Tp(1) - . . Tp(n)T).-

But U = S4 5 for some s and V = Rg ;.

(ivym>1and i+ k=3. By 3.3(ii), VC T.

(v)n>1,i=k=1and j=2. If p(1) # 1, then V C T due to 3.3(iii). Now we
can assume that p(1) = 1. Consider first the case when p is the identity. Then it is
easy to see that V' C S3g. Conversely, if S € S35 and a,b1,...,b, € S, then

aby ... b2 =a(by...by)? =aby...bpa

and S € V. Now, let p be non-identical. Using similar arguments as in the last
case, we see that V' = 53 4.
(vijn>landi=j=k=1. Then V C R,

V=RnN M(xxl .. -xn—lxi N XTTp(1) - - -xp(n)x>

and either V' = Rsg or V = R5 4 by (v). O
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5.2 Lemma. Leti,7 <2, n>0,x,21,...,x, be pairwise distinct variables and
let p be a permutation of {1,...,n}. Put

V=Mz'z ... ooz~ mjxp(l) e Tp(n)T).

Then either V.CT or V. =S49 or V = 547.

Proof. It is similar to the proof of 5.1. [

5.3 Lemma. Leti,5,k <2<n,1<q<n, z,x1,...,¢, be pairwise distinct
variables and lep p be a permutation of {1,...,n}. Put

V =M@z ... 2o12d ~ 2 2,0) . Ty Tp(g))-

Then either V.C T or V. =S4, or V = R, for somer.

Proof. We distinguish five cases.

(i) i = j = k = 2. In this case we can use 3.7(i).

(ii) i = k=2 and j = 1. Clearly, V C R and we can use 3.8.

(ii) i + k= 3. Then V C 7.

(iv)i=k=1and p(1) # 1. Then V C T by 3.2.

(v)i=k=1and p(1) =1. If j = 2, then we can use 3.8. If j =1, then V C R
and we can again use 3.8. [

5.4 Lemma. Leti,j <2<n,1<nrs<n,z,xq,...,T, be pairwise distinct
variables and let p be a permutation of {1,...,n}. Put

V = M(ajixl T, R xjxp(l) .. .xp(n)xp(s)).

Then either V.C T or V.= S44 or V = Ss 4 for some q.
Proof. It is similar to the proof of 5.3.

5.5 Lemma. Let 1,7 <2< n,1<k<n, x,x1,...,T, be patrwise distinct
variables and let p be a permutation of {1,...,n}. Put
V =Mzlz ... .xpx ~ :ijp(l) e Tp(n) Tp(k))-

Then either V.C T or V. =S, for somer,s or V= R; s for somet,s.
Proof. Clearly, V NZ = Zg and

3 3 .3 .3 3
V- M@k - - p(m)Tp(k) ™ Tph) -+~ Tp(n))
Consequently, V' C U where
U=M@@'z1...200 = 2 2p0) .. Tp(n))

and V = U NSy 5. The result now follows from 5.1. [

5.6 Lemma. Let r,s be two words such that var(r) = var(s) and o(r) = o(s).
Put V. =M(r = s). Then either VCTNR orV =T,; orV =R, 4 or V =5, m
for some 1, j,p,q,n,m.

Proof. We can assume that r, s € F. The result then follows from 3.13 and 5.1,
R % R
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5.7 Lemma. Letr, s be two words such that var(r) # var(s) and let V.= M(r ~
s). Then either V=T NR or V =Rg; or V = Ry, for some j.

Proof. By 3.4(ii), V € R and we can assume that o(r) = o(s); denote this
variable by x. Recall that o(w) is the first variable in a word w. The last variable
in w will be denoted by o(w). We distinguish nine cases.

(i) » = 2?p and s = x?q where p,q are two words with o(p) # x # o(q). Then
V = RGJ by 37(1)

(ii) » = 2'p and s = x%q where p,q are two words with o(p) # = # o(q) and
i+j=3. Then V.C T NR by 3.3(ii).

