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Abstract. Let 〈D,≤〉 be the ordered set of isomorphism types of finite distributive lattices,
where the ordering is by embeddability. We characterize the order ideals in 〈D,≤〉 that are
well-quasi-ordered by embeddability, and thus characterize the members of D that belong
to at least one infinite anti-chain in D.

1. Introduction

A quasi-ordering (or pre-ordering) of a set W is a relation ≤ that is reflexive over
W and transitive. A quasi-ordered set 〈W,≤〉 is said to be well-quasi-ordered iff it
has no infinite strictly decreasing sequence and no infinite anti-chain. We study in
this paper the pre-ordering on the class D of all finite distributive lattices defined by
L ≤ L′ iff L is isomorphic to a sublattice of L′. The order-ideals in this setting are
the subclasses T ⊆ D satisfying S(T ) = T (closed under forming sublattices and
their isomorphic images). A universal class of distributive lattices is a class defined
by some set of universal first-order sentences, or in other terms, an axiomatizable
class closed under subalgebras. Since distributive lattices are locally finite algebras
of a finite signature, the map from universal classes to S-closed subclasses of D
defined by K 7→ K ∩ D is an isomorphism from the lattice of universal classes of
distributive lattices onto the lattice of order-ideals of the pre-ordered class D.

Throughout this paper, we identify members of D with their isomorphism types,
and identify the class D with the set of isomorphism types of its members. This
allows us, for example to write 〈D,≤〉 to denote the (denumerable) ordered set of
isomorphism types of finite distributive lattices, ordered by embeddability. Without
this convention, the exposition would become quite awkward. We believe it will
cause no harm.

In this setting, a basic observation is that a universal class K of distributive
lattices has only countably many universal subclasses iff K∩D is well-quasi-ordered
by embeddability. The principal contribution of this paper is a characterization of
all order-ideals in 〈D,≤〉 that are well-quasi-ordered.
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An element a in W , where 〈W,≤〉 is quasi-ordered, will be called avoidable in W

iff the set {b ∈ W : a 6≤ b} is not well-quasi-ordered. Since every principal order-
ideal in 〈D,≤〉 is finite (up to the isomorphism of lattices), the avoidable members
of 〈D,≤〉 are precisely those members that belong to some infinite anti-chain, and
the unavoidable members are precisely those that belong to every S-closed class
that contains an infinite anti-chain. This paper is an offshoot of the previous paper
J. Ježek, W. Dziobiak, R. McKenzie [1], in which we characterized the avoidable
finite lattices, ordered sets, and semilattices. Then we turned to finite distributive
lattices and found that the characterization problem here seemed to be difficult and
deep. A characterization of the avoidable finite distributive lattices will follow from
our main result.

Let 〈W,≤〉 be a quasi-ordered set. By a least complete infinite anti-chain in
〈W,≤〉 we will mean an infinite anti-chain A such that A is not a proper subset
of any anti-chain of 〈W,≤〉 and whenever B is an infinite anti-chain then for every
element b of B there exists an element a of A such that a ≤ b.

Let 〈W,≤〉 be a quasi-ordered set such that the order-ideal generated by any
element of W is finite up to the equivalence x ≤ y ≤ x. One can easily see that the
following are true:

(1) 〈W,≤〉 has a least complete infinite anti-chain if and only if the order-filter
of all its avoidable elements has infinitely many non-equivalent minimal elements;
moreover, in that case the collection of all these non-equivalent minimal avoidable
elements is the (essentially unique) least complete infinite anti-chain of 〈W,≤〉.

(2) If U is a least complete infinite anti-chain of 〈W,≤〉, then an element a ∈ W

is avoidable in 〈W,≤〉 if and only if a ≥ u for some u ∈ U ; it is unavoidable in
〈W,≤〉 if and only if a < u for some u ∈ U .

(3) If U is a least complete infinite anti-chain of 〈W,≤〉, then a finite anti-chain
V of 〈W,≤〉 can be extended to an infinite anti-chain if and only if every element
of V is above some element of U .

Many quasi-ordered sets do not contain a least complete infinite anti-chain. For
example, it follows from [1] that this is the case for the quasi-ordered sets of finite
ordered sets, finite semilattices, and finite lattices (with respect to embeddability).
But 〈D,≤〉 does contain it; we will find it in Corollary 6.6.

For ordered sets A, B we shall write A +c B for the cardinal sum of A and B

(which is the disjoint union of ordered subsets isomorphic to A and to B with no
relations between the two parts). We shall write A +o B for the ordinal sum (in
which a copy of A is placed under a disjoint copy of B), and if A has a top element
and B has a bottom element, we shall write A+′

o B for the glued ordinal sum, in
which the top element of A is identified with the bottom element of B. Thus the
operations +o and +′

o are defined on D.
It is easy to see that D is not well-quasi-ordered under embeddability. For any

positive integer n, let n denote the n-element chain. Define Bm,n = m × n. Put
D0 = 1, D1 = B2,2 and for n ∈ ω put

Dn = D1 +
′
o D1 +

′
o · · ·+

′
o D1
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with n copies of D1. Define

Jn = B2,3 +
′
o Dn +′

o B2,3 .

Now {Jn : n ∈ ω} is an infinite anti-chain in D. Thus every unavoidable member
of D must be isomorphic to a proper sublattice of some Jn.

We shall prove the converse (Theorem 6.2): every proper sublattice of any Jn

is unavoidable in D. In fact, we prove a much stronger result (Theorem 6.3): an
order-ideal I in 〈D,≤〉 is well-quasi-ordered iff there are only finitely many n for
which Jn ∈ I.

The following theorem, which is one of the basic results in the theory of well-
quasi-order, will play an essential role. Its proof is not difficult.

Theorem 1.1. Let W = 〈W,≤〉 be a quasi-ordered set containing no infinite
descending chain. If W is not well-quasi-ordered, then there exists a sequence
〈an : n < ω〉 of elements of W such that ai 6≤ aj whenever i < j < ω and such that
the set {a ∈ W : a < ai for some i } is well-quasi-ordered by ≤.

A sequence with the property formulated in Theorem 1.1 will be called a minimal
bad sequence inW. We note that our main result, Theorem 6.3, can be reformulated
as: if 〈Ln : n < ω〉 is any minimal bad sequence in 〈D,≤〉, then all but finitely
many Ln are among the terms of the sequence 〈Jn : n < ω〉.

To prove that every order-ideal in 〈D,≤〉 that is not well-quasi-ordered contains
infinitely many of the lattices Jn, our strategy will be to develop, for each N ,
a structure theorem for the members of D that embed no member of the class
{Jn : n ≥ N}. The structure theorem will also allow us to establish analogous
results to the mentioned results about 〈D,≤〉 for the remaining three pre-orderings
on D each of which is a modification of ≤ by imposing an additional condition
requiring preservation of 0 and/or 1.

2. ⋄-decompositions

For an ordered set P and set X ⊆ P , we write X ↓ for the set {p ∈ P : p ≤
x for some x ∈ X }, and write X↑ for the set {p ∈ P : p ≥ x for some x ∈ X }.
For x ∈ P , we write x↓ for {x}↓ and x↑ for {x}↑. Where X,Y ⊆ P , we write
X < Y to mean that for all x ∈ X and y ∈ Y holds x < y. If Y = {a} then we
write X < a.

A cut-point in an ordered set P , or in a lattice A, is an element u such that
P = u↓ ∪u↑, or A = u↓ ∪u↑, respectively. A finite lattice A is +′

o-decomposable
iff it has a cut-point u that is neither the largest nor the least element of A. A
finite lattice A is +o-decomposable iff it has cut-points u, v with u ≺ v.

The next definitions will be seldom used in this paper until §7, where we focus
on the three pre-orderings ≤0, ≤1, ≤2 of D. Suppose that A,B ∈ D. We say that
A is a 0-sublattice of B provided that A ⊆ B and the least element of B belongs
to A. An embedding f : A → B is a 0-embedding iff f(0A) = 0B . We write
A ≤0 B iff there is a 0-embedding of A into B. The notions of a 1-subalgebra and
a 1-embedding are defined dually, and we write A ≤1 B iff there is a 1-embedding
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of A into B. By a 0, 1-subalgebra (or 0, 1-embedding) we mean a subalgebra A

of B that is both a 0-subalgebra and a 1-subalgebra (respectively, an embedding
f : A → B satisfying f(0A) = 0B and f(1A) = 1B). We shall write A ≤2 B (rather
than A ≤0,1 B) to denote that there is a 0, 1-embedding of A into B.

