VARIETIES OF IDEMPOTENT SLIM GROUPOIDS

J. JEZEK

ABSTRACT. Idempotent slim groupoids are groupoids satisfying zz ~ =
and z(yz) ~ xz. We prove that the variety of idempotent slim groupoids
has uncountably many subvarieties. We find a four-element, inherently
nonfinitely based idempotent slim groupoid; the variety generated by
this groupoid has only finitely many subvarieties. We investigate free
objects in some varieties of idempotent slim groupoids determined by
permutational equations.

This paper is a continuation of the paper [4] which was concerned with
general slim groupoids. Here we are going to investigate the idempotent case.
An idempotent slim groupoid is a groupoid satisfying zx ~ = and z(yz) ~
xz. In [1] idempotent slim groupoids (or their duals) were investigated under
the name rectangular groupoids.

We are going to prove in the present paper that the variety of idempo-
tent slim groupoids has uncountably many subvarieties. While all at most
three-element idempotent slim groupoids are finitely based, we will find a
four-element, inherently nonfinitely based idempotent slim groupoid. It will
turn out that the variety Y generated by this groupoid has the following
interesting property: although it is finitely generated and inherently non-
finitely based, it has only finitely many (in fact, precisely six) subvarieties.

We also investigate a descending chain of varieties W, of idempotent slim
groupoids determined by permutational equations of restricted length. For
many pairs k,n of natural numbers we determine whether the free object
Frn in W, with k generators is finite or infinite, and in some cases we
compute the cardinality of the free groupoid. The intersection W, of the
varieties W, is investigated in a similar way.

The terminology and notation used here are the same as in the paper [4].

1. UNCOUNTABLY MANY VARIETIES

By a subword of a word z1...x, we mean a word x;x;;1...x; where
I<i<j<n

A word z ...z, (where z; are variables) is said to be I-reduced if x; #
xiy1 for ¢ = 1,...,n — 1. The I-reduction of a word zi...x, is defined
inductively in this way: a variable is its own I-reduction; if n > 1 and
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Y1--.Ym is the I-reduction of x1 ...x,_1 then the I-reduction of z;...x, is
Y1 -Ym if 21 = xp and yy . . . Y&y if 1 # . It is easy to see that an
equation x1...x, & Y1 ...Yn is satisfied in all idempotent slim groupoids if
and only if the I-reductions of x1...x, and y; . ..y,, are the same.

Theorem 1.1. The variety of idempotent slim groupoids has 2% subvari-
eties.

Proof. For a word u, variables y, z and a nonnegative integer n we define a
word u[yz]" by induction as follows: u[yz]® = u; u[yz]"** = ((ufyz]")y)=.

Let M be a subset of {3,4,5,...}. A word is said to be M-bad if it equals
wyx[zy)Fzyzy for some variables x,y, z and some integer k € M. The M-
correction of an M-bad word zyz[zy]*zyzy is the word zyz[yz]*zyzy. An
M-significant word is a word that is either M-bad or is the M-correction
of an M-bad word. An I-reduced word is said to be M-good if it does not
contain any M-bad subword.

Claim 1. Let u be an M-significant I-reduced word, u = zyz[yz]*zyzy or
u = zyx[zy|fxyzy. Then x,y,z are pairwise different variables. Indeed, zy
and yz are subwords of u, so x # y and y # z. Either zx (in the first case)
or zz (in the second case) is a subword of u, so x # z.

Claim 2. Let u = x1...x, be an I-reduced word and x; ... x; and xp ... x4
be its two M-significant subwords. Then either (i,j) = (p,q) or q < i+ 2
orj<p+2. Putax=ux;3, y=22and z=ux;_1. By Claim 1, z,y, 2
are three different variables. If j = ¢ then it is easy to see that ¢ = p
and the two subwords are identical. Let, e.g., ¢ < j. For ¢ € {i,i + 1,71 +
3,i+4,...,75—6,j—4} we have ¢ # ¢+ 3 since z. € {Tct2,Tcr3} while
xg—3 ¢ {xg—1,24}. Since z4_5 # x4—3 while x; = x;42, we have ¢ # i + 5.
Since z4—1 € {xq—4,Tq—5} while xj_3 ¢ {zj_¢,z;_7}, we have ¢ # j — 2.

Claim 8. Any I-reduced word w can be transformed into an M -good
word by a finite sequence of replacements of M-bad subwords with their M -
corrections. The resulting M -good word is uniquely determined by u and M.
By Claim 2, whenever an M-bad subword v is replaced with its M-correction
w then any of the later replacements can touch it at most at the first three
or the last three positions of its variables; but these positions remain un-
changed by the replacements, so w remains unchanged till the end of the
process.

The unique M-good word resulting from an I-reduced word u in this way
will be called the M-correction of u. Define a groupoid Ajs in this way: its
underlying set is the set of M-good I-reduced words; its binary operation,
denoted by o, is given by

T1...Tp if Yy =z

T1...TpoYr... = . .
ney Hm {the M-correction of 1 ...x,y, otherwise

Claim 4. Let ay,...,ay, be elements of Apy. Then ayoago---0ay is the
M -correction of the I-reduction of the word aizo ... z,, where z; is the last
variable in the word a;. It follows from the definition of o by induction on n.
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Claim 5. Ajpr is an idempotent slim groupoid. For k > 3, the equation
ryxlyz)Feyzy ~ xyxlzylFryzy is satisfied in Ay if and only if k € M. It
follows from Claim 4.

Since there are 2%0 different subsets of {3,4, ...}, it follows from Claim 5
that there are 2%0 different varieties of idempotent slim groupoids. O

2. I-STRONGLY NONFINITELY BASED SLIM GROUPOIDS

By an I-strongly nonfinitely based slim groupoid we mean a finite idem-
potent slim groupoid A such that whenever A satisfies an equation (u,v)
where u, v are I-reduced words and w is linear then u = v.

Theorem 2.1. Let A be a finite, I-strongly nonfinitely based idempotent
slim groupoid. Then A is inherently nonfinitely based.

