
SLIM GROUPOIDS

J. JEŽEK

Abstract. Slim groupoids are groupoids satisfying x(yz) ≈ xz. We
find all simple slim groupoids and all minimal varieties of slim groupoids.
Every slim groupoid can be embedded into a subdirectly irreducible slim
groupoid. The variety of slim groupoids has the finite embeddability
property, so that the word problem is solvable. We introduce the no-
tion of a strongly nonfinitely based slim groupoid (such groupoids are
inherently nonfinitely based) and find all strongly nonfinitely based slim
groupoids with at most four elements; up to isomorphism, there are just
two such groupoids.

We are going to investigate groupoids (algebras with one binary oper-
ation) satisfying the equation x(yz) ≈ xz. Since every term operation of
such a groupoid can be represented by a slim term (a term that is a product
of a finite sequence of variables with all parentheses grouped to the left),
these groupoids are called slim. Similarly as in the case of semigroups, a
free object in the variety of slim groupoids is the set of words over a given
set of generators; only the multiplication of words differs from that in a free
semigroup.

One can expect that the variety of slim groupoids will have similar prop-
erties as the variety of semigroups. In some cases it is true. We will see,
however, that the variety of slim groupoids has solvable word problem and
has the strong amalgamation property.

The purpose of this paper is to introduce and investigate basic proper-
ties of the variety of slim groupoids. We are particularly interested in the
existence of finite, nonfinitely based slim groupoids. It has been shown by
McKenzie [2] that the finite basis problem for equations of finite algebras
is unsolvable: there is no algorithm deciding for an arbitrary finite algebra,
or a finite groupoid, whether it has a finite basis for its equations. For
many varieties, like those of groups or lattices, the problem is solvable in a
trivial way: every finite algebra in such a variety has a finite basis. So, it
is desirable to look for (natural) examples of varieties with the finite basis
problem solvable but in a nontrivial way. Such a variety should be in some
sense reasonably small and in another sense reasonably large. Perhaps the
variety of slim (or idempotent slim) groupoids could be a good candidate.
We introduce the notion of a strongly nonfinitely based slim groupoid (such
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groupoids are inherently nonfinitely based) and find all strongly nonfinitely
based slim groupoids with at most four elements; up to isomorphism, there
are just two such groupoids.

For the notation and basic notions of universal algebra the reader is re-
ferred to [3]. We will work with groupoids, algebras with one binary op-
eration. In most cases, without mention, the operation is denoted multi-
plicatively: the product of two elements a, b of a groupoid is denoted by
a · b or just ab. For elements a1, a2, . . . , an of a groupoid write a1 . . . an =
(((a1a2)a3) . . . )an. (The parentheses are grouped to the left.) For n ≥ 1
put an = a1 . . . an where ai = a for all i.

1. Slim groupoids: first concepts

By a slim groupoid we mean a groupoid satisfying the equation x(yz) ≈
xz.

Let X be a nonempty set. By a term over X we mean an element of the
absolutely free groupoid over X. For a term t denote by κ(t) the element of
X occurring in t at the rightmost position. (The inductive definition: κ(x) =
x for x ∈ X; κ(uv) = κ(v).) By a slim term we mean any term x1 . . . xk
(k ≥ 1) where x1, . . . , xk ∈ X. Every term can be uniquely expressed as
xu1 . . . un for an element x of X and some terms u1, . . . , un (n ≥ 0). For a
term t = xu1 . . . un expressed in this way put t∗ = xκ(u1) . . . κ(un). So, t∗

is a slim term for any term t.

Theorem 1.1. The equational theory of slim groupoids can be described by

its normal form function t 7→ t∗:

(1) for any term t, the equation t∗ ≈ t is satisfied in all slim groupoids

(2) an equation t ≈ u is satisfied in all slim groupoids if and only if

t∗ = u∗

(3) t∗∗ = t∗ for any term t

Proof. This follows easily from the fact that the set of slim terms, consid-
ered as a groupoid with respect to the operation ◦ defined by (x1 . . . xn) ◦
(y1 . . . ym) = x1 . . . xnym, satisfies x ◦ (y ◦ z) = x ◦ z. �

Let X be a nonempty set. By a word over X we mean a nonempty finite
sequence of elements of X. A word 〈x1, . . . , xn〉 (xi ∈ X) can be written as
x1x2 . . . xn (and thus identified with a slim term, or also with an element of
a free semigroup). We denote by F(X) the groupoid defined in this way:
its underlying set is the set of words over X; the multiplication is given by
(x1 . . . xn)(y1 . . . ym) = x1 . . . xnym.