(iii) » = zp and s = xq where p,q are two words with o(p) = o(q) # = and
o(p) # = # 06(q). Then we can assume that x ¢ var(pq) and the result follows from
3.8.

(iv) r = xp and s = xq where p, ¢ are two words with x # o(p) # o(q) # x. Then
V C T NR by 3.3(iii).

(v) r = xzp and s = xq where p,q are two words with o(p) = o(q) # = and
o(p) # x = 0(q). We can assume that p = x1...2,, © ¢ var(p), ¢ = y1...Ym<,
1 =Yy1, ¢ # Y. Then VNZ =7, and it is easy to see that V = Rg ;.

(vi) r = zp and s = zq where p, q are two words with o(p) = o(q) # = = o(p) =
0(q). We can assume that p =1 ... 2,2, ¢ =y1 ... Ymx, r1 = y1. Then VNI =75
and V = R6,5-

(vii) r = 2. Then V C T.

(viii) »r = 2% and s = 2'q where ¢ is a word with o(q) # x. If i = 1, then
V CTNR by 3.3(ii). If i = 2, then 3.7(i) can be used.

(ix) r = 22 and s = x'q where ¢ is a word with o(q) # x. Then V C S5 and
V = M(2® ~ s) N S3. The result now follows from (viii). O

5.8 Proposition. Let r,s be two words and let V.= M(r =~ s). Then either
VCRNT orV=R;;orV="T;0rV=._.,; for somei,j.

Proof. Apply 3.3, 5.6 and 5.7. [

V.6 The lattice of subvarieties of R

6.1 Lemma. The following are true:

(i) RijNA=Ry;NA=Ai, R3;NA=Ry;jNA=Ay, RsjNA=Rs;NA=
A5, Rl,j N7 = Rg’j NZL = R57j N7 = Ij ﬂIg and RQJ N7 = R4’j NZ =
Re ;NI =1; for every 0 < j < 9.

(ii) Rg,j = A \/Ij, R4’j = Ay \/Ij, Rﬁ’j = As \/Ij for every 5 € {0,273,6}.

(ili) Rio = Ri3=A1VTIy, Rig=Rie=A1 VI, R3g= Rs3 = A1V,
R3o=R36=A4VIy, R50=Rs53=A5VIy and R52 = R56 = A5 V I».

(iV) RLj = RQJ‘, R3’j = R47j and R5’j = Rﬁvj fOT‘ every j € {1,4,8}.

(v) Rix = R;; forie{1,3,5} and (k,j) € {(1,5),(4,7),(8,9)}.

Proof. (i) iseasy. In order to prove (ii), it is sufficient to show that Rg ¢ € TNR.
Let S € Rgg. We have 2%y = 2%y? and efg = feg for all elements z,y € S and all
idempotents e, f,g € S. Hence 22y? = z23y3y® = 29323y = 2%

(iii) follows from (ii). In order to prove (iv), it is sufficient to show that Rs g =
Reg. Let S € Rgs. We have 2%y = 22y and efe = ef for all elements x,y € S

and all idempotents e, f € S. Hence zyx = zy32® = zy323y>® = zy?.
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In order to prove (v), it is sufficient to show that R5 g = R5 9. Let S € R5 9. We
have 22y = 22y? and zy? = zyz for all elements z,y € S. Then efe = ef? = ef
for all idempotents e, f € S. O

6.2 Lemma. Let1 <4,5 <6 and0 <r,5<9. Then R;, "N R;s = R, for
some p and q.

Proof. It is easy. [

6.3 Proposition. We have the following inclusions between the varieties R; ;:
(1) Ri,j Q Rp7q Zf Rz g Rp and Ij g Iq,‘
(11) Ri,j Q Rp,q Zf Ri,j = Rp,q as described in 6.1.
There are no other inclusions except those that follow by transitivity from these two
cases.