Proof. The proof is essentially the same as that of Theorem 6.1 of[4]; the
small difference is that for a term ¢, one should consider (instead of just
t*) the I-reduction of ¢*. Observe, however, that our present result is not
a consequence of that theorem: an I-strongly nonfinitely based idempotent
slim groupoid is not strongly nonfinitely based. ([

Consider the idempotent slim groupoid G4 3 with elements a,b,c,d and
multiplication table

Theorem 2.2. G, 3 is an I-strongly nonfinitely based idempotent slim grou-
poid.

Proof. For a homomorphism h of the groupoid T' of terms into G4 3 and for
a word t = x1 ...z, (where x; are variables) we have
(1) h(t) =d iff h(z1) = d and h(z;) € {c,d} for all ¢
(2) h(t) = ciff h(zy) € {c,d} and either h(x1) # d or h(z;) ¢ {c,d} for
at least one ¢
(3) h(t) = b iff one of the following two cases takes place:
e h(z1) =b and h(z;) € {a,b} for all ¢
e h(xz1) = d and there exists an index k < n such that h(z;) €
{c,d} for all i <k and h(z;) € {a,b} for all i > k
(4) h(t) = a in the remaining cases
This will help in the following computations.

Since G4 3 has a two-element subgroupoid satisfying xy ~ x (the sub-
groupoid {a,b} and a two-element factor satisfying zy ~ y (the factor
G43/Bg,5), any equation satisfied in Gy 3 has the same first variables and
the same last variables at both sides.
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Let (z1...Zn, Y1 ...Ym) be satisfied in G4 3, where x; and y; are variables.
Then {z1,...,2n} = {y1,...,Ym}. In order to prove this, suppose that there
exists an ¢ with z; ¢ {y1,...,ym} and let ¢ be the largest index with this
property. Take the homomorphism i : T — G4 3 with h(x;) = band h(z) =d
for all other variables z. Then h(x;...z,) € {a,b,c} while h(y1 ...ym) =d,
a contradiction.

Let (z1...Zp, Y1 ... Ym) be satisfied in Gq 3, where z1...2, and y1 ... ym
are both I-reduced and x7 ...z, is linear. Suppose Z1...Zn # Y1 ---Ym- We
have 1 < n <m.

Let us prove that y,—; = x,—; for i =0,...,n— 1. Suppose ym—; # Tn_;
for some 4, and let ¢ be the least number with this property; then ¢ > 0.
If Yy = x; for some j < n — i, then h(z1...2,) # h(y1...ym) where

h(z1) = -+ = h(zn-i) = d and h(Tp—iy1) = - = M(zy) = b. W yp—i = x5
for some j > n — i, then h(x;...z,) # h(y1...Ym) where h(z;) = -+ =
hMzp—i—1) =d and h(zp—;) = --- = h(z,) = b.

SO, Ym = Ty ooy Yment1 = T1. L 210 0 # Y1 ... Ym, We get m > n.
We have y,,,—p, = x; for some ¢ > 3. Define h by h(x1) =+ = h(z;—1) =d
and h(x;) =--- = h(x,) = b. Then h(x;...z,) = b while h(y1...ym) = ¢,
a contradiction. O

Theorem 2.3. The groupoid G4 3 is, up to isomorphism, the only I-strongly
nonfinitely based idempotent slim groupoid with at most four elements.

Proof. 1t is possible to generate all idempotent slim groupoids with at most
four elements that do not satisfy the equation zyzu ~ xyzuzuzu. Only one
such groupoid is obtained, the groupoid Gy 3. O

3. THREE-ELEMENT IDEMPOTENT SLIM GROUPOIDS

Theorem 3.1. All idempotent slim groupoids with at most three elements
are finitely based.

Proof. According to Gerhard [2], all varieties of idempotent semigroups are
finitely based. According to Jacobs and Schwabauer [3], all varieties of
algebras with one unary operation are finitely based. Thus it remains to
consider the at most three-element idempotent slim groupoids that are not
semigroups and do not satisfy xy =~ xz. It is easy to find that there is, up to
isomorphism, precisely one such groupoid. It has three elements a, b, c and
multiplication

It has been shown in [1] that the equational theory of this groupoid is based
on the three equations z(zy) ~ zy, xax ~ x and xyzu ~ rzyu. U
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Remark 3.2. In idempotent slim groupoids, ryzx ~ x implies xyz ~ zz.
Indeed, zyz = xyzzyyz = ryxz = xz.

Remark 3.3. In idempotent slim groupoids, the equations zyxr ~ z and
xyzuzr ~ zp(y)p(z)p(u)z for all permutations p of {y, z,u} imply zyzu =~
zzyu. Indeed, zyzu = xyzuru = rzyuru = TZYU.

4. THE VARIETIES W,,

For n > 1 denote by W,, the variety of idempotent slim groupoids satis-
fying zy1 ... yn® = TYp(1) - - - Yp(n) for all permutations p of {1,...,n}.

Clearly, W is the variety of all idempotent slim groupoids, Wy is de-
termined (together with the equations of idempotent slim groupoids) by
ryzx =~ xzyr, W3 by xyzuxr ~ ruzyr ~ rzyux, etc. We have W1 D Wy D
W3 D .... Denote by ~,, the equational theory of W,,.

It can be easily checked (with an aid of computer) that every groupoid in
W3 with at most 8 elements belongs to W .

We denote by Fj,, the free groupoid in W,, with k£ generarors. In the
following we are going to describe Fy , for small numbers k.