Theorem 1.2. For a nonempty set X, the groupoid F(X) is the free slim

groupoid over X.

Proof. It follows from 1.1. �

For a slim groupoid A we define a binary relation βA on A as follows:
〈a, b〉 ∈ βA if and only if there exists an element c ∈ A with ca = cb.
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Theorem 1.3. Let A be a slim groupoid. Then

(1) 〈a, b〉 ∈ βA implies ca = cb for all c ∈ A
(2) βA is a congruence of A
(3) 〈ab, b〉 ∈ βA for all a, b ∈ A, so that the factor A/βA satisfies xy ≈ y
(4) every block of βA is a subgroupoid of A satisfying xy ≈ xz

Proof. (1) If 〈a, b〉 ∈ βA then da = db for some d ∈ A, so that ca = c(da) =
c(db) = cb for all c ∈ A.

(2) It follows from (1) that βA is an equivalence. If 〈a, b〉 ∈ βA then for
any c ∈ A we have 〈ca, cb〉 ∈ βA, since c(ca) = ca = cb = c(cb); and for
any c ∈ A we have 〈ac, bc〉 ∈ βA, since c(ac) = cc = c(bc). So, βA is a
congruence.

(3) For a, b ∈ A we have a(ab) = ab, so that 〈ab, b〉 ∈ βA.
(4) In particular, 〈aa, a〉 ∈ βA. Thus the block of βA containing an

arbitrary element a ∈ A is a subgroupoid. Since any two elements of this
subgroupoid are βA-related, the subgroupoid satisfies xy ≈ xz. �

Next we are going to describe a general construction of arbitrary slim
groupoids. Denote by Φ the class of ordered triples 〈A, β, φ〉 such that A is
a nonempty set, β is an equivalence on A and φ is a mapping of A × A/β
into A with φ(a,B) ∈ B for any 〈a,B〉 ∈ A×A/β. For every such triple we
define a groupoid GA,β,φ with the underlying set A by ab = φ(a, b/β) for all
a, b ∈ A.

Theorem 1.4. A groupoid is slim if and only if it is the groupoid GA,β,φ for

a triple 〈A, β, φ〉 ∈ Φ.

Proof. Clearly, GA,β,φ is a slim groupoid. Now let C be an arbitrary slim
groupoid. It is easy to check that C = GA,β,φ where A = C, β = βA and φ
is defined by φ(a, a/β) = ab. �

2. Simple slim groupoids and minimal varieties

Lemma 2.1. The following are equivalent for a groupoid A:

(1) A is slim and βA = idA
(2) A satisfies xy ≈ y

Proof. (1) implies (2) by 1.3. The converse is clear. �

Lemma 2.2. The following are equivalent for a groupoid A:

(1) A is slim and βA = A×A
(2) A satisfies xy ≈ xz

Proof. (1) implies (2) by 1.3. The converse is clear. �

Theorem 2.3. The following are up to isomorphism the only simple slim

groupoids:

(1) the two-element groupoid satisfying xy ≈ x
(2) the two-element groupoid satisfying xy ≈ y
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(3) the two-element groupoid satisfying xy ≈ zu
(4) for every prime number p, the groupoid with elements 0, 1, . . . , p− 1

and multiplication ◦ given by x ◦ y = x+ 1 mod p.

Proof. It is easy to check that all these groupoids are slim and simple. Let
A be a simple slim groupoid. Then βA is either idA or A× A. If βA = idA
then A satisfies xy ≈ x by 1.3, and then A has just two elements because
it is simple. If βA = A × A then A satisfies xy ≈ xz by 1.3, so that A is
essentially an algebra with one unary operation; the description of simple
algebras with one unary operation belongs to the folklore. �

Theorem 2.4. The variety of slim groupoids has just three minimal subva-

rieties:

(1) the variety determined by xy ≈ x
(2) the variety determined by xy ≈ y
(3) the variety determined by xy ≈ zu

Proof. It follows from 2.3, since every minimal variety contains (and thus
is generated by) a simple groupoid. The groupoids 2.3(4) do not generate
minimal varieties. They generate varieties determined by xy ≈ xz and
xp+1 ≈ x, and these contain the variety determined by xy ≈ x. �

3. Subdirectly irreducible slim groupoids

Theorem 3.1. Every slim groupoid A can be embedded into a subdirectly

irreducible slim groupoid B such that the monolith of B has only singleton

blocks and one two-element block, and such that B is finite if A is finite.