All lattices discussed in this paper are assumed to be finite and distributive.

Definition 2.1. A lattice A will be called diamond-decomposable iff it has a 0, 1-
sublattice isomorphic to Dn for some n > 0. This means that there are elements

0 = a0 < a1 < · · · < an = 1

so that each interval I[ai, ai+1] has a complemented element ci, ai < ci < ai+1.
Such a chain a0, . . . , an will be called a diamond-decomposition of A. Given A and
a, b ∈ A with a < b, we say that b is diamond-accessible from a if the interval lattice
I[a, b] has a diamond-decomposition.

We are going to show that a finite distributive lattice of more than one element
is +o-indecomposable iff it has a diamond-decomposition.

Definition 2.2. The diamond-height of a finite A ∈ D is defined to be the largest
n > 0 such that A has a 0, 1-sublattice isomorphic to Dn, and is undefined if A
has no such 0, 1-sublattice. We denote this quantity by h⋄(A). The diamond-bound
of A, or b⋄(A), is the largest n such that Dn ≤ A. If Q is a sublattice of A, we
denote the diamond-bound and the diamond-height of this sublattice (if it exists)
by b⋄(Q), h⋄(Q) respectively.

In dealing with any of the concepts defined above, we may substitute the symbol
“⋄” for the word “diamond”, as in “⋄-decomposition”.

We shall need these elementary facts: if a, b are elements in a distributive lattice
A, then there are isomorphisms of intervals I[ab, a] ∼= I[b, a+b], I[ab, b] ∼= I[a, a+b],
I[ab, a+ b] ∼= I[ab, a]× I[ab, b]. Also, I[ab, a+ b] ∼= I[ab, a]× I[a, a+ b].

Lemma 2.3. Let A ∈ D. We have that h⋄(A) = 1 iff A ∼= 2×L where either L = 2,
L = D1 or L = 1+oK+o1 for some K. In the third case, b⋄(L) = b⋄(K) < b⋄(A).

Proof. It is easy to verify that the lattices listed each have diamond height 1.
For the converse, suppose that h⋄(A) = 1. We have elements c, d ∈ A with

0 < c < 1, 0 < d < 1, c + d = 1, cd = 0. Suppose that neither c nor d covers 0.
Then we have elements 0 < e < c and 0 < f < d. The elements c, d, e, f generate
a 0, 1 sublattice of A isomorphic to 3 × 3, which has a 0, 1-sublattice isomorphic
to D2. Thus in, fact, one of c, d covers 0. Suppose that c covers 0. Now since
A ∼= I[0, c] × I[0, d] ∼= 2 × I[0, d] then if I[0, d] is isomorphic to 2 or to D1 then
we are done. So suppose that I[0, d] is isomorphic with neither of them. Then we
claim that 0 is meet-irreducible in I[0, d] and d is join-irreducible in I[0, d]. The
lemma follows from these claims.

Suppose to the contrary that 0 < x ≤ d, 0 < y ≤ d, xy = 0 and x and y are
incomparable. We can then choose these elements so that in addition, x, y are covers
of 0. Since I[0, d] is not isomorphic with D1, then it follows that x+y < d. Now the
elements {0, x, y, x+ y, x+ y + c, d, 1} constitute a 0, 1 sublattice of A isomorphic
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to D2, contradiction. The proof that d is join-irreducible in I[0, d]—equivalently, 1
is join-irreducible in I[c, 1]—is dual to this.

To see in the third case, that b⋄(A) > b⋄(I[0, d]), suppose that D is a sublattice
of I[0, d] isomorphic to Dk, k > 0. Let e, e′ be the least and largest elements of
D. We have that 0 < e (since we are in the third case). Then {c+ x : x ∈ D} is a
sublattice of I[c, 1] isomorphic to Dk. Also {0, c, e, c+e} is a copy of D1. The union
of these two sets is a sublattice isomorphic to D1 +

′
o Dk = Dk+1. Thus b⋄(A) > k.

•

Lemma 2.4. Suppose that a < b in A and that a is minimal among all the elements
from which b is ⋄-accessible. Then a is a cut-point of the interval I[0, b].

Proof. Suppose that x ≤ b and x is incomparable to a. We can assume that every
element y < x is below a. Thus x ≻ ax (i.e., x covers ax). By diamond-accessibility,
we have for some n ≥ 1, a copy of Dn stretching from a to b. It is constituted by
elements a0, a, . . . , an and pairs ui, vi, 0 ≤ i < n so that a = a0, b = an and for all
i < n, uivi = ai and ui + vi = ai+1 and ui, vi are incomparable. There is a largest
k ≥ 0 with x, ak incomparable. Here 0 ≤ k < n and x < ak+1. If x 6≤ uk then
ax ≤ ukx < x implies ukx = ax. Likewise for vk. If both ukx = ax = vkx then
x = ak+1x = (uk + vk)x = ax, a contradiction. Also it is impossible that both uk

and vk are above x, since ak = ukvk 6≥ x. Thus one is above x, the other is not.
Say ukx = ax and x ≤ vk. Now also, akx = ax. Note that ak, x are incomparable
so that {ax, ak, x, ak + x} is a copy of D1.

Suppose first (Case 1) that ak + x = vk. Then uk + x = ak+1, while ukx = ax,
so we have a 0, 1-sublattice {ax, uk, x, ak+1} of I[ax, ak+1] isomorphic with D1.
Then ax is ⋄-accessible from ak+1 and ak+1 is ⋄-accesible from b, giving that ax is
⋄-accessible from b, a contradiction. Finally, suppose that (Case 2) ak + x < vk.
Then we have a 0, 1-sublattice {ax, ak, x, ak+x, uk+x, vk, ak+1} of I[0, b] isomorphic
to D2, which gives the same contradiction. •

Lemma 2.5. Let A ∈ D. There is a unique decomposition A = C +′
o D where

the least element of D is the smallest element of A from which 1 is ⋄-accessible. If
D 6= A then we also have A = C′ +o D for a unique C′.

Proof. Let a be a minimal element from which 1 is ⋄-accessible. By Lemma 2.4, a
is comparable to all elements of A. Obviously, if a > 0 then a is join-irreducible; in
this case a has a unique subcover a′ ≺ a. Then a′ is also comparable to all elements
of A. Thus A = I[0, a′] +o I[a, b] in this case. It follows that any element from
which 1 is ⋄-accessible lies in I[a, 1]. Thus a is the least such element. •

Corollary 2.6. If |A| > 1 then A is +o-indecomposable iff h⋄(A) is defined.

3. Stacks, blocks and towers

In the remainder of the paper, we employ the Birkhoff duality between finite
distributive lattices with 0 and 1, L = 〈L,∧,∨, 0, 1〉, and finite ordered sets P
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(including the empty set). The dual of L is the ordered set of join-irreducible non-

zero elements of L, denoted by A∂ . For a finite ordered set P , the dual of P is the
lattice P ∂ of order-ideals of P , including the empty ideal.

Suppose that Q is a convex subset in the finite ordered set P . Then Q is the
set-theoretic difference of two order-ideals—Q = I1 \ I0, I0 ⊆ I1, where I1 = Q↓
and I0 = (Q↓) \Q. In this situation, the map I 7→ I ∪ I0 is an isomorphism of Q∂

with the interval lattice I[I0, I1] in P ∂ .
According to Birkhoff duality, we have L ≤0,1 K where L,K ∈ D iff there is a

monotone surjective map of K∂ onto L∂ . (Here, L ≤0,1 K denotes that there is
an embedding of L into K that maps 0L to 0K and 1L to 1K .) Translated to our
context of arbitrary embeddings, this means that L ≤ K iff there is a monotone
surjective mapping of some convex subset of K∂ onto L∂ .

Suppose that 0 = a0 < a1 < · · · < an = 1 in A. For 0 ≤ i < n write Qi for the
set {p ∈ A∂ : p ≤ ai+1, p 6≤ ai}. Then each Qi is a nonvoid convex subset of A∂ .

The Qi partition A∂ , and whenever i < j, no element of Qi is above an element
of Qj . For any ordered set P , a sequence P0, . . . , Pn−1 of nonvoid convex subsets
of P which partitions P and has this property that no element of Pi is above any
element of Pj when i < j, will be called a stack for P , or n-stack for P . Thus a
stack for P is essentially just a chain from 0 to 1 in P ∂ .