Theorem 4.1. F5,, is infinite for n < 2. For n > 3, Fa, has 8 elements
and its multiplication table is

Fa2 €z Yy Yy yr ryr yry - ryry yryx
x x Ty xy x x Yy xy x

Y yx Y Y yx yx Y Y yx
Yy xyr Y xy TYr TYT Y xy TYT

yx yx yry  yry yw yx yry  yry yr
YT TYTr YTy TYITY TYT TYT TYTY TYTY TYT
yxry yryxr yry - yry yryr yryr yry - yry  yryr
TYyry | TYT < TYTY TYTY TYT TYT TYTY TYTY TYT
yryr | yryr yry - yry yryr yryxr yry - yry  yryr

Proof. Denote the two generators by x and y. Clearly, every word over
{z,y} is ~p-equivalent to a word that is a beginning of either zyxyxy...
or yxyxyx . ... All these words are pairwise ~-inequivalent if n < 2. For
n > 3, we have zyryxr ~, xyxr and yryry ~, yzry, so every word is ~,-
equivalent to one of the eight words. It is easy to check that the eight-element
groupoid belongs to W,,. Consequently, it is the free groupoid. ([

We say that a word x; ...x, precedes a word y; ...y, if one of the fol-
lowing three cases takes place:
(1) n<m
(2) n=m >3, 1 =23 and y1 # y3
(3) n=m >4, 11 # 23, y1 # Y3, T2 = 4 and y2 # Y4
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A word t is said to be ~,-minimal if there is no word preceding ¢t and
~p-equivalent with ¢. Clearly, every word (in a fixed number of variables)
is ~p-equivalent with at least one ~,-minimal word.

A word yj ...ym is said to be an extension of xy...x, if n < m and

x; = y; for all ¢ < n. Let t,u,v,... be words over {x;...,z;}. We write
t<lgn(u,v,...)ifu,v,... are extensions of u and every ~,,-minimal extension
of u (containing only 1, ..., z}) is extended by one of the words u, v, ....

We are now going to describe F33. So, in the next lemmas let < stand
for <13 3. Denote the three generators by z,y, 2.

Lemma 4.2. zyxy < (xyzryz).
Proof. 1t follows from xyzyzr ~3 TYryrze ~3 TYT2T ~3 TYZL. O
Lemma 4.3. zyzz < (xyxzy).

Proof. xyrzyx ~3 xyryzae ~3 xyze and xyrzyz ~s TYZTYZ ~3 TZYTYZ ~3
T2ZYYTZ ~3 TZYTZ ~3 TYZLZ. (]

Lemma 4.4. zyzx < (xyzzx).
Proof. xyzxy ~3 xyxzy and ryzrz ~3 r2yrz ~3 TZTYZ. ([
Lemma 4.5. xyzy < (vyzyzz).

Proof. xyzyx ~3 xyzx, xyzyzy ~3 ryzy, rYyzrz ~3 ryzeyz and ryzyzary
~3 TYZYTZY ~3 TYZTZY. O

From these lemmas it follows that every word in variables x,y, z is ~s3-
equivalent with at least one word that can be extended to a word similar
to one of the words xyzyz, ryxzy, xyzz, xyzyzzx. (Two words are said to be
similar if one is obtained by a permutation of variables in the other.) It is not
difficult to write all such words; their number is 66. Now we know that F3 3
has at most 66 elements and we suspect that 66 could be the precise number.
In order to prove it, we try to write the multiplication table for F3 3; clearly,
if the groupoid given by this table satisfies the equations of W3, it is the free
groupoid in W3. The trouble is that the multiplication table would be too
big. However, it is sufficient to consider just a fragment. First of all, instead
of the 66 columns it is sufficient to write the three columns corresponding to
the three generators: the product of two words is equal to the product of the
first word with the last variable in the second. And instead of 66 rows, it is
sufficient to write the representative 12 of them; the other ones are obtained
by permutations of variables. We obtain the displayed fragment. In this
fragment, each of the first 2 rows can be permuted to 3 different rows and
each of the next 10 rows to 6.

We can check easily that this groupoid satisfies the equations of W3. (Ob-
serve that in order to check a permutational equation of the form considered
here, it is sufficient to interpret its leftmost variable by an arbitrary element
and all the remaining variables by variables only.) So, this groupoid is the
groupoid F3 3 and the free groupoid has precisely 66 elements.
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F3.3 x Y z

T T Ty Tz
TYZT TYZT TYTZY — TITYZ
Ty TYT Ty TYZ
TYT TYT TYTY TYTZ
TYz TYZT TY2Y TYZ
TYTY TYT TYTY TYTYZ
TYTYZ TYZT TYTZYy — TYTYZ
TYTZ TYZT TYTZYy — TYTZ
TYTZY TYZT TYTZY — TZITYZ
TYzY TYZT TYzY TYZYZ
TYZYZ TYZYZT TYZY TYZYZ
TYZYZT | TYZYZT XTYTZY — TIZTYZ

The groupoid does not belong to Wy, since the element ryzyzx can be
reduced to zyzz. It easily follows that the groupoid F34 (which has to be
a factor of F33) has 60 elements. We get

Theorem 4.6. The groupoid F33 has 66 elements and its multiplication
table can be reconstructed from the above given fragment of 12 rows and 3
columns. The groupoid F3 4 has 60 elements and its multiplication table can
be reconstructed from the fragment for F33 in which the last row is deleted
and the element ryzyzx s replaced with ryzx.

Next we are going to describe the groupoid F4 5. So, in the next lemmas
let <t stand for <14 5. Denote the four generators by z,y, z, u.

Lemma 4.7. zyzy < (xyryzuzu, cyryuzuz).

Proof. Let t be a ~5-minimal extension of xyxy. Clearly, ¢t cannot start with
either xyxyx or xyxyy, so (if it is different from zyzy) it must start with
either zyxryz or zyzyu. Each of these words can continue (to remain ~s-
minimal) only in the indicated way. We have zyxyzuzuxr ~5 xyryzur ~s
xyzuzr and ryryzuzuy ~5 ryryzuy, so that ryryzuzu has no proper ~p-
minimal extension. ([

Lemma 4.8. zyxzy < (xyzrzyu).

Proof. We cannot continue with z, since xyxzyz ~5 ryzayz ~s ryzycrz ~s
xyyzrz ~s5 xyzrz. So, clearly we can continue with u only. It is evident
that the word zyxzyu cannot be continued with either x or y or u. It also
cannot be continued with z, since zyxzyuz ~5 TYrZUYZ ~5 TYZUTYZ ~5
TZYUTYZ ~5 TZYYUTZ ~5 TZYUTZ. (]

Lemma 4.9. zyzzu < (zyrzuzu, zyrzuy).