Proof. Let A be a slim groupoid. Let o be a fixed element of A. For i ∈ A
put ai = 〈a, 1〉 and bi = 〈a, 2〉. Put B = A ∪ {ai : i ∈ A} ∪ {bi : i ∈ A} and
define multiplication on B in this way:

(i) for i, j ∈ A, ij in B is the same as ij in A
(ii) for i ∈ A put iai = ibi = ai
(iii) for i, j ∈ A with i 6= j put jai = jbi = bi
(iv) for i, j ∈ A put aij = bij = ij
(v) for i, j ∈ A put bjai = bjbi = bi
(vi) for i ∈ A put aiai = aibi = ai
(vii) for i ∈ A put aiao = aibo = ao
(viii) for i, j ∈ A with i 6= j and j 6= o put aiaj = aibj = bj

It is easy to check that B is a slim groupoid and that the relation µ =
{〈ao, bo〉, 〈bo, ao〉} ∪ idB is a congruence of B. Let ∼ be a congruence of B.
In order to prove that µ is the monolith of B, we have to show that whenever
two distinct elements of B are ∼-related then ao ∼ bo. This follows from
the following claims. Let i, j, k,m run over elements of A,

Claim 1. If i ∼ j where i 6= j then ai ∼ bi. Indeed, ai = iai ∼ jai = bi.
Claim 2. If i ∼ aj then k ∼ bj for some k. Indeed, take an element m ∈ A

different from j and put k = mi; we have k = mi ∼ maj = bj .
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Claim 3. If i ∼ bj then ai ∼ bi. Indeed, ai = ibi ∼ bjbi = bi.
Claim 4. If ai ∼ bj then ao ∼ bo. Indeed, ao = aiao ∼ bjao = bo.
Claim 5. If ai ∼ aj where i 6= j and j 6= o then aj ∼ bj . Indeed,

bj = aiaj ∼ ajaj = aj .
Claim 6. If bi ∼ bj where i 6= j and j 6= o then ai ∼ bj . Indeed,

ai = aibi ∼ aibj = bj . �

4. Partial groupoids

By a homomorphism of a partial groupoid A into a partial groupoid B we
mean a mapping f : A → B such that whenever a, b are elements of A such
that ab is defined then f(a)f(b) is also defined and f(ab) = f(a)f(b). We
say that A is embeddable into B if there exists an injective homomorphism
of A into B. For a groupoid B and a nonempty subset S of B we define a
partial groupoid B ↾ S with the underlying set S as follows: for a, b ∈ S the
product ab is defined in B ↾ S if and only if this product in B belongs to S,
and in this case the product in B ↾ S is equal to the product in B. We say
that a partial groupoid A is strongly embeddable into a groupoid B if it is
isomorphic to B ↾ S for a nonempty subset S of B.

Clearly, if a partial groupoid A is strongly embeddable into a slim grou-
poid, then it satisfies the following two conditions:

(P1) whenever a, b, c ∈ A are such that bc and a(bc) are defined then ac
is also defined and ac = a(bc)

(P2) whenever a, b, c ∈ A are such that ac and bc are defined then a(bc)
is also defined and a(bc) = ac

For a partial groupoid A satisfying (P1) and (P2) we define a groupoid
F(A) as follows. The underlying set of F(A) is the set of finite nonempty
sequences 〈a1, a2, . . . , an〉 of elements of A such that if n ≥ 2 then a1a2 is
not defined in A; the multiplication is given by

〈a1, . . . , an〉〈b1, . . . , bm〉 =

{

a1bm if n = 1 and a1bm is defined in A

〈a1, . . . , an, bm〉 otherwise

For this definition to make sense, we must suppose that no element of A
is a finite sequence of length larger than 1. If this is not satisfied then A
should be replaced with an isomorphic partial groupoid. Also, we identify
an element a of A with 〈a〉.

Theorem 4.1. Let A be a partial groupoid satisfying (P1) and (P2). Then

F(A) is a slim groupoid; it is the free slim groupoid over A, i.e., it is gen-

erated by A and every homomorphism of A into a slim groupoid B can be

extended to a homomorphism of F(A) into B.

Proof. The most essential is to prove that F(A) is slim. Let u = 〈a1, . . . , an〉,
v = 〈b1, . . . , bm〉 and w = 〈c1, . . . , ck〉 be three elements of F(A). We are
going to check that u(wv) = uv.
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Consider first the case when n = 1 and a1bm is defined in A, so that uv =
a1bm. If k = 1 and c1bm is defined in A then u(vw) = a1(c1bm) = a1bm = uv
by (P2). Otherwise, u(wv) = u〈c1, . . . , ck, bm〉 = a1bm = uv.