When P0, . . . , Pn−1 is an n-stack for P then in P ∂ we have the elements ai =
P0 ∪ · · · ∪ Pi−1 satisfying 0 = a0 < a1 < · · · < an = 1. Moreover, for 0 ≤ i < n,
the interval sublattice Li = I[ai, ai+1] in P ∂ has a complemented element b, ai <
b < ai+1, if and only if the ordered set Pi can be partitioned into two nonvoid
disjoint order-ideals. In fact, Li is canonically isomorphic with P ∂

i , or equivalently,
Pi

∼= L∂
i .

Where n denotes an integer, we have used n to denote the n-element chain.
Dealing with ordered sets, we shall use n (non-bold-faced type) to denote the n-
element anti-chain.

Definition 3.1. We define a block to be an ordered set P isomorphic to one of
these:

J2 = 2 and J3 = 3 (the two- and three-element anti-chains);

J ′
2 = 1+c 2 ; and

J(Q) = 1 +c (1 +o Q+o 1) where Q is any nonvoid finite ordered set.

A block has type i, i ∈ {2, 3, 2′} iff it is isomorphic, respectively, to J2, J3 or J ′
2.

The long blocks are those isomorphic to some J(Q), Q 6= ∅.

Lemma 3.2. Let A ∈ D with |A| > 1. Then A is +o-indecomposable iff A∂ has

no cut-point; and h⋄(A) = 1 iff A∂ is a block.

Proof. This follows easily from Lemma 2.3. •

Definition 3.3. Let P be a finite ordered set. We say that P is primitive iff P has
no cut-point (equivalently, P ∂ is +o-indecomposable). We put h⋄(P ) = h⋄(P

∂),
b⋄(P ) = b⋄(P

∂), and we define w(P ) to be the size of the largest anti-chain in P .
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Lemma 3.4. Let P be a finite ordered set.

(1) If Q is a nonvoid convex subset of P then Q∂ ≤ P ∂ , and so
b⋄(Q) ≤ b⋄(P ).

(2) For any finite ordered set P , we have w(P ) ≤ 2b⋄(P ) + 1 and, if P is
primitive, h⋄(P ) ≤ b⋄(P ).

(3) If n is a positive integer such that P ∂ 6≥ Jn, then w(P ) < 2n+ 6.

Proof. For (1), notice that if Q is a convex subset of P then there is a monotone
map of P onto a convex subset C of 1 +c Q +c 1 identical with either Q, 1 +c Q,
Q+c 1, or 1 +c Q+c 1. In all cases, we have Q∂ ≤ C∂ . Then by duality theory, we
get

Q∂ ≤ C∂ ≤ P ∂ .

For (3), let C be a 6 + 2n-element anti-chain of P . Then 26+2n ∼= C∂ ≤ P ∂

(where the embedding is from (1)), which gives Jn ≤ P ∂ . The proof of (2) is
analogous. •

Definition 3.5. Given an ordered set P , a tower for P is a stack B0, . . . , Bn−1 for
P , in which each Bi is a block.

Theorem 3.6. For any finite ordered set P we have

(1) h⋄(P ) = 1 iff P is a block.
(2) P admits an n-tower for some n ≥ 1 iff P is primitive. The largest n for

which P admits an n-tower is n = h⋄(P ).
(3) If P = J(Q) = 1 +c (1 +o Q +o 1) is a long block then b⋄(P ) > b⋄(Q) and

w(P ) > w(Q).

Proof. Left to the reader. (See Lemma 2.3 and Corollary 2.6.) •

Definition 3.7. Suppose that B is a long block or a block of type J ′
2. The isolated

point of B will be called the orphan in B, and usually will be denoted by a. B \{a}
will be called the chamber of B. The least and largest elements of B \ {a} will
usually be denoted as b0, b1, respectively.

Remark 3.1. Besides the Birkhoff duality between finite distributive lattices with
0 and 1, and finite ordered sets, we have another duality at work here, and it is
referred to in the last sentence of the next lemma. Namely, if L = 〈L,∨,∧〉 is a
lattice, then so is L′ = 〈L,∧,∨〉, and if 〈P,≤〉 is an ordered set, then so is 〈P,≥〉. L′

is often called the dual of L and 〈P,≥〉 is called the dual of 〈P,≤〉. It happens that
〈P,≥〉∂ is canonically isomorphic to (〈P,≤〉∂)′. This means, for example, that if
P0, . . . , Pn−1 is a tower for 〈P,≤〉, then Pn−1, . . . , P0 (with the order turned upside
down inside each block Pi) is a tower for 〈P,≥〉. Many of the statements proved in
this and the following sections thus remain true when we turn the order (and the
list of blocks comprising a tower) upside down.

Lemma 3.8. (Adjacency Lemma) Suppose that B0, . . . , Bn−1 is a tower for P and
that h⋄(P ) = n. Let Bi and Bi+1 be two adjacent blocks and suppose that Bi+1 is
a long block or of type 2′. Let bi+1

0 be the least non-isolated element of Bi+1.

(1) Suppose that Bi is a long block or of type 2′. Then bi1 < bi+1
0 .
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(2) Suppose that Bi is type 3. Then all three elements x ∈ Bi satisfy x < bi+1
0 .

(3) Suppose that Bi is type 2 and Bi+1 is a long block. If one of the elements of
Bi is not below bi+1

0 , then there is a cut-point c of the interval I[bi+1
0 , bi+1

1 ]

with bi+1
0 ≺ c. If neither element of Bi is below bi+1

0 then both elements of
Bi are below c.

The duals of these statements hold when Bi is a long block or a block of type 2′.

Proof. First suppose that Bi = {u, v, w} is type 3 and assume, say, that u 6≤ bi+1
0 .

We work in the lattice P ∂ . Let I0 =
⋃

k<i Bk, I1 = I0 ∪ Bi ∪ Bi+1. These are

elements of P ∂ . The interval I[I0, I1] has a 0, 1-embedded D3 consisting of I0,
I0 ∪ {v}, I0 ∪ {w}, I0 ∪ {v, w}, I0 ∪ {v, w, bi+1

0 }, I0 ∪ {u, v, w}, I0 ∪ {u, v, w, bi+1
0 },

I0∪{u, v, w, ai+1, bi+1
0 }, (I0∪Bi∪Bi+1)\{a

i+1}, I1. Also, the interval I[∅, I0] has a
0, 1-embeddedDi and the interval I[I1, P ] has a 0, 1-embeddedDn−i−2. Altogether,
we get a 0, 1-embedded Dn+1 contradicting the fact that h⋄(P

∂) = n.
Next, suppose that Bi is a long block and that bi1 6≤ bi+1

0 . We get again a 0, 1-
embedded D3 in I[I0, I1], another contradiction. Namely, I0, (I0 ∪ Bi) \ {ai, bi1},
I0 ∪ {ai}, (I0 ∪ Bi) \ {bi1}, I0 ∪ Bi, (I0 ∪ Bi ∪ {bi+1

0 }) \ {bi1}, I0 ∪ Bi ∪ {bi+1
0 },

I0 ∪Bi ∪ {ai+1, bi+1
0 }, I1 \ {a

i+1}, I1.
Next, suppose that Bi has type 2, say Bi = {u, v}. Suppose first that, say v 6≤

bi+1
0 . Assume next, to get a contradiction, that the next cut-point of I[bi+1

0 , bi+1
1 ]

above bi+1
0 does not cover bi+1

0 . Then there are two distinct covers, c and c′ of

bi+1
0 below bi+1

1 . Now we show that the interval between I0 = B0 ∪ · · · ∪Bi−1 and
I1 = P ∪ Bi ∪ Bi+1 in P ∂ has a 0, 1-copy of D3. Since the interval from ∅ to I0
has a 0, 1 copy of Di and the interval from I1 to P has a 0, 1-copy of Dn−i−2 then
P ∂ has a 0, 1-copy of Dn+1 which contradicts the assumption that h⋄(P ) = n. The
copy of D3 consists of I0 ∪ {v} and I0 ∪ {u, bi+1

0 } which intersect to I0 and whose

union is I0∪Bi∪{bi+1
0 }; I0∪Bi∪{bi+1

0 , c} and I0∪Bi∪{bi+1
0 , c′} which intersect to

I0 ∪Bi ∪ {bi+1
0 } and join to to I0 ∪Bi ∪ {bi+1

0 , c, c′}; and I0 ∪Bi ∪ {bi+1
0 , c, c′, ai+1}

and I0 ∪ Bi ∪ I[bi+1
0 bi+1

1 ] which intersect to I0 ∪ Bi ∪ {bi+1
0 , c, c′} and join to I1.