Proof. Clearly, the word cannot continue with either z or u and if it is con-
tinued with z then there is only one possible further continuation, xyxzuzu.
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For the continuations of xyxzuy, consider
TYTZUYZ ~5 TYZUTYZ ~5 TYZUYTZ ~5 TYYZUTZ ~5 cryzurz and

TYTZUYU ~5 TYUZTYU ~5 TYUZYTU ~5 TYYUZTU ~5 TYUZTU.

Lemma 4.10. zyxz < (xyxzyu, TYrzuzu, LYrzuy).

Proof. Tt follows from 4.8 and 4.9, since clearly the word cannot be continued
with either x or z. O

Lemma 4.11. zyx < (zyzryzuzu, LYTYuzuz, LYL2yu, LYTZUzU, LYTZUY,
TYTUYZ, TYTUZUZ).

Proof. 1t follows from 4.7 and 4.10. O
Lemma 4.12. zyzx < (zyzzu).

Proof. A continuation of xyzzy (of xyzxz, respectively) is ~5-equivalent to
a continuation of zyxzy (of zzxyz, respectively, since xyzrz ~5 rzyxrz ~5
xzxyz) of the same length and so need not be considered. We have xyzzuz
~E TYZULTZ ~5 TZYUTZ ~5 rZryuz, a word starting with zzz. ([

Lemma 4.13. zyzy < (xyzyzu, xyzyuz).

Proof. 1t is easy to see that xyzyz < (zyzyzu). Since xyzyuzu ~j5 xyzuyzu
~5 TYUZYZU ~5 TYUZZYU ~ ryuzyu, we have xyzyu < (zyzyuz). (]

Lemma 4.14. zyzu < (zyzuzx, ryzuy, ryzuzu).

Proof. Since
TYZUTY ~5 TYTZUY,
TYZUTZ ~5 TYZTUZ ~5 TLYTUZ ~5 TZEYUZ,
TYZUTU ~5 TUYZTU ~5 TUTYZU,
we have xyzuzr < (ryzuz). Since
TYZUYZ ~5 TYZYUZ,
TYZUYU ~5 TYUZYU ~5 TYUYLU,
we have xyzuy < (zyzuy). Clearly, zyzuz < (zyzuzu). O
From these lemmas it follows that every word in variables x,y, z, u is ~5-
equivalent with at least one word that can be extended to a word similar to
one of the words xyzyzuzu, TYT2Yu, TYTZUZU, TYTZUY, TYZTU, TYZYZU,
TYZYuz, TYzux, xYzuy, ryzuzu. It is not difficult to write all such words;
their number is 548. Now we know that F4 5 has at most 548 elements and,
similarly as in the case of three generators, we can write a fragment of the
multiplication table. This fragment that is displayed has 4 columns and 28

representative rows. Each of the first 2 rows can be permuted to 4 different
rows, each of the next 7 rows to 12, and each of the last 19 rows to 24.
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Fus x Y z u

xT a Ty Tz U
TYZUL TYZUT TYTZUY TZTYUZ TUTYZU
Ty TYT Ty TYZ TYU

TYT TYT TYTY TYTZ TYTU
TYTY TYT TYTY TYTYZ TYTYU
TYZX TYZX TYTZY TZTYZ TYZTU
TYTZUY TYZUT TYTZUY TZIYUZ TUTYZU
TYZTU TYZUT TYTZUY TZIYUZ TYZTU
TYZUY TYZUT TYzZUY TYZYuz TYuYzu
Yz TYZT TYzY TYz TYzU
TYTYZ TYZT TYTZY TYTYZ TYTYZU
TYTZ TYZT TYTZY TYTZ TYLZU
TYTZY TYZT TYTZY TZXYZ TYTZYU
TYzY TYZT TYzY TY2YZ TYZYU
TYZYZ TYZT TYzY TYZYZ TYZYZU
TYZU TYZUT TYzZUY TYZUZ TYzU
TYTYZU TYZUT TYTZUY TYTYZuz  TYTYZU
TYTYZUZz TYZUT TYTZUY TYTYZUZ  TYTYZUZU
TYTYZUZU | TYZUL TYTZUY TYTYZUZ  TYTYZUZU
TYTrzu TYyzux TYrzuy TYrzuz TYTZU
TYTZYU TYZUL TYTZUY TZTYUZ TYTZYU
TYTZUZ TYZUL TYTZUY TYTZUZ TYTZUZU
TYTZUZU TYZUL TYTZUY TYTZUZ TYTZUZU
TYZYZU TYZUL TYzUY TYZYUZ TYZYZU
TYZYU TYZUT TYZUY TYZYUuz TYZYU
TYZYuz TYZUT TYZUY TYZYUuz TYUYZU
TYZUZ TYZUT TYZUY TYZUZ TYZUZU
TYZUZU TYZUT TYZUY TYZUZ TYZUZU

One can verify that the groupoid satisfies the equations of W3 either by
an aid of computer or also manually. The result is that the equations are
indeed satisfied, and we obtain

Theorem 4.15. The groupoid F4 5 has 548 elements and its multiplication
table can be reconstructed from the fragment of 28 rows and 4 columns.

It is easy to see that the groupoids Fj , are infinite for n < 4. The reason
are pairwise ~y-inequivalent.

is that the terms zyxyzuzuryryzuzu. ..

Theorem 4.16. If k is even and n < 2k — 3 then Fy,, is infinite. If k is
odd and n < 2k — 4 then Fy,, is infinite.

Proof. Denote the generators by x1, ..

., xp. For k even the words

T1X2X1XQ . . Lfp—1 XL f—1T|T1T2X1XY . . .
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and for k odd the words

T1XT1T2 . . . Tl 2Tk _1Tk_2Tk_1TKT] - - -
are pairwise inequivalent with respect to the equations of W,,. O
Theorem 4.17. Let k > 3. Then Fj, o1—3 1s finite.