Consider the remaining case. Now uv = 〈a1, . . . , an, bm〉. If wv =
〈c1, . . . , ck, bm〉 then u(wv) = 〈a1, . . . , an, bm〉 = uv. Otherwise, k = 1,
c1bm is defined in A and wv = c1bm. If n = 1 and a1(c1bm) is defined in A
then a1bm is defined by (P1), which is not possible. So, wv = 〈c1, . . . , ck, bm〉
and u(wv) = 〈a1, . . . , an, bm〉 = uv.

Clearly, F(A) is generated by the set A. A homomorphism f of A into a
slim groupoid B can be extended to a homomorphism g of F(A) into B by
setting g(〈a1, . . . , an〉) = f(a1)f(a2) . . . f(an). �

Corollary 4.2. A partial groupoid is strongly embeddable into a slim grou-

poid if and only if it satisfies (P1) and (P2).

For a partial groupoid A denote by γA the set of the ordered pairs 〈a, b〉 ∈
A×A such that one of the following three cases takes place:

(1) there exists an element c ∈ A such that ca, cb are both defiend and
ca = cb

(2) there exists an element c ∈ A such that ca is defined and ca = b
(3) there exists an element c ∈ A such that cb is defined and cb = a

Denote by βA the reflexive and transitive closure of γA. (If A is a slim grou-
poid then both γA and βA coincide with the earlier defined congruence βA.)
Of course, βA is an equivalence on A.

Consider the following condition for a partial groupoid A:

(P0) whenever 〈a, b〉 ∈ βA, c ∈ A and ca and cb are both defined then
ca = cb

Theorem 4.3. The following three conditions are equivalent for a partial

groupoid A:

(1) A is embeddable into a slim groupoid

(2) A can be completed to a slim groupoid

(3) A satisfies (P0)

Proof. The implications (2) ⇒ (1) ⇒ (3) are trivial. We are going to prove
(3) ⇒ (2). Let A satisfy (P0). For every block B of βA choose one fixed
element ν(B) ∈ B. Define a binary operation ◦ on A as follows:

a ◦ b =

{

ac if there is a c ∈ A with 〈b, c〉 ∈ βA such that ac is defined

ν(b/βA) otherwise

Correctness of this definition follows from (P0). Clearly, if a, b are two
elements of A such that ab is defined in A then a◦b = ab. Thus the groupoid
〈A, ◦〉 is a completion of the partial groupoid A = 〈A, ·〉. It remains to prove
that this groupoid is slim.

Claim 1. 〈a ◦ b, b〉 ∈ βA for all a, b ∈ a. This is easy to check.
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Claim 2. For a, b, c ∈ A with 〈a, b〉 ∈ βA we have c◦a = c◦ b. If c◦a = cd
where 〈a, d〉 ∈ βA then 〈b, d〉 ∈ βA, so that c ◦ b = cd = c ◦ a. The case
c ◦ b = cd for some d is symmetric. In the remaining case c ◦ a = ν(a/βA) =
ν(b/βA) = c ◦ b.

Claim 3. For a, b, c ∈ A we have a ◦ (b ◦ c) = a ◦ c. By Claim 1 we have
〈b ◦ c, c〉 ∈ βA and so a ◦ (b ◦ c) = a ◦ c by Claim 2. �

A variety V is said to have the finite embeddability property if every finite
partial algebra that is embeddable into some algebra from V is embeddable
into some finite algebra from V .

Corollary 4.4. The variety of slim groupoids has the finite embeddability

property.

Corollary 4.5. The variety of slim groupoids has globally decidable word

problem.

This follows from Evans [1]: every finitely based variety with finite em-
beddability property has globally decidable word problem.

A variety V is said to have the strong amalgamation property if for any
two algebras A,B ∈ V such that the intersection A ∩ B is a subalgebra of
both A and B, there exists an algebra C ∈ V such that both A and B are
subalgebras of C.

Theorem 4.6. The variety of slim groupoids has the strong amalgamation

property.