Here ai+1 is the isolated point of Bi+1. Hence we do have bi+1 ≺ c where

I[bi+1
0 , bi+1

1 ] = I[bi+1
0 , c] ∪ I[c, bi+1

1 ] .

Now suppose that also, u 6≤ bi+1
0 and that not both u and v are below c. Thus

we may assume that u 6≤ c and v 6≤ bi+1
0 (or exchange u, v). Since Bi+1 is a long

block, then bi+1
1 > c. Now we have again a 0, 1-copy of D3 in the interval from P

to Q, giving the same contradiction. Its construction is left to the reader. •

Definition 3.9. A knot is a tower with all blocks of types 2, 3, 2′.

Let T be a finite ordered set and B0, . . . , Bn−1 be an n-knot for T where n =
h⋄(T ) ≥ 1. Let D be an order-ideal in T . Given a block B which is a convex subset
of T , we say that B is green with respect to D iff either B is a J3 and intersects D,
or B is a J2 and contained in D, or B is a J ′

2 and the least member of its chamber
belongs to D.
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Lemma 3.10. (Knot Lemma) Let B0, . . . , Bn−1 be an n-knot for T where n =
h⋄(T ) ≥ 1, and let D be an order-ideal in T . Suppose that Bn−1 is green with
respect to D. Then T admits a stack of one of the following types: (1) an n-knot
C0, . . . , Cn−1 in which C0 is green; (2) a stack E,C1, . . . , Cn−1 where C1, . . . , Cn−1

is a knot and E is a two-element chain contained in D; (3) a stack E,C0, . . . , Cn−1

where E = {p}, p is a minimal element of T and p ∈ D, and where C0, . . . , Cn−1

is a knot.

Proof. If n = 1 or if B0 is green, there is nothing to prove. Suppose that n > 1 and
B0 is not green. Let i0 be the least i, i < n, such that Bi is green. We have i0 > 0.

Among the blocks B0, . . . , Bi0−1, no block Bi contains more than one element
of D, blocks of type J3 are disjoint from D, and in blocks of type J2′ , only the
isolated point can belong to D. Suppose that there are k elements of D altogether
in the blocks, B1, . . . , Bi0−1.

First, suppose that k = 0. If Bi0 is a J2, then all elements of Bi0 are minimal
elements of T . So, we can move Bi0 down to the bottom to form a stack of type
(1). If Bi0 is a J ′

2 or a J3, then the least non-isolated point of the J ′
2 or at least

one point of the J3, respectively, is minimal in T . We can move this element down
to the bottom to form a stack of type (3).

Henceforth, we assume that k > 0. Let i1 > · · · > ik, with i1 < i0, be the
indices of the blocks in which these elements of D occur; and let Bij ∩ D = {bj}
for 1 ≤ j ≤ k.

Case 1: Bi0 is a J3 or J2′ . Choose for b0 any element of D∩Bi0 in the first case,
and in the second, choose for b0 the lesser of the two non-isolated elements. Thus
b0 ∈ Bi0 ∩D.

We define a stack F,R1, . . . , Ri0 for the ordered set Q = B1∪B2∪ · · ·∪Bi0 . Put
Ri = Bi for 1 ≤ i ≤ i0 − 1, i 6∈ {i1, . . . , ik}. Put Ri0 = Bi0 \ {b0}. For 1 ≤ j ≤ k

put Rij = (Bij \ {bj}) ∪ {bj−1}. Finally, take F = {bk}. It is easy to see that this
is a stack for Q and, moreover, F ⊆ D and R1, . . . , Ri0 is a knot for Q \ F .

Now there are cases depending on the character of B0. If bk is above no member
of B0 then F,B0, R1, . . . , Ri0 , Bi0+1, . . . , Bn−1 is a stack of type (3). Assume that
b ∈ B0 and b < bk. Then b ∈ D and since B0 is not green, then B0 is a J2 or J ′

2 and
b is an isolated point in B0. In this case, we take E = {b} and R0 = (B0\{b})∪{bk}.
Now E,R0, R1, . . . , Ri0 , Bi0+1, . . . , Bn−1 is a stack for T of type (3).

Case 2: Bi0 is a J2. Write b−1, b0 for the two elements of Bi0 . We again define
a stack for Q. We put F = {bk−1, bk}. For 2 ≤ i ≤ i0 we define Ri by cases. If
Bi−1 ∩D = ∅, we put Ri = Bi−1. Otherwise, we have, say i − 1 = ij , j ≥ 1, and
we put Ri = Rij+1 = (Bij \ {bj})∪{bj−2}. This gives us a stack F,R2, R3, . . . , Ri0

for Q where R2, . . . , Ri0 are blocks.
The construction now depends on the characters of F and B0 and the relations

between elements of B0 and the elements bk, and bk−1 of F . If no member of F is
above a member of B0 then F,B0, R2, . . . , Ri0 , Bi0+1, . . . , Bn−1 is a stack for T of
type (1) or (2) (depending on whether bk < bk−1 or bk and bk−1 are incomparable).
Suppose that b ∈ B0 and b < bj , j ∈ {k, k − 1}. Then b ∈ D and so B0 is a J2 or
J ′
2, and b is an isolated point of B0 since B0 is not green.



10 W. DZIOBIAK, J. JEŽEK, AND R. MCKENZIE

We now take E = {b, bk}, C1 = {bk−1} ∪ (B0 \ {b}, Ci = Ri for 2 ≤ i ≤ i0, and
Ci = Bi for i0 + 1 ≤ i < n. Since bk−1 6≤ bk, then E,C1, . . . , Cn−1 is a stack for T
of type (1) if b 6≤ bk, and of type (2) if b < bk.

We have now handled all cases. •

Definition 3.11. Let T be a primitive finite ordered set. An n-tower for T is
called fitting iff h⋄(T ) = n. An n-tower B0, . . . , Bn−1 for T is called aligned iff it is

fitting and whenever i < j and Bi and Bj are long blocks then bi1 < b
j
0.

In Fig. 1 we show an example of an ordered set with two different arrangements
into a 4-tower; the first tower is not aligned, while the second is.

Fig. 1

Theorem 3.12. (Alignment Theorem) Every primitive finite ordered set admits
an aligned tower.

Proof. Let B0, B1, . . . , Bn−1 be a fitting tower expression of P . Our proof is by
induction on several quantities. First on n = h⋄(P ). Next on two parameters
of the particular tower expression. First, the number ν of long blocks Bi. Sec-
ond, the number b of “bad gaps” where we have long blocks Bi and Bi+k+1, and
Bi+1, . . . , Bi+k is a knot (or k = 0), and where bi1 6≤ bi+k+1

0 .
Let the given tower expression for P have value sequence (n, ν, b). The induction

assumption is that every finite primitive ordered set P ′ which has a fitting tower
with value sequence (n′, ν′, b′) that is lexicographically less than (n, ν, b), does admit
an aligned tower.

Clearly, we can assume that Bn−1 is a long block (else the induction assumption
immediately yields the desired conclusion) and that b > 0 (else there is nothing to be
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proved). Let Bi be the long block that begins the highest gap. Say Bi+1, . . . , Bi+k

is a knot (or k = 0) and Bi+k+1 is the next long block. We are going to find a
different fitting tower for P with the same n and either smaller ν or same ν and
smaller b.

Step 1: We make adjustments to Bi+k and Bi+k+1.
Suppose that Bi+k is a J2, say Bi+k = {u, v} is a J2. If neither of u, v is below

bi+k+1
0 then by Lemma 3.8, we have a cut-point c ≻ bi+k+1

0 in Bi+k+1 \ {a
i+k+1}

and u < c, v < c. Let B′
i+k+1 = Bi+k+1 \ {b

i+k+1
0 } and B′

i+k = Bi+k ∪ {bi+k+1
0 }.

We have now a tower

B0, . . . , Bi+k−1, B
′
i+k, B

′
i+k+1, Bi+k+2, . . . , Bn−1

in which, if |Bi+k+1| > 4 then B′
i+k+1 is a long block and B′

i+k is a J3. In this
case, for the new tower, n and ν are the same and either b is decreased by 1 or b is
unchanged. On the other hand, if |Bi+k+1| = 4 then Bi+k+1 is a J ′

2 and the new
tower has the same n (of course) but smaller ν. Thus we achieve that the highest
block below the long block at the top of the highest gap is a J3, or we are done, in
this case.