Proof. For k = 3 it follows from the above theorem. So, let k¥ > 4. Put
n = 2k — 3 and denote by ~ the equational theory of W,,. Consider only
words in k fixed variables. By a minimal word we will mean a word that
it is not ~-equivalent to a shorter word. Clearly, every minimal word is
I-reduced.

Suppose that there exists a minimal word xj ...z, containing at least
three occurrences of some variable, and take such a minimal word of minimal
possible length. Then x; = x; = x,, for precisely one i € {2,...,m — 1}
and each variable different from z1 has at most two occurrences in i ... T,.
Consequently, m < 2k + 1. Sincei —2<m —4<2k—-3=nand x1 = x;,
the variables xg, ..., z;_1 can be arbitrarily permuted and (consequently) are
pairwise different. From the same reason, x;11,...,Zm,m—1 can be arbitrarily
permuted and are pairwise different. If xo,...,z,,_1 are pairwise different
or if there is at most one pair of equal elements among them then m — 2 <
k41 <2k —3=n (since k > 4), so that the inner variables in x1 ...z,
can be arbitrarily permuted; in particular, they can be permuted in such a
way that x; gets to the position with index 2, so that the word starts with
two equal variables and can be shortened, a contradiction. Hence there exist
four different indexes j,m,r, s with with x; = x,,, z, = x,, j <i < m and
j < r < i< s. We can assume that s < m, because the two places can
be permuted. Take such a quadruple j,m,r,s with the largest possible j.
Then xjy1,..., 7,1 are all different with the only exception z, = x4, so
the length of this sequence is at most k which is less than n, and =z, z4
can be permuted to become neighbors and then one of them deleted, a
contradiction.

So, every minimal word contains at most two occurrences of each of the
k variables. There are only finitely many such words and every word in the
k variables is ~-equivalent to at least one minimal word. ([l

Theorem 4.18. Let k > 3. If k is odd put n = 2k — 2, and if k is even put
n =2k — 3. Then Fj, = Fp.m for allm > n.

Proof. 1t is sufficient to prove for every m > n that if 7 ,, € W, then F},,, €
W, ,+1; the statement will then follow by induction on m. Let m > n and
Frn € Wi, We need to prove 2y . . . Ym41Z = TYp(1) - - - Yp(m+1)T in F p, for

all elements x,y1, ..., Ym41 of Fip, and all permutations p of {1,...,m+1}.
However, clearly it is sufficient to prove it only in the case when all the
elements x, 1, ..., Ym+1 are from the k-element set of generators of F, ,,. In

order to do this, it is sufficient to prove that xy; ... ymi12 = 21 ...z for
some sequence zi, ..., 2z, such that {z, z1,...,2n} ={z,91,. .., Ym+1}
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If some member of the sequence x,¥1,...,Ym+1, 2 is equal to the next
following member, we can delete it and the claim is confirmed. So, we can
assume that y; # y;+1 for all ¢ and y1 # & # Ym+1-

Suppose that y; = y; = y, for some ¢ < j < r. Then zy;...ypt12 =
TYL - YilYjYit1 - Yj—1Yj1 - Yr oo Ymp1 T = TY1 - Y5141 - - - Y12 SO,
we can assume that every element occurs at most two times in y1, ..., Ym+1-

Consider first the case when y; = y; =  for some 1 <i < j < m+ 1.
Then

TYL -+ - Ym+1T = YY1 - - - Yi—-1Yi+1-- - Y5 - - - Ym4+1T
=2Y1---Yi—-1Yi+1 - - - Ym+12-

Now let y; = = for precisely one i. Since the sequence yi,...,Ym+1
with g; deleted contains at most & — 1 different elements and k < m,
we have y; = y, and y, = ys for two different pairs j < ¢ and r < s.
Without loss of generality, 7 < r. If j < ¢ < i then zy;...ym+12 =
Tyt - .- yquyj—l-l e yq—lyq—l-l e Yie s YnH1 L = Y1 - - yq—lyq—H e Yn4+1T. SO,
we can assume that j < ¢ < ¢ and, similarly, »r < i < s. Since y,,y, are
between y; and the last occurrence of z, they can be permuted and thus
we can suppose that s < ¢. But then the two occurrences of y,. = y, are
between the two occurrences of y; = y,, can be moved to get one next to
the other and then one of them can be deleted. It remains to consider the
case when x does not occur in y1, ..., Ym+1-

Let k£ be odd. The sequence ¥, ..., Ym+1 contains at most k — 1 different
elements. If each of them occurs at most twice, we get m +1 < 2k —2 = n,
a contradiction. Thus at least one of these elements occurs at least three
times; this case has been handled above.

Let k£ be even and let us work again under the assumption that no element

occurs more than twice in yq,...,ym+1. If some of these elements occurs
only once, we get m + 1 < 2k — 3 = n, a contradiction. Thus every element
occurs precisely twice in y1,...,ym+1. Clearly, we can assume that there is

no quadruple 4, 7,7, s of indexes with i < j < r < s, y; = ys and y; = y,.
We are going to prove by induction on ¢ > 0 that if 4i + 1 < m + 1 then
4i+4 <m+1and zyj ... Ym+1T = 21 ...2m4+12 for some z1,..., 2m41
such that 24541 = 24543 and 24542 = 24544 for all j < i. Let this be true
for all numbers less than ¢. So, we can suppose that y4j+1 = ys;4+3 and
Yaj+2 = Yaj+4 for all j <. Since y4;41 does not occur in y1, . .., y44, we have
Yai+1 = Yq for some ¢ > 4i + 3. If ¢ > 41 + 3 then y412 = y, for some r > ¢
and the variables between y4;12 and y, can be permuted so that y, is moved
to the position of y4;43. So, we can assume that Y441 = Yai+3. Since Y442
does not occur in yy, ..., Y4i+1, we have yg;42 = ys for some s > 4i + 4. If
s > 4i + 4, then from a similar reason ys; can be moved to the position of
Yai+4, and thus we can also suppose that y4;,+2 = Y4i+4.