Proof. Let A,B be two slim groupoids such that A ∩B is a subgroupoid of
each of them. Define a partial groupoid P with the underlying set A ∪ B
as follows: for a, b ∈ A ∪ B, the product ab is defined in P if and only if
either {a, b} ⊆ A or {a, b} ⊆ B; in each case let the product in P coincide
with that in either A or B. By Theorem 4.3, it is sufficient to check that
P satisfies (P0). Take a fixed element c ∈ A ∩ B. Let us first prove that if
〈a, b〉 ∈ γP then ca = cb. There exists an element d such that either da = db
or da = b or db = a. If either {a, b} ⊆ A or {a, b} ⊆ B then it is easy to see
that either 〈a, b〉 ∈ βA or 〈a, b〉 ∈ βB and hence ca = cb. Let, e.g., a ∈ A−B
and b ∈ B − A. Since the products da and db are both defined, we have
d ∈ A ∩B and da = db ∈ A ∩B. Then ca = c(da) = c(db) = cb.

Now let 〈a, b〉 ∈ βP . There exists a finite sequence a = a0, a1, . . . , ak = b
such that 〈ai−1, ai〉 ∈ γP for i = 1, . . . , n. We have seen that cai−1 = cai for
all i. Thus ca = cb. From this it follows that da = db whenever both da and
db are defined. �

5. Equational theories

Let X be a countably infinite set of variables. The underlying set of
F(X) is a subset of the groupoid 〈T (X), ◦〉 of terms over X. The free
semigroup 〈S(X), ∗〉 over X has the same underlying set as F(X). For two
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elements x1 . . . xn and y1 . . . ym we have (x1 . . . xn)(y1 . . . ym) = x1 . . . xnym
and (x1 . . . xn) ∗ (y1 . . . ym) = x1 . . . xny1 . . . ym.

An equational theory is a fully invariant congruence of the groupoid
〈T (X), ◦〉. By a slim theory we mean a restriction to F(X) of an equa-
tional theory extending the equational theory of slim groupoids. Of course,
the lattice of varieties of slim groupoids is antiisomorphic to the lattice of
slim theories.

Theorem 5.1. A binary relation R on F(X) is a slim theory if and only if

it is a congruence of the free semigroup S(X) satisfying the following three

conditions:

(1) if 〈x1 . . . xn, y1 . . . ym〉 ∈ R then 〈f(x1) . . . f(xn), f(y1), . . . , f(ym)〉 ∈
R for any mapping f of X into X

(2) if 〈x1 . . . xn, y1 . . . ym〉 ∈ R where x1 6= y1 then 〈zx1 . . . xn, y1 . . . ym〉
∈ R for any variable z

(3) if there is an equation 〈x1 . . . xn, y1 . . . ym〉 ∈ R such that xn 6= ym
then 〈xy, xz〉 ∈ R for three distinct variables x, y, z

Proof. Let R be a slim theory, so that R = R′ ∩ (F(X) × F(X)) for an
equational theory extending the equational theory of slim groupoids. Let
〈x1 . . . xn, y1 . . . ym〉 ∈ R. Condition (1) is satisfied, since R′ is a fully in-
variant congruence of T (X). If x1 6= y1 then substituting zx1 for x1 yields
〈zx1 . . . xn, y1 . . . ym〉 ∈ R. If xn 6= ym, take a variable z different from
both xn and ym; we have 〈z ◦ (x1 . . . xn), z ◦ (y1 . . . ym)〉 ∈ R′, so that
〈zxn, zym〉 ∈ R.

It remains to prove the converse. Denote by R′ the set of the equations
〈u, v〉 ∈ F(X)×F(X) such that 〈u∗, v∗〉 ∈ R. (As above, u∗ is the only ele-
ment of F(X) such that 〈u, u∗〉 is in the equational theory of slim groupoids.)
Clearly, R′ is an equivalence. Let 〈u, v〉 ∈ R′ and w be a term. Since R is a
congruence, 〈u∗κ(w), v∗κ(w)〉 ∈ R and hence 〈u ◦ w, v ◦ w〉 ∈ R′. We have
(w ◦u)∗ = w∗xn and (w ◦v)∗ = w∗ym. If xn = ym, we get (w ◦u)∗ = (w ◦v)∗

and thus 〈w ◦ u,w ◦ v〉 ∈ R′. If xn 6= ym, the same follows from (3). So, R′

is a congruence of T (X).
Let 〈u, v〉 ∈ R′ and let f be an endomorphism of F(X). We have u =

x0u1 . . . un and v = y0v1 . . . vm for some variables x0, y0 and terms ui, vj .
Then 〈u∗, v∗〉 = 〈x0x1 . . . xn, y0y1 . . . ym〉 ∈ R where xi = κ(ui) and yj =
κ(vj) for i, j ≥ 1. Put f(x0)