Now consider the case when, say, v < bi+k+1
0 and u 6≤ bi+k+1

0 . We remove bi+k+1
0

from Bi+k+1 and place it in Bi+k. By the Adjacency Lemma, this gives a new
tower in which B′

i+k is a J ′
2 and B′

i+k+1 is a long block or of type J ′
2. In the second

case, the parameter ν is reduced. In the first, we have arranged that the block just
below the top long block is a J ′

2.

Step 2: Setting D = bi+k+1
0 ↓, we define “green blocks” with respect to D as in

Lemma 3.10, and observe that with Lemma 3.8 and the above manipulations, we
can assume that Bi+k is green.

Step 3: Using Lemma 3.10, we find a stack for Q = Bi+1∪ · · ·∪Bi+k of type (1),
(2), or (3).

Case 1: The new stack is a k-knot Ci+1, . . . , Ci+k with Ci+1 green.
Subcase 1.1: Ci+1 is a J3. Then by (the dual of) Lemma 3.8, all members of

Ci+1 are above bi1. Since one of them, x, belongs to D then bi1 < x < bi+k+1
0 . This

contradicts the badness of our gap.
Subcase 1.2: Ci+1 is a J ′

2. Then by (the dual of) Lemma 3.8, the least element x
among the two comparable members of Ci+1 is above bi1. But x ∈ D, so bi1 < x <

bi+k+1
0 —a contradiction again.
Subcase 1.3: Ci+1 is a J2. Then Ci+1 is all green. By (the dual of) Lemma 3.8,

one of the next two subcases pertains.
Subcase 1.3.1: One element of Ci+1 is above bi1. Then of course we get the same

contradiction.
Subcase 1.3.2: Ci+1 = {u, v} where {u, v, bi1} is a set of three incomparable

elements, all of which are above c, c ≺ bi1 and c is a cut-point of I[bi0, b
i
1]. Now we

replace Bi by B′
i = Bi \ {bi1} and replace Ci+1 by C ′

i+1 = Ci+1 ∪ {bi1}. Now we
have a new tower for P , namely

B0, . . . , Bi−1, B
′
i, C

′
i+1, . . . , Ci+k, Bi+k+1, . . . , Bn−1 .
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If B′
i is a J ′

2 then we have changed (n, ν, b) to (n, ν − 1, . . .) and the desired result

follows by induction. Otherwise B′
i is a long block and b′i1 = c < bi+k+1

0 , so we have
changed (n, ν, b) to (n, ν, b− 1), and again we are done.

Case 2: The new stack is E,Ci+2, . . . , Ci+k where E = {u, v} is a green two-
element chain, u < v, and Ci+2, . . . , Ci+k is a knot. Neither of u, v is comparable
with bi1, since they can only be above it, and both are below bi+1+1

0 . Now we put
R = E ∪ {bi1}, S = Bi \ {bi1}. The argument that there is c ≺ bi1, a cut-point of
I[bi0, b

i
1], is strictly analogous to one we have seen before. Now S is either a J ′

2 or
a long block. In either case, we have a tower

B0, . . . , Bi−1, S,R,Ci+2, . . . , Ci+k, Bi+k+1, . . . , Bn−1

for P and in the first case, (n, ν, b) has been replaced by (n, ν − 1, . . .), and in the

second case, we know by Lemma 3.8 that, since R is a J ′
2, c < u < bi+k+1

0 . So in
the second case, we have replaced (n, ν, b) by (n, ν, b− 1).

Case 3: The new stack is E,Ci+1, . . . , Ci+k where Cj are blocks and E = {p},

p < bi+k+1
1 . We have, of course, that p must be incomparable with bi1. Now we

take B′
i = Bi \ {b

i
1}, E

′ = {p, bi1} and we have a tower

B0, . . . , Bi−1, B
′
i, E

′, Ci+1, . . . , Ci+k, Bi+k+1, . . . , Bn−1

for P . The argument that bi1 has in I[bi0, b
i
1] a unique subcover c—and so that B′

i is
a block—is the same one we have seen before. We have a contradiction, of course,
to the assumption that h⋄(P ) = n.

We have treated all cases, and justified the theorem. •

4. Avoiding {Jk : k ≥ N}, I: critical blocks and critical intervals

We define AN as the class of finite distributive lattices L such that for all k ≥ N ,
L 6≥ Jk. We define PN to be the class of finite ordered sets P such that P ∂ ∈ AN .

Definition 4.1. A k-ladder is a poset Lk isomorphic to D∂
k , that is, the ordinal

sum of k copies of the two-element anti-chain.

Lemma 4.2. Let P ∈ PN . Let Q ⊆ P be a convex subset of P which in its induced
order is a k + N -ladder for some k ≥ 2. There do not exist two distinct elements
x, y ∈ P \ Q such that x is incomparable to both minimal elements of Q and y is
incomparable to both maximal elements of Q.

Proof. For 0 ≤ i < k + N let ai, bi be the two incomparable elements of Q at
height i. Suppose that there exists a pair x, y of distinct elements of P such that x
is incomparable with both a0 and b0 and y is incomparable with both a = ak+N−1

and b = bk+N−1. First we are going to prove that there exists a pair x′, y′ with
the same properties and, moreover, such that y′ � x′ and Q ∪ {x′, y′} is a convex
subset of P . Denote by M1 the set of the maximal elements z with the property
that z is incomparable with both a0 and b0. Denote by M2 the set of the minimal
elements z with the property that z is incomparable with both a and b. It can be
easily checked that for any m ∈ M1 ∪M2, the set Q∪ {m} is a convex subset of P .
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Consider first the case when M1 = M2 = {p} for an element p. Then x ≤ p ≤ y.
If x < p, put y′ = p and let x′ be a subcover of p above x. Otherwise, if x = p < y,
put x′ = p and let y′ be a cover of p below y.

It remains to consider the case when there are two distinct elements p ∈ M1 and
q ∈ M2. If p, q are incomparable, put x′ = p and y′ = q. If p < q, put x′ = p and
y′ = q. Finally, if q < p, put x′ = q and let y′ be a cover of q below p.

So, in the rest of the proof we can assume that x, y is a pair of distinct elements
such that x||a0, x||b0, y||a, y||b, y � x and the set C = Q ∪ {x, y} is convex. Put
Ei = {a0, b0, . . . , ai, bi} and E = Ek+N−2. The following are order-ideals in C:

∅, {a0}, {b0}, {a0, b0} {a0, x}, E0 ∪ {x},
Ei ∪ {ai+1, x}, Ei ∪ {bi+1, x}, Ei+1 ∪ {x}, (0 ≤ i < k +N − 2)

E ∪ {a, x}, E ∪ {b, x}, E ∪ {a, x, y}, E ∪ {a, b, x}, E ∪ {a, b, x, y}.
It is easy to verify that these are all order-ideals in C, and form a sublattice of

C∂ isomorphic with JN+k−2. Since C∂ ≤ P ∂ , this contradicts that P ∈ PN . •

J3 J∂
3

Fig. 2

Corollary 4.3. Let P ∈ PN . Let Q ⊆ P be a convex subset of P which in its
induced order is a k+N -ladder for some k ≥ 2. Assume that x0 ∈ P \Q and x0 is
incomparable to all elements of Q. Let Q′ be the convex subset of P formed by all
elements of Q except those elements that are either maximal or minimal in Q (so
that Q′ is a k− 2+N -ladder). Then every element x ∈ P \Q′ different from x0 is
either strictly above all elements of Q′ or strictly below all elements of Q′.
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Remark 4.1. Recall that we defined a primitive ordered set to be an ordered set
without cut-points. Thus a long block is a primitive ordered set that decomposes
internally as a cardinal sum, Q = {a}+c I[b, c], of a one-element ordered set and a
bounded ordered set of at least three elements. In such a long block Q, the isolated
point a is called the orphan in Q, and the interval I[b0, b1] that makes up the rest
of Q is called the chamber in Q.

Definition 4.4. Let P be an ordered set. P has a unique internal ordinal sum
decomposition into singletons {c} (c ranging through the cut-points of P ) and
primitive ordered sets. The primitive ordered subsets of P occuring in this decom-
position will be called the primitive vertical components of P . They are, of course,
convex subsets of P , and each one of them is either identical to {x : x < c} where
c is the least cutpoint of P , or of the form I(c, c′) where c < c′ are successive cut-
points, or is identical to {x : c < x} where c is the largest cutpoint of P , or finally,
is identical with P itself if P has no cut-points.