It follows that the number of different elements in yi,...,ymy1 is even.
But the number is k — 1, which is odd. So, if k is even, the assumption that
no element occurs more than twice in yi, ..., ym=1 is contradictory. U
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The following table summarizes what we know about the cardinalities of
Fim for k<6 and n < 9.

|Frnl| 2 3 4 5 6 7 8 9
k=2| o0 8 8 8 8 8 8 8
k=3| o 66 60 60 60 60 60 60
k=4| oo 00 00 548 548 548 548 548
k=5| o 00 00 00 ? fi fo fo
k=6]| oo o0 o0 o0 o0 s o0 f3

Here fi, fo and f3 are some finite numbers that we did not compute. In
particular, we do not know if fi = fo. We do not know whether F5¢ is
finite.

5. THE VARIETY W o

We denote by W, the intersection of the varieties W, (n = 1,2,...). In
this section ~ always denotes the equational theory of W .

Lemma 5.1. Let x1,...,x, be variables and 1 < i < j <k <m <n be
such that x; = xj, and x; = . Then

Tl...Tp ~ L1 Tilp(iq1) - - - Tp(m—1)Tm - - - Tn

for any permutation p of {i +1,...m — 1} such that p(j) < p(k).

Proof. xj can be moved to the position ¢ + 1 and then z; can be moved to
the position ¢ + 2. Since the remaining variables of x;11...T;,m—1 are now
between two occurrences of the same variable z,,, they can be arbitrarily
permuted. Then the variable at position 7 4+ 2 can be moved to an arbitrary
place p with i 4+ 2 < p < m and the variable at position 7+ 1 to an arbitrary
place ¢ with i +1 < g < p. O

Let us fix a strict linear ordering C of the set of variables. A word x1 ...z,
is said to be admissible if

(1) z1...x, is I-reduced

(2) every variable has at most two occurrences in 7 ...z,

(3) whenever 1 <14 < j <nandz; = x;j then the variables ;1 1,..., 2,1
are pairwise different and if each of them has only one occurrence in
T1...T, then 2,401 C x40 C -+ C Tj—1

(4) whenever 1 < i < j <k <m < n, x; =z and x; = z,, then
j=1+1, k =1+ 2, each of the variables x;13,...,Z,_1 has only
one occurrence in xp ...z, and Tit3 C Tigqa T - C Typ—1

Lemma 5.2. Every word is ~-equivalent with at least one admissible word.

Proof. It is sufficient to consider a word z7 ...x, that is not ~-equivalent
with any shorter word. Clearly, x1...x, is I-reduced. If 1 <i<j<k<n
and x; = x; = x}, then x; can be moved to position 7 + 1 and then, because
of the idempotency, deleted. If 1 < i < j < n, x; = z; and the variables
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xp (r=14+1,...,7 — 1) are pairwise different then these variables can be
permuted to obtain x;41 C ---Cxj_q1. Let 1 <i<j<k<m<n,z =umx
and z; = xp,. By 5.1 we can suppose that j =i+ 1 and k = ¢+ 2. Suppose
. =xq for some c € {i+3,...,m—1} and somed #c. If i+3<d<m-—1
then z. and x4 are between the two occurrences of x,, and thus x4 can
be deleted. If d < ¢ then z; and z;42 are between the two occurrences
of z.. If d > m then x;,1 and x;12 can be moved to positions m — 2 and
m — 1 respectively, so that then both occurrences of x,, are between the two
occurrences of x. and the word x; ... x, can be again shortened. Thus each
of the variables z;13,...,Zm,—1 has only one occurrence in x; ...x,. These
variables can be permuted to obtain z;13 C - -+ C Xpp—1. O

Lemma 5.3. Let x1...x, and y1 ...Yym be two different admissible words.
Then the equation xi...Tn & Y1 ...Ym together with the equations of W
implies one of the following three equations:

(1) zyzy =~ zy

(2) yzyzzr ~ yzyx

(3) xyzyz = xzyz

Proof. By induction on n 4+ m. If x, # ym, then z(x1...2,) = 2(y1 .. - Ym)
gives zx, ~ 2y, which implies xy ~ x and then the equation (1). So, let
Tn = Ym.

Suppose {z1,...,2n} # {y1,...,ym}. Without loss of generality, y; ¢
{z1,...,2,} for some i. Substitute y for y; and x for any other variable.
We get one of the equations x ~ yz, = zyr and x =~ yxryxr. Each of
these equations implies (1). (In the case of x ~ yzyzx take the substitution

If z1 # w1, take a new variable z and substitute zz; for x7. We get
2X1 ... 2Tp R Y] ... Ym Where {z,21,..., 20} # {Y1,...,ym} and thus we get
the equation (1) as before.

Thus we can assume that {x1,..., 2.} ={y1,...,Ym}, x1 = y1 and x,, =

Ym. SINCE X1 ...Tpn Z Y1 --.Ym, Wwe have n > 1 and m > 1.

Suppose that z, has only one occurrence in z; ...z, and only one oc-
currence in Yy ...Ym. If o1 # Yym_1, substitute = for x,, y for z,_1 and
z for all other variables. We get that either zyx or yzyx or zyzyx is ~-
equivalent with either yzz or zyzx or yzyzz. In each of the four cases (the
two terms must start with the same variable) we get either (1) or (2). Now let
Tp—1 = Ym—1. If we substitute x,,_1 for x,,, we get x1...Tpn_1 ~ Y1 ... Ym—1
where z1...2,-1 and ¥ ...ym_1 are two different admissible terms, so that
the induction assumption can be applied.

Suppose that z,, has only one occurrence in z1 ...z, but two occurrences
in y1...ym. Substitute z for x, and y for all other variables. We get
yr ~ yryr, i.e., we get (1).