∗ = z1 . . . zr and f(y0)
∗ = w1 . . . ws. For i, j ≥ 1

put pi = κ(f(xi)) and qj = κ(f(yj)). We have 〈zrp1 . . . pn, wsq1 . . . qm〉 ∈ R
by (1). If x0 = y0 then 〈f(u)∗, f(v)∗〉 = 〈z1 . . . zrp1 . . . pn, z1 . . . zrq1 . . . qm〉 ∈
R, since R is a congruence of S(X). If x0 6= y0 then it follows easily from (2)
that 〈z1 . . . zrp1 . . . pn, w1 . . . wsq1 . . . qm〉 ∈ R, i.e., 〈f(u)∗, f(v)∗〉 ∈ R. This
shows that R′ is a fully invariant congruence of T (X). Clearly, R′ extends
the equational theory of slim groupoids and R is its restriction to F(X). �
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By a slim-regular equation we mean an equation x1 . . . xn ≈ y1 . . . ym (xi
and yj are variables) such that {x1, . . . , xn} = {y1, . . . , ym}, x1 = y1 and
xn = ym.

By a slim derivation of an equation u ≈ v based on a set B of slim-regular
equations we mean a finite sequence u0, . . . , uk of words such that u0 = u,
uk = v and for every i = 0, . . . , k−1, 〈ui, ui+1〉 is an immediate consequence
of an equation 〈x1 . . . xn, y1 . . . ym〉 ∈ B∪B−1 in the sense that the word ui+1

is obtained from ui by replacing a subword f(x1) . . . f(xn), for a mapping f
of the set of variables into itself, with f(y1) . . . f(ym).

Theorem 5.2. Let B be a set of slim-regular equations and let u, v be two

terms. The equation u ≈ v is satisfied in the variety of slim groupoids

determined by B if and only if there exists a slim derivation of u ≈ v based

on B.

Proof. It follows from 5.1. �

6. Strongly nonfinitely based finite slim groupoids

A finite groupoid A is said to be nonfinitely based if its equational theory
has no finite base. It is said to be inherently nonfinitely based if there is no
finitely based, locally finite variety containing A.

By a strongly nonfinitely based slim groupoid we mean a finite slim grou-
poid A such that whenever A satisfies an equation 〈u, v〉 where both u, v
are slim and u is linear (i.e., every variable occurs at most once in u), then
u = v.

Theorem 6.1. Let A be a finite, strongly nonfinitely based slim groupoid.

Then A is inherently nonfinitely based.

Proof. First observe that if an equation 〈u, v〉 is satisfied in A then κ(u) =
κ(v). Indeed, if κ(u) 6= κ(v) then A satisfies xy = xz, a contradiction. Also
observe that if 〈x, u〉 is satisfied in A where x is a variable x then u = x.

Let V be a locally finite variety containing A and suppose that the
equational theory E of V has a finite base B. Denote by E0 the equa-
tional theory of A, so that E ⊆ E0. Let q be a positive integer larger
than the length of u, for any 〈u, v〉 ∈ B ∪ B−1. For any i ≥ 1 de-
note by ti the term which is the product of the first i variables in the
sequence x1, . . . , xq, x1, . . . , xq, x1, . . . , xq, . . . . Since V is locally finite, we
have 〈ti, tj〉 ∈ E for some i 6= j. Since B is a base for E, there exists a
B-derivation ti = w0, w1, . . . , wn = tj .

Let us prove by induction on p = 0, 1, . . . that w∗
p = ti. For p = 0 it is

clear. Let w∗
p = ti for some p < n. There exist an equation 〈u, v〉 ∈ B ∪B−1

and an endomorphism f of the groupoid of terms such that wp+1 is obtained
from wp by replacing a subterm f(u) with f(v). We have wp = xr2 . . . ri
for a variable x and some terms r2, . . . , ri (the same i as above). If f(u) is
a subterm of rm for some m then wp+1 = xr′2 . . . r

′
i for some terms r′i with

r′c = rc for all c 6= m and κ(r′m) = κ(rm), so that w∗
p+1 = w∗

p = ti. Otherwise,
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f(u) = xr2 . . . rd for some d. We have u = yu2 . . . uk for a variable y and
some terms u2, . . . , uk where k < q. Then f(y) = xr2 . . . re, f(u2) = re+1,
. . . , f(uk) = rd. Since k < q, the variables κ(re), κ(re+1), . . . , κ(rd) are
pairwise distinct. Hence y, κ(u2), . . . , κ(uk) are pairwise distinct. Thus u