Proof. The other inclusions would imply incorrect inclusions between subvari-
eties of 7 N'R (intersect both sides with 7). O

6.4 Proposition. The variety R has the following 62 subvarieties:

Les = R51 = Re,1 = Rs 5,
Les = R4 = Roy = Ru7,
Les = R34 = Ry 4 = Ro 7,
Le7 = R54 = Rg 4 = Rs 7,

Leg = Ry 5,
Leg = Ry 5,
L70 = Rg,5,
L7 = Ry 7,
L7o = Ry 7,
L73 = Rg,7,

L77 = Ry,
Lzg = Ry,
L7g=Rs9 =R

Proof. Let V be a subvariety of R such that V' & T. It follows from 5.8 and
6.2 that V = R; j for some 1 <¢ <6 and 0 < j <9. According to 6.1, V is one of
the varieties Lgo, ..., L79. Example 1.2.5 shows that Lgo € 7. U

V.7 The lattice of subvarieties of L

7.1 Lemma. The following are true:
(i) Sl’j NA= Sg,j NA= A4, Sg’j NA= S4’j NA= .A5, Sl,j NI = Sg,j NZ =
Z;NIg, So;NL =84, NLT =1Ij for every 0 < j <9.
(i) S1,0=29520="513=AsVIy, S30==510=09533=A5VIy, So3=A4VI3
and 54,3 = A5 VIs.
(iii) SsNT =1T55.



34

(iv) Si2 = S22 = S16 = To2, S32 = Sao = S36 = T32, So6 = Tog and
Sa6 = T36.

(v) S1,1 =521 = R3z1, S31 = S41 = Rs51, S15 = R31, S35 = Rs1, So5 =
R475 and 8475 = R675.

Proof. It is easy. [

7.2 Lemma. Let0<i<9 andZ; =7;N1Ig. Then Si; =51 and S3; = S3 ;.

Proof. It is easy. [J

7.3 Lemma. Leti € {0, 1,2,4,8}. Then Sl,i = Sg’i and Sg’i = 84,1'.

Proof. It is easy. [J

7.4 Lemma. Let1<4i,7<4and0<r,5<9. Then S;,NS; =54 for some
p and q.

Proof. It is easy. [

7.5 Proposition. We have the following inclusions between the varieties S; j:
(i) Si’j g Sp7q Zf Sz Q Sp and Ij Q Iq,'
(i) Si; € Spq if Sij = Spq according to 7.1, 7.2 or 7.3.

There are no other inclusions except those that follow by transitivity from these two
cases.

Proof. It is easy. [
7.6 Theorem. The variety L has the following 88 subvarieties:

LO) s 7L79;
Lgo = 51,4,
Lg1 = S3.4,
Lgy = S3.7,
Lgz = Sy 7,
Lgy = 518,
Lgs = S38,
Lgs = a9,
Lg7 = S49=L

Proof. Apply 5.8 and 7.1,...,7.5. [

The lattice of varieties of LD-semigroups is pictured in Fig. 3. An element labeled
i in the picture represents the variety L; (i =0, ...,87).



35




36

V.8 Comments and open problems

The main result of this chapter (Theorem 7.6), i.e., description of the lattice
of varieties of LD-semigroups, is adopted from [Kep,81]. Now, given a property
defined for a semigroup variety, an open problem may be to determine which of the
varieties L; (i = 0,...,87) enjoy this property.

[GorK,82]

[Huq,88]
[JezKN,81]

[Kep,81]

[KepN,03]

[KepZ,89]

List of symbols

a(n) I1.2.1
a(n, m) I1.2.1
A I11.2.1
Ao, .. As 1.2.1
b(n) I1.2.1
fiveoo fi6 MM1.3.1 — I11.3.5
F IL.1.1
F I1.1.1
7 IvV.2.1
To, .-+ To IvV.2.1
Lo, ..., L V.1.6
L4, ... Lei V.45
L62, R ,L79 V.6.4
Lso, ..., Lgr V.7.6
LA(S) IV.3.8
M(U1 %’Ul,...> V.2.1
R; V.2.1
R;, V.2.1
R V.1.1
S, V.2.1
S ; V.2.1
T, V.2.1
T, V.2.1
T V.1.1
Wy, W V.3.1
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