It remains to consider the case when x, = y,, has two occurrences in
1 ...y and two occurrences in yp ...y, Let i < n, 7 < m, x; = x, and
Yi = Ym- Put C' = {xi—i-la ce 7xn—1} and D = {yj+17 SRR ym—l}-
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Suppose that each variable from C has only one occurrence in zi ...z,
and each variable from D has only one occurrence in 41 ... yy,. If C—D # ()
and D — C = (), substitute x for z,, = for every variable from C' N D
and y for all other variables to obtain yxyxr ~ yz, ie., we get (1). If
C—D # (and D — C # (), substitute x for z,, = for every variable from
C and y for all other variables to obtain that yx ~ yaxyx. If C = D,
substitute a variable z ¢ {z1,...,z,} for every variable from {z;,...,x,}
to obtain x1 ..., 17 ~ y1...yj—1x where x1... 7,17 and y; ...y;_1x are
two different admissible words, so that the induction assumption can be
applied.

Next suppose that each variable from C has only one occurrence in
x1...%n, while yj_1 = yj41. If yj41 ¢ C, substitute x for all variables
from {z;,...,z,} and y for all other variables to obtain yx ~ yxyz. Let
yj+1 € C. If C—D # (), substitute x for all variables from {y;,...,yn} and y
for all other variables to obtain yzyx ~ yx. If D—C # (), substitute x for all
variables from {z;, ..., z,} and y for all other variables to obtain yz ~ yzyz.
If C = D, substitute x for all variables from {x;,...,xz,} —{yit1}, y for yi11
and z for all other variables to obtain zxyx ~ zyzyx; we get (3).

Finally, let Ti—1 = Ti+1 and Yj—1 = Yj+1- If Ti+1 = Yj+1, substitute In
for x;11 to obtain x1...2;—1Ti42. .. Tn ~ Y1...Yj—1Yj+2 - .. Ym and use the
induction assumption. Let ;41 # yj+1. If yj+1 € {4, ..., 2}, substitute
for every variable from {x;,...,x,} and y for all other variables to obtain
yr ~ yryxr. If yj1 € {xs,..., 2} and 241 € {yj,...,Ym}, substitute x
for x,, « for x;y1, z for every variable from {z;;2,...,z,_1} and y for every
other variable to obtain either zxyxr ~ zyxyzr or zxyxr ~ zyryx and thus
(substitute z for y in the first equation) either (1) or (3). O

Theorem 5.4. The variety W, is generated by F34 and every word is
W o -equivalent with precisely one admissible word.

Proof. By 5.2, every word is W-equivalent with at least one admissible
word. If two different admissible words are W y,-equivalent then W, satis-
fies one of the three equations 5.3(1), 5.3(2) and 5.3(3). However, it is easy
to check that none of these three equations is satisfied in F34. Since F34
belongs to W, it follows that every word is W -equivalent with precisely
one admissible word. If F3 4 satisfies an equation not satisfied by all algebras
in W, then, again by 5.3, it satisfies one of the three equations which is
not possible. O

Remark 5.5. The variety W, is not generated by F2 2. Indeed, F> 2 satisfies
xyzyz ~ xrzyz and this equation is not satisfied in W .

Remark 5.6. According to 5.4, the cardinality C'(k) of the k-generated free
algebra in W, can be computed in the following way. Denote by Sj the set
of finite sequences (nq, ..., n,) of positive integers such that ny+---+n, = k.
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Put

D)= 3 H(k_" I I

(n1,...,np) €Sy =1

Then C(k) = %, (k)D(z) In particular,

i
C(2) =8, C(3) =60, C(4) =548, C(5) = 6180, C(6) = 83502.

Remark 5.7. The equations of W, together with zyzy =~ xy imply the equa-
tion xyxzy ... 2y = xyz1...2py. Indeed, xyzz ... 20y = Tyxyzy ... 20Y =
TYZ1 - - ZnY-

Remark 5.8. The equations of W, together with an equation zyzz; ... zp,yu
N xyrzy...zpu (n > 1) imply zyzy =~ zy. Indeed, take the substitution
sending y to x, 21,...,2, to y and u to y.

Theorem 5.9. The intersection of W3 with the variety determined by
xyry ~ xy s the variety of idempotent slim groupoids satisfying ryzu =~
TZYU.
Proof. Denote by ~ the equational theory of W3 extended by zyxy ~ zy.
We have

TYTZY ~ TYTYZY ~ TY2Y

TYTZY ~ TYZTY ~ TZYTY ~ TZTYTY ~ TZTY

TYZY ~ TZTY

TZXY ~ TYTZY ~ TZYZY ~ TZY

TYZU ~ TYTZU ~ TYTZTU ~ TZTYTU ~ TZYU

6. THE VARIETY Y

Denote by Y the variety determined by the equations of W, together
with the equations xyryz ~ xyxrz and zaxyxry ~ zyry. In this section we
denote by ~ the equational theory of Y.

Lemma 6.1. We have
(1) zzyzu ~ zyzyu
(2) zzyvy ... vpTU ~ 2ZYTVL . .. VYU
(3) zyzuy ... upyz ~ TYU] .. . URTZ
(4) zryzuy ... upy ~ ZYTUq . .. URY

Proof. (1) zxyzru ~ zxyryu ~ zyxryu.
(2) zxyvy ... VLU ~ ZTYTVL . . . Vp@U ~ ZYTYV] - . . VpTU ~

2YTYVL - . . VpTYTU ~ ZYTYV] . . . VpYTYU ~ ZYTV] . . . VpYU.
(3) zyzuy . .. URYZ ~ TYUL . . . UpYTYZ ~ TYUT - . . UpTYLZ ~ TYU] - . . UpT2.
(4) zxyzuy ... Upy ~ ZYTYUL . . . UpY ~ ZYTUT . . . UpY. O

By a 2-admissible word we mean a word x; ...z, such that
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(1) 1...xy, is I-reduced

(2) every variable has at most two occurrences in zj ...z,

(3) whenever 1 <i < j <nand z; = x; then the variables ;1 1,...,z;_1
are pairwise different and if each of them has only one occurrence in
T1...Ty then x4 C Tip2 C - C i1

(4) whenever 1 <i < j <mnand z; = x; then 2; C zj41 T -+ C 2j—1

(5) whenever 1 <i < j<k<m<n, z; =z, and z; = 2, then i = 1,

j=2 k=3, m=nandxy Cax5C - - C Tp_1

—_

Lemma 6.2. Letx1...x, and yy . .. yYm be two different 2-admissible words.
Then the equation xi...xTn, = Y1...Ym together with the equations of Y
implies xyxy ~ xy.