∗ is
a slim linear term. Since 〈u∗, v∗〉 is satisfied in A and v∗ is slim, we get u∗ =
v∗. Then also (f(u))∗ = (f(v))∗. We get w∗

p+1 = (f(v))∗κ(rd+1) . . . κ(ri) =
w∗
p = ti.
In particular, w∗

n = ti, i.e., tj = ti, a contradiction. �

Consider the slim groupoid G4,1 with elements a, b, c, d and multiplication
table

a b c d

a a a c c
b a a d d
c b b c c
d b b d d

Lemma 6.2. Let h be a homomorphism of the groupoid T of terms into G4,1.

Let t = x1 . . . xn where n ≥ 2 and xi are variables. Then

(1) h(t) = a iff {h(xn−1), h(xn)} ⊆ {a, b}
(2) h(t) = b iff h(xn) ∈ {a, b} and h(xn−1) ∈ {c, d}
(3) h(t) = c iff h(xn) ∈ {c, d} and, where k is the least index with

{h(xk), . . . , h(xn)} ⊆ {c, d}, one of the following three cases takes

place:

k = 1 and h(x1) = c
k = 2 and h(x1) = a
k ≥ 3 and {h(xk−2), h(xk−1)} ⊆ {a, b}

(4) h(t) = d in the remaining cases

Proof. It can be checked easily. �

Lemma 6.3. Let x1 . . . xn ≈ y1 . . . ym be satisfied in G4,1, where xi and yj
are variables. Then x1 = y1, xn = ym and if n = 1 then m = 1.

Proof. Since G4,1 contains the subgroupoid {c, d} satisfying xy ≈ x, we have
x1 = y1. Since the factor G4,1/βG4,1

is a two-element groupoid satisfying
xy ≈ y, we have xn = ym. Since G4,1 contains the subgroupoid {a, b}

satisfying xy ≈ uv, G4,1 does not satisfy any equation x ≈ xk with k > 1.
Consequently, if n = 1 then m = 1. �

Lemma 6.4. Let x1 . . . xn ≈ y1 . . . ym be satisfied in G4,1, where xi and yj
are variables. Then {x1, . . . , xn} = {y1, . . . , ym}.

Proof. Suppose, for example, that there exists an i with xi /∈ {y1, . . . , ym}
and take the largest index i with this property. By 6.3 we have 1 < i < n.

Consider first the case xi−1 6= xi. Take the homomorphism h : T → G4,1

with h(xi) = b and h(z) = c for all other variables z. Then h(x1 . . . xn) =
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d 6= c = h(y1 . . . ym), a contradiction. (For these computations one can use
Lemma 6.2.)

Now consider the remaining case xi−1 = xi. Take h : T → G4,1 with
h(xi) = a and h(z) = d for all other variables z. Then h(x1 . . . xn) = c 6=
d = h(y1 . . . ym), a contradiction again. �

Theorem 6.5. G4,1 is a strongly nonfinitely based slim groupoid.

Proof. Suppose, on the contrary, that there are pairwise different variables
x1, . . . , xn and some variables y1, . . . , ym such that x1 . . . xn ≈ y1 . . . ym is
satisfied in G4,1 but x1 . . . xn 6= y1 . . . ym. We know already that 1 < n ≤ m,
x1 = y1, xn = ym and {x1, . . . , xn} = {y1, . . . , ym}.

Let us prove by induction on i = 0, . . . , n−1 that ym−i = xn−i. For i = 0
it follows from 6.3. Let i > 0 and ym−j = xn−j for all j < n; suppose that
ym−i 6= xn−i. If ym−i 6= xn−i+1, take the homomorphism h : T → G4,1 with
h(xn−i) = h(xn−i+1) = a and h(z) = c for all other variables z; we have
h(x1 . . . xn) ∈ {a, c} (a if i = 1 and c if i > 1), while h(y1 . . . ym) ∈ {b, d} (b if
i = 1 and d if i > 1). If ym−i = xn−i+1, take h : T → G4,1 with h(xn−i+1) = a
and h(z) = c for all other variables z; we have h(x1 . . . xn) ∈ {b, d} (b if i = 1
and d if i > 1), while h(y1 . . . ym) ∈ {a, c} (a if i = 1 and c if i > 1). In both
cases we get a contradiction.