We define critical blocks of depth n and critical intervals of depth n in P , for
any positive integer n.

Each primitive vertical component of P can be expressed in at least one way as
a tower. By a critical block of depth 1 in P , we mean a long block that occurs as
a block in some tower expression for some primitive vertical component of P . By
a critical interval of depth 1 in P we mean the chamber of some critical block of
depth 1 in P .

Now suppose that a0, . . . , an−1 is an n-element anti-chain in P and

b0 < b1 < · · · < bn−1 < cn−1 < cn−2 < · · · < c1 < c0

is a chain in P such that the following hold.

• ai is incomparable to all elements of I[bi, ci] for 0 ≤ i < n and bi < ai+1 < ci
for 0 ≤ i < n− 1.

• Where Qi = {ai} ∪ I[bi, ci], Q0 is a critical block of depth 1 in P and for
all i < n− 1, Qi+1 is a critical block of depth 1 in I[bi, ci].

In this situation, we call Qn−1 a critical block of depth n in P , and its chamber,
I[bn−1, cn−1], a critical interval of depth n in P .

The critical intervals and critical blocks of depth n in P are precisely those
intervals and blocks for which the auxiliary elements exist as above.

Notice that in the above situation the elements a0, . . . , an−1 form an n-element
anti-chain of elements incomparable to all elements of I[bn−1, cn−1]. Thus

Lemma 4.5. If I[b, c] is a critical interval of depth n in P then w(P ) ≥ n +
w(I[b, c]).

Definition 4.6. Let P be a poset. An interval I[b0, b1] ⊆ P is undivided (in P ) iff
b0 < b1 and for all x ∈ P \ I[b0, b1], and all b0 < y < b1, if x < y then x < b0, and
if y < x then b1 < x. Otherwise, the interval is said to be divided (in P ).

Lemma 4.7. Suppose that Q = {a} +c I[b0, b1] is a long block, and c0 < c1 are
successive cut-points of I[b0, b1]. Then the interval I[c0, c1] is undivided in Q.
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Proof. Trivial, from the definitions. •

Proposition 4.8. Suppose that P ∈ PN and that Q = {a} +c I[b0, b1] is a long
block that is a critical block of depth n ≥ 1 in P . Suppose that c0 < c1 are successive
cut-points of I[b0, b1] and that I(c0, c1) is a k + N -ladder for some k ≥ 2. Then
n = 1 and the interval I[c0, c1] is undivided in P .

Proof. To prove the proposition for the case n = 1, suppose that Q is a critical
block of depth 1 in P . There is a primitive vertical component P ′ of P that has a
tower Q0, . . . , Qk−1 with, say, Q = Qi0 . Obviously, every x ∈ P \P ′ satisfies either
x < P ′ and x < c0, or x > P ′ and x > c1. So we work inside the convex set

P ′ = Q0 ∪ · · · ∪Qk−1

to show that I[c0, c1] is undivided in P ′. By the previous lemma, the interval
I[c0, c1] is undivided in Q = Qi0 .

We have the element a that is incomparable to all elements in the interval
I[c0, c1], especially, to all elements of the k +N -ladder I(c0, c1). Thus by Lemma
4.2, every element of any Qi, i < i0, must be below at least one of the two minimal
elements of I(c0, c1), and every element of any Qi, i > i0, must be above at least
one of the two maximal elements of I(c0, c1). Suppose that there is x ∈ P ′ such
that x < u0 and x is incomparable to u1 where u0, u1 are the two minimal elements
of I(c0, c1). We can assume that x is maximal with this property. We have that
x ∈ Qi for some i < i0. It is easy to see that I(c0, c1) ∪ {a, x} is convex in P . Now
where

I(c0, c1) = L0 ∪ L1 ∪ · · ·LN+k−1

and Li are the two-element levels of I(c0, c1), we have a tower S,L1, . . . , LN+k−2, T

for the convex set I(c0, c1) ∪ {a, x}, with S = {x, u0, u1} = {x} ∪ L0 and T =
{a} ∪LN+k−1. The block S in this tower is of type J ′

2 while the block T is of type
J3. This tower gives a copy of JN+k−2 in P ∂ , and that is a contradiction.

Thus Qi < I(c0, c1] for i < i0. Dually, we have I[c0, c1) < Qi for i > i0. It
remains to show that every x that belongs to some Qi, i < i0, satisfies x < c0; and
dually, every x that belongs to some Qi, i > i0, satisfies x > c1.

The proof that this is so for i < i0 is by induction on the quantity i0 − i. First,
suppose that x ∈ Qi0−1 and x 6< c0. We can choose x to be maximal in Qi0−1.
We do have that x < I(c0, c1]. Let y be a maximal element of Qi0−1 that is
incomparable to x. (Such a y must exist!) Clearly, if y < c0, then y is covered by
c0. Since I[c0, c1] is undivided in Qi0 , to I[c0, c1], then the set {x, y, a}∪ I[c0, c1) is
convex in P ′. We have a tower S = {x, y, c0}, L0, . . . , LN+k−2, T = {a} ∪ LN+k−1

for this ordered set. Here S is a block of type J ′
2 or J3 and T is a block of type J3.

The tower produces a copy of JN+k−2 in P ∂ , a contradiction.
So we have the result for i = i0 − 1. Now suppose that it is true for i ∈

{i0 − 1, i0 − 2, . . . , j + 1} where 0 ≤ j ≤ i0 − 2. Let x ∈ Qj and suppose that
x 6< c0. Since Qp < c0 for j < p ≤ i0, then x is incomparable to all elements
of Qj+1 ∪ · · · ∪ Qi0−1. We can assume that x is maximal in Qj and pick another
maximal element y ∈ Qj . If y 6< c0 take z = y, else take z to be maximal in the
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interval I[y, c0). Here, {x, z, a} ∪ I[c0, c1) is convex and has the tower, as above,
that leads to a contradiction.

We have now shown that the interval I[c0, c1] is not divided by any member of
P ′ that lies in a block Qj with j ≤ i0. The fact that the interval is not divided
by any member of P ′ lying in a block Qj with j > i0 follows from what has been
proved above and Remark 3.1.

Thus we have handled the case n = 1 of this Proposition. It is impossible
that n > 1. For if I[b0, b1] is a critical interval of depth ≥ 2 then there are two
incomparable elements a, a′ in P that are both incomparable to the entire interval
I[c0, c1]. By Lemma 4.2, this cannot occur. •

Lemma 4.9. Let P ∈ PN be a primitive ordered set. Let Q0, . . . , Qm−1 be any
tower for P where m = h⋄(P ). Then either P is an m-ladder (and every Qi is a
J2-block and Qi < Qj when i < j) or else there are 0 ≤ i0 ≤ i1 < m such that
i1 − i0 ≤ N + 3 and Q0 ∪ · · · ∪ Qi0−1 is an i0-ladder and Qi1 ∪ · · · ∪ Qm−1 is an
m− i1-ladder.

Proof. For the purpose of this proof, a block Qi that is not of type J2, or a pair of
consecutive blocks Qi, Qi+1 such that Qi 6< Qi+1 will be called a “tangle” in the
tower. If there is no tangle in this tower then, obviously, P is an m-ladder. So
suppose there is a tangle. Let i0 be the least i such that either Qi or Qi, Qi+1 is a
tangle. Let i′ be the greatest i such that either Qi or Qi−1, Qi is a tangle. Then
i0 ≤ i1. Put i1 = i′+1 (and note that i1 = m is possible). Obviously, Q0, . . . , Qi0−1

is an i0-ladder (empty if i0 = 0), and Qi1 , . . . , Qm−1 is an m− i1-ladder (empty if
i1 = m).

We need to show the bound on i1 − i0. Write I0 = Q0 ∪ · · ·Qi0−1 and I3 =
Q0 ∪ · · · ∪Qi′ . If the lowest tangle is simply Qi0 , put I1 = I0 ∪Qi0 , and otherwise
put I1 = I0∪Qi0∪Qi0+1. If the highest tangle is simply Qi′ put I2 = Q0∪· · ·∪Qi′−1,
and otherwise put I2 = Q0 ∪ · · · ∪ Qi′−2. To demonstrate the claimed bound on
i1 − i0, it suffices, given that P ∈ PN , to show that the interval I[I0, I1] in P ∂

has a copy of the lattice B2,3 with its top coinciding with I1, while the interval
I[I2, I3] has a copy of B2,3 with its bottom coinciding with I2. (This is because the
interval I[I1, I2] has a 0, 1-copy of Dk provided by a middle part of our tower, with
k ≥ i1 − i0 − 4.) The verification is left to the reader. •

The next remark will be needed in §5.

Remark 4.2. If in Lemma 4.9, the lattice P ∂ satisfies P ∂ 6≥0 Dk +
′
oB2,3 for every

k ≥ N , and P ∂ is not a ladder, then i0 ≤ N − 1. This is because the interval
I[I0, I1] in P ∂ contains not only a 1-embedded B2,3 but also a 0-embedded B2,3.
Furthermore, and more trivially, if Dk 6≤ P ∂ for every k ≥ N then we can take
i0 = 0 and i1 = m in the Lemma, because in fact we have m ≤ N − 1.

Lemma 4.10. Suppose that P ∈ PN is a long block, say P = {a} ∪ I[b0, b1] where
a is the orphan in P and |I[b0, b1]| ≥ 3. Let c0 < c1 be two successive cut-points in
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I[b0, b1] such that I(c0, c1) is nonvoid. Then either I(c0, c1) is a k-ladder for some
k > 0 or else, h⋄(I(c0, c1)) ≤ 2N + 2.

Proof. The interval I(c0, c1) is a primitive ordered set. We apply Lemma 4.9 to it.
Suppose that the interval is not a ladder. Then where m = h⋄(I(c0, c1)), we have
the tower Q0, . . . , Qm−1 and it contains a tangle Qi0 or Qi0 , Qi0+1 (see the proof
of Lemma 4.9). We claim that i0 ≤ N and m− i0 − 2 ≤ N (which will prove that
h⋄(I(c0, c1)) ≤ 2N + 2.

Thus assume that N < i0. (The proof that Qi0+1, . . . , Qm−1 is a tower of length
at most N is dual (in the simple sense) to the proof we give, and will be omitted.)
Using that the orphan a is incomparable to all elements of I(c0, c1), we can put a
together with Q0, and find a block Q′

0 of type J3 that is an upset in {a} ∪ Q0. If
the tangle is Qi0 , Qi0+1, we can find a down-set Q′

i0
in Qi0 ∪Qi0+1 that is a block

of type J3 or J ′
2. If the tangle is simply Qi0 then we take Q′

i0
= Qi0 . In either

event, we get a tower Q′
0, Q1, . . . , Qi0−1, Q

′
i0

for the ordered set

Q = Q′
0 ∪Q1 ∪ · · · ∪Qi0−1 ∪Q′

i0

and Q is a convex subset of P . This yields a copy of Ji0−1 in Q∂ , and hence a copy
of this lattice in P ∂ , contradicting the fact that P ∈ PN . •

5. Avoiding {Jk : k ≥ N}, II: nicely structured ordered sets

Definition 5.1. By a basic skeleton we mean an ordered set S and a system
S = (X; b0, . . . , bn−1; c0, . . . , cn−1) where

• S = X ∪ {bi : i < n} ∪ {ci : i < n};
• X ∩ ({bi : i < n} ∪ {ci : i < n}) = ∅, and

b0 ≺ c0 ≤ b1 ≺ c1 ≤ · · · ≤ bn−1 ≺ cn−1

(i.e., bi is covered by ci for 0 ≤ i < n).

In this situation, we also say that S is a basic skeleton for S.
By a skeleton we mean an ordered set S and a system

S = (X,Y0, Y1; b0, . . . , bn−1; c0, . . . , cn−1)

where

• X, Y0, Y1 are disjoint sets and X ∪ Y0 ∪ Y1 ⊆ S;
• (X; b0, . . . , bn−1; c0, . . . , cn−1) is a basic skeleton for S \ (Y0 ∪ Y1);
• Y0 is an order-ideal of S and Y1 is an order filter of S; moreover, either
Y0 < b0 and cn−1 < Y1, or n = 0 and Y0 < Y1;

• each of Y0, Y1 is empty, or a ladder;
• there is at most one x ∈ S \ Y0 such that Y0 < x fails;
• there is at most one x ∈ S \ Y1 such that x < Y1 fails.
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In this situation, we also say that S is a skeleton for S.
Where M is a positive integer, a skeleton or basic skeleton for S, as above, is an

(M)-skeleton for S, or a basic (M)-skeleton for S iff |X ∪ {bi : i < n} ∪ {ci : i <
n}| ≤ M .

Definition 5.2. Suppose that S is an ordered set,

S = X ∪ Y0 ∪ Y1 ∪ {bi : i < n} ∪ {ci : i < n} ,

and S = (X,Y0, Y1; b0, . . . , bn−1; c0, . . . , cn−1) is a skeleton for S. We define the
character of the skeleton S. Suppose that Yi is an ℓi-ladder (i ∈ {0, 1}). (Note that
ℓi = 0 signifies that Yi = ∅.) Put c̄0 = 〈ℓ0〉 if Y0 < x for all x ∈ S \ Y0. In the
contrary case, put c̄0 = 〈ℓ0, d0, ε0, x0〉 where d0, ε0, x0 are defined as follows: x0 is
the unique element x ∈ S \ Y0 such that Y0 < x fails. We have 0 ≤ d0 < ℓ0 and
x0 fails to be above both elements of depth d0 in Y0, while it is above all elements
of Y0 of depth greater than d0. ε0 is the number of elements at depth d0 in Y0

that are below x0 (either 0 or 1). We define c̄1 dually (so to speak). That is, we
put c̄1 = 〈ℓ1〉 if x < Y1 holds for all x ∈ S \ Y1. In the contrary case, we put
c̄1 = 〈ℓ1, d1, ε1, x1〉 where d1, ε1, x1 are defined as follows: x1 is the unique element
x ∈ S\Y1 such that x < Y1 fails. We have 0 ≤ d1 < ℓ1 and x1 fails to be below both
elements of height d1 in Y1, while it is below all elements of Y1 of height greater
than d1. ε1 is the number of elements at height d1 in Y1 that are above x1 (either
0 or 1).

The character of S is the pair (c̄0, c̄1).

Definition 5.3. Suppose that S = (X,Y0, Y1; b0, . . . , bn−1; c0, . . . , cn−1) is a skele-
ton for an ordered set S, and S′ = (X,Y ′

0 , Y
′
1 ; b0, . . . , bn−1; c0, . . . , cn−1) is a skeleton

for an ordered set S′ having the same underlying basic skeleton (X; b0, . . . , bn−1;

c0, . . . , cn−1). Let (c̄0, c̄1), (c̄
′
0, c̄

′
1) be the characters of S and S

′
, respectively. We

write (c̄0, c̄1) ≤ (c̄′0, c̄
′
1) to mean that for i = 0 and i = 1:

• c̄i = 〈ℓi〉 iff c̄′i = 〈ℓ′i〉 and if c̄i = 〈ℓi〉 then ℓi ≤ ℓ′i;
• if c̄i = 〈ℓi, di, εi, xi〉 and c̄′i = 〈ℓ′i, d

′
i, ε

′
i, x

′
i〉 then xi = x′

i, εi = ε′i, di ≤ d′i
and ℓi ≤ ℓ′i.

Definition 5.4. Let P be a finite ordered set, and M be a positive integer.
By a basic (M)-system for P we mean an ordered subset S ⊆ P together with
a basic (M)-skeleton for S, S = (X; b0, . . . , bn−1; c0, . . . , cn−1), such that P =
S ∪

⋃
0≤i<n I(bi, ci)P and this union is disjoint. (Recall that the interior intervals

I(bi, ci) are empty in S, since bi ≺ ci in S, but in P they need not be empty.)
By an (M)-system for P we mean an ordered subset S ⊆ P together with an

(M)-skeleton for S,

S = (X,Y0, Y1; b0, . . . , bn−1; c0, . . . , cn−1) ,

such that S \ (Y0 ∪ Y1) and its basic (M)-skeleton (X; b0, . . . , bn−1; c0, . . . , cn−1) is
a basic (M)-system for P \ (Y0 ∪ Y1). We define the width of S, written w(S), to
be the maximum, over all the intervals I[bi, ci] (0 ≤ i < n) that are divided in P ,
of the numbers w(I[bi, ci]P ).
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Definition 5.5. An (M)-system S = (X,Y0, Y1; b0, . . . , bn−1; c0, . . . , cn−1) or basic
(M)-system S = (X; b0, . . . , bn−1; c0, . . . , cn−1) for P is said to be nice if none of the
intervals I[bi, ci], 0 ≤ i < n, is divided in P . We say that P is nicely (M)-structured
iff P admits a nice (M)-system.

Suppose that P admits the nice (M)-system

S = (X,Y0, Y1; b0, . . . , bn−1; c0, . . . , cn−1) ,

where

S = X ∪ Y0 ∪ Y1 ∪ {b0, . . . , bn−1} ∪ {c0, . . . , cn−1}

is an ordered subset of P . Then P arises through the following construction. We
have the (M)-skeleton S for S, and the pairwise disjoint ordered sets (ordered
subsets of P ) Pi = I(bi, ci)P , 0 ≤ i < n, which are all disjoint from S. The ordered
set

S(P0, . . . , Pn−1)

(which is actually identical to P ) is then defined as follows: The universe of
S(P0, . . . , Pn−1) is S ∪

⋃
i Pi. The order is defined to be the transitive closure

of the union of the order on S and the orders on each Pi and the pairs bi < x and
x < ci for all x ∈ Pi and all 0 ≤ i < n. In this ordered set S(P0, . . . , Pn−1) (= P ),
we have that each Pi = I(bi, ci)P , and each interval I[bi, ci] is undivided in P .

The utility of these ideas is manifested in this theorem.

Theorem 5.6. Suppose that S = (X,Y0, Y1; b0, . . . , bn−1; c0, . . . , cn−1) and S
′
=

(X,Y ′
0 , Y

′
1 ; b0, . . . , bn−1; c0, . . . , cn−1) are two (M)-skeletons with the same underly-

ing basic (M)-skeleton. Suppose that Pi (0 ≤ i < n) are pairwise disjoint ordered
sets disjoint from the universe of S and P ′

i (0 ≤ i < n) are pairwise disjoint ordered

sets disjoint from the universe of S
′
. If the characters (c̄0, c̄1), (c̄′0, c̄

′
1) of S and

S
′
satisfy (c̄0, c̄1) ≤ (c̄′0, c̄

′
1) and for all 0 ≤ i < n we have that P ∂

i ≤ P ′
i
∂
, then

S(P0, . . . , Pn−1)
∂ ≤ S

′
(P ′

0, . . . , P
′
n−1)

∂ .

Proof. Under all the given assumptions, we need to find a monotone mapping of

some convex subset of P ′ = S
′
(P ′

0, . . . , P
′
n−1) onto P = S(P0, . . . , Pn−1).

We do have for each i, a monotone mapping of a convex subset Qi ⊆ P ′
i onto Pi

(by Birkhoff duality). We can extend this (in several possible ways) to a monotone
mapping fi of I[bi, ci]P ′ onto I[bi, ci]P . Setting f = idX ∪

⋃
i fi we have that f

is a monotone map of P ′ \ (Y ′
0 ∪ Y ′

1) onto P \ (Y0 ∪ Y1). This is true because of
the way in which the order on P ′ \ (Y ′

0 ∪ Y ′
1) (respectively, on P \ (Y0 ∪ Y1)) is

the minimum extension of the order on X ∪ {b0, . . . , bn−1} ∪ {c0, . . . , cn−1} joined
to the disjoint union of the orders on the individual I[bi, ci]P ′ (respectively, on the
individual I[bi, ci]P ).

It remains to extend the monotone mapping f to map a convex subset of P ′

onto P . We do this by adding to the domain of f the top ℓ0 levels of Y ′
0 and the

bottom ℓ1 levels of Y ′
1 and mapping, for each 0 ≤ j < ℓ0, the two elements of depth

j in Y ′
0 to the two elements of depth j in Y0, making sure, if c̄0 = 〈ℓ0, d0, 1, x0〉

and c̄′0 = 〈ℓ′0, d0, 1, x0〉, to map the element of depth d0 in Y ′
0 below x′

0 = x0 to the
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element of depth d0 in Y0 below x0; and likewise mapping, for each 0 ≤ j < ℓ1, the
two elements of height j in Y ′

1 to the two elements of height j in Y1, making sure,
if c̄1 = 〈ℓ1, d1, 1, x1〉 and c̄′1 = 〈ℓ′1, d1, 1, x1〉, to map the element of height d1 in Y ′

1

above x′
1 = x1 to the element of height d1 in Y1 above x1.

The detailed verification that this works is left to the reader. •

Remark 5.1. An inspection of the proof of Theorem 5.6 reveals the following
refined version of the conclusion of the theorem:

(1) If Y0 = ∅ = Y1, then S(P0, . . . , Pn−1)
∂ is isomorphic to a 0, 1-sublattice of

S
′
(P ′

0, . . . , P
′
n−1)

∂ .

(2) If Y0 = ∅, then S(P0, . . . , Pn−1)
∂ is isomorphic to a 0-sublattice of

S
′
(P ′

0, . . . , P
′
n−1)

∂ .

(3) If Y1 = ∅, then S(P0, . . . , Pn−1)
∂ is isomorphic to a 1-sublattice of

S
′
(P ′

0, . . . , P
′
n−1)

∂ .

These statements will be used in the proof of Theorem 7.1.

The next theorem justifies all the definitions above.

Theorem 5.7. Let N ≥ 3. Suppose that P is a primitive ordered set belonging to
PN . Then P is nicely (M)-structured, for M = 5 · (18N)6N+4. In fact, P admits
a nice (M)-system S = (X,Y0, Y1; b0, . . . , bn−1; c0, . . . , cn−1) such that

(i) if h⋄(P ) < N then Y0 = ∅ = Y1; and
(ii) if Dk +′

o B2,3 6≤0 P ∂ for every k ≥ N then either Y0 = ∅, or P = Y0 is a
ladder and hence X ∪ Y1 = ∅ and n = 0.

This theorem is established with the next proposition, which will be proved by
induction.

Proposition 5.8. Let P be a primitive ordered set in PN , N ≥ 3. For each k,
1 ≤ k < w(P ), P admits an ((18N)k)-system Sk such that all intervals of Sk

that are divided in P are critical intervals of depth k in P (and thus w(Sk) ≤
w(P )− k). Moreover, the system Sk can be chosen so that the assertions expressed
in statements (i) and (ii) of Theorem 5.7 are true of it.

The base step in the inductive argument is the case k = 1, established in the
next lemma.

Lemma 5.9. Let P be a primitive ordered set in PN , N ≥ 3. Then P admits an
(M)-system S1, M ≤ 3(3N + 7) ≤ 18N , such that all intervals in S1 are critical
intervals of depth 1 in P and the assertions expressed in statements (i) and (ii) of
Theorem 5.7 are true of S1.

Proof. According to Lemma 4.9, P admits a fitting tower

Z0
0 , . . . , Z

0
r−1,M0, . . . ,Ms−1, Z

1
0 , Z

1
1 , . . . , Z

1
t−1

where r+ s+ t = h⋄(P ), Z0
0 , . . . , Z

0
r−1 and Z1

0 , . . . , Z
1
t−1 are ladders and s ≤ N +3.

(Any of r, s, t may be 0.) Moreover, by Remark 4.2, we can assume that r = 0 = s

if h⋄(P ) < N ; and if Dk +′
o B2,3 6≤0 P ∂ for every k ≥ N then we have r ≤ N − 1.
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Assume for the moment that r > N + 2. Let Y 0 = Z0
0 ∪ · · ·Z0

r−N−3. We claim

that there is at most one x ∈ P \ Y 0 such that Y 0 < {x} fails. To see the truth of
this claim, note that if Y 0 < {x} fails and x 6∈ Y 0 then x belongs to a block M0

or higher, so that x cannot be equal or less than any member of the N + 2-ladder
W 0 = Z0

r−N−2 ∪ · · ·Z0
r−1. In fact, x must be incomparable to all members of W 0.

Since W 0 is a convex set in P , then according to Lemma 4.2, there is at most one
such x in P .

Analogously, if t > N + 2 then where Y 1 = Z1
N+2 ∪ · · · ∪ Z1

t−1, there is at most

one x ∈ P \ Y 1 such that x < Y 1 fails.
We now adjoin to the middle segment of blocks Mi the highest N + 2 of the

blocks Z0
j (or all of these blocks if r ≤ N + 2). Likewise we adjoin to the middle

segment the lowest N + 2 of the blocks Z1
j (or all of these blocks if t ≤ N + 2).

Thus we rewrite our tower as

Y 0