Proof. By induction on n + m. If x,, # yp, then z(x1...2,) = 2(y1 ... Ym)
gives zx, &~ 2y, which implies xy ~ = and then xyxy ~ xy. So, let x,, = Ym,.

Suppose {z1,...,2n} # {Y1,...,ym}. Without loss of generality, y; ¢
{z1,...,2,} for some i. Substitute y for y; and x for any other variable.
We get one of the equations = ~ yz, r ~ zyr and = ~ yryzr. Each of these
equations implies xyxy =~ xy. (In the case of z =~ yryx take the substitution

T yz.)

If 21 # y1, take a new variable z and substitute zz; for x;. We get
2X1 ... 2Tp R Y] ... Ym Where {z,21,... 20} # {Y1,-..,ym} and thus we get
the equation xyxry =~ xy as before.

Thus we can assume that {x1,...,2,} ={y1,..-,Ym}, x1 = y1 and x,, =

Ym. SINCE X1 ...Tp F Y1 ---Ym, Wwe have n > 1 and m > 1.

Suppose that x,, has only one occurrence in z; ...z, and only one occur-
rence in y1 ...Ym. If xp—1 = ym—1 then we can we substitute x,_1 for x,
to obtain x1...Zn_1 ~Y1...Ym—1 Where x1...x,—1 and y1 ...y;,_1 are two
different 2-admissible terms, so that the induction assumption can be ap-
plied. Let x;,—1 # ym—1. If £,,—1 has only one occurrence in z . .. x,, substi-
tute x for x,,, x for x,_1 and y for all other variables to obtain yr ~ yryzx.
If y.,—1 has a single occurrence in y; ...y, we can proceed similarly. It
remains to consider the case when x,_1 = z; and y,,—1 = y; for some
i<n—1and j < m—1. We cannot have z,—1 € {yj41,...,Ym—2} and
Ym—1 € {Tit1,...,2Tn—2} at the same time, since then we would get both
Tp-1 C Ym—1 and ym—1 C xp—1. Let ym—1 ¢ {Tiy1,...,2n—2} (the other
case is similar). Substituting = for x;,...,x, and y for all other variables
we get yxr ~ yxyzx.

Suppose that z,, has only one occurrence in x7 ...z, but two occurrences
in y1...ym. Substitute z for x, and y for all other variables. We get
YT ~ Yyryz.

It remains to consider the case when x, = y,, has two occurrences in
T1...%y and two occurrences in yp ...y, Let i < n, 7 < m, x; = x, and
Yi = Ym- Put C' = {xi—i-lv ce 7xn—1} and D = {yj—i-h SRR ym—l}-

Suppose that each variable from C has only one occurrence in zi ...z,
and each variable from D has only one occurrence in 41 ...y, If C—D # ()
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and D — C = (), substitute x for x,,, x for every variable from C' N D and y
for all other variables to obtain yzyz ~ yz. If C — D # () and D — C # 0,
substitute x for z,,, x for every variable from C and y for all other variables to
obtain that yx ~ yzyz. If C = D, substitute a variable x ¢ {z1,...,z,} for
every variable from {z;,...,z,} to obtain 1 ... 2,12 ~ y1...yj—12 where
x1...7;—12 and y; ...yj—1@ are two different admissible words, so that the
induction assumption can be applied.

Now consider the case when a variable from D has two occurrences in
Y1---Ym- Then y1 = y3, y2 = ym and yg C --- C Ym—1. If also some
variable from C has two occurrences in xy ... %y, we get &1 ...Tp = Y1 ... Tp,
a contradiction. Thus every variable from C' has only one occurrence in
T1...Tn. In particular, the variable z1 = y1 = y3 does not belong to C.

Substitute x for z;, ..., z, and y for all other variables to obtain yx ~ yzyzx.
Finally, the case when a variable from C has two occurrences in x7 ...z,
can be handled similarly. U

The free groupoid in Y with three generators can be obtained from the
groupoid F3 4 if we take its factor by the congruence generated by all pairs
(ababe, abac) and (abcbe, acbe). It is easy to construct the multiplication
table of this groupoid. It has 48 elements and we will denote it by F3vy.
One can easily check that the groupoid does not satisfy xyzry ~ zy.

Theorem 6.3. The variety Y is generated by F3y and every word is Y -
equivalent with precisely one 2-admissible word.

Proof. Tt follows from 6.1 that every word is Y-equivalent with at least one 2-
admissible word. If two different 2-admissible words were Y-equivalent then
Y would satisfy xyxy ~ xy by 6.2. However, this equation is not satisfied
in F3y. Since F3y belongs to Y, it follows that every word is Y-equivalent
with precisely one 2-admissible word. If F3vy satisfied an equation not
satisfied by all algebras in Y then, again by 6.2, it would satisfy zyzy ~ xy
which it does not. U

Theorem 6.4. The lattice of subvarieties of Y has six elements: the trivial
variety Vg, the variety Vi of left zero semigroups, the variety Vo of right zero
semigroups, the variety V3 of rectangular bands, the variety Vy of idempotent
slim groupoids satisfying xyxy =~ xy, and itself. The only proper inclusions
are Vo c Vi CcVaCcVyCY and Vy C Vo C Vs.

Proof. 1t follows from the above results that every proper subvariety of Y
is contained in V4. The lattice of subvarieties of V4 has been described
in [1]. O

Theorem 6.5. The variety Y is generated by the inherently nonfinitely
based four-element groupoid Gy 3 introduced in 2.2.

Proof. It is easy to check that G, 3 satisfies all the equations of Y but not
the equation xyxy ~ xy. U
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