Thus ym = xn, . . . , ym−n+1 = x1. It remains to show that m = n.
Suppose, on the contrary, that m > n. If ym−n = x1, take h : T → G4,1 with
h(x1) = b and h(z) = c for all other variables z; we have h(x1 . . . xn) = d
while h(y1 . . . ym) = c. If ym−n 6= x1, take h : T → G4,1 with h(x1) =
a and h(z) = c for all other variables z; we have h(x1 . . . xn) = c while
h(y1 . . . ym) = d. �

Now consider the slim groupoid G4,2 with elements a, b, c, d and multipli-
cation table

a b c d

a a a c c
b a a d d
c b b d d
d b b c c

Theorem 6.6. G4,2 is a strongly nonfinitely based slim groupoid.

Proof. The idea is essentially the same as for G4,1. The main difference is
that the analogue of Lemma 6.2, which is then often used for checking, is
slightly more complicated. For a homomorphism h of the groupoid T of
terms into G4,2 and for a term t = x1 . . . xn (n ≥ 2) we have

(1) h(t) = a iff {h(xn−1), h(xn)} ⊆ {a, b}
(2) h(t) = b iff h(xn) ∈ {a, b} and h(xn−1) ∈ {c, d}
(3) h(t) = c iff h(xn) ∈ {c, d} and, where k is the least index with

{h(xk), . . . , h(xn)} ⊆ {c, d}, one of the following six cases takes
place:
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k = 1, h(x1) = c and n is odd
k = 1, h(x1) = d and n is even
k = 2, h(x1) = a and n is even
k = 2, h(x1) = b and n is odd
k ≥ 3, h(xk−2) ∈ {a, b} and n− k is even
k ≥ 3, h(xk−2) ∈ {c, d} and n− k is odd

(4) h(t) = d in the remaining cases

Let x1 . . . xn ≈ y1 . . . ym be satisfied in G4,2, where xi and yj are variables.
One can prove in the same way as in Lemma 6.3 that x1 = y1, xn = ym and
if n = 1 then m = 1. In order to prove that {x1, . . . , xn} = {y1, . . . , ym},
suppose that there is an i with xi /∈ {y1, . . . , ym} and let i be the largest
index with this property. We have 1 < i < n. Take two homomorphisms
h, h′ : T → G4,2 with h(xi) = h′(xi) = a and h(z) = c, h′(z) = d for
all other variables z. It is easy to check that h(x1 . . . xn) = h′(x1 . . . xn)
while h(y1 . . . ym) 6= h′(y1 . . . ym) in all cases, so that either h(x1 . . . xn) 6=
h(y1 . . . ym) or h′(x1 . . . xn) 6= h′(y1 . . . ym).

Let, moreover, x1, . . . , xn be pairwise different. The proof will be finished
if we derive a contradiction from the assumption x1 . . . xn 6= y1 . . . ym. We
have 1 < n ≤ m.

Let us first prove that ym−i = xn−i for i = 0, . . . , n− 1. Suppose ym−i 6=
xn−i for some i, and let i be the least number with this property; then
i > 0. If ym−i 6= xn−i+1 then h(x1 . . . xn) 6= h(y1 . . . ym) where h(xn−i) =
h(xn−i+1) = a and h(z) = c for all other variables z. If ym−i = xn−i+1 then
h(x1 . . . xn) 6= h(y1 . . . ym) where h(xn−i+1) = a and h(z) = c for all other
variables z.

So, ym = xn, . . . , ym−n+1 = x1. If x1 . . . xn 6= y1 . . . ym, we get m > n.
If ym−n = x1 then h(x1 . . . xn) 6= h(y1 . . . ym) where h(x1) = b and h(z) = c
for all other variables z. If ym−n 6= x1 then h(x1 . . . xn) 6= h(y1 . . . ym) where
h(x1) = a and h(z) = c for all other variables c. �

Theorem 6.7. The groupoids G4,1 and G4,2 are, up to isomorphism, the only

two strongly nonfinitely based slim groupoids with at most four elements.

Proof. It is possible to use a computer program to generate all slim groupoids
with at most four elements that do not satisfy at least one of the equations
xy ≈ xyyy, xyz ≈ xyzxyz, xyz ≈ xyxyz and xyzu ≈ xyzuzuzu. Only two
such groupoids are obtained: the groupoid G4,1 and the groupoid G4,2. �

Let us remark that the varieties generated by G4,1 and G4,2 are incompa-
rable: the equation xxx = xx is satisfied in G4,1 but not in G4,2, and the
equation xxyy ≈ xyxyyy is satisfied in G4,2 but not in G4,1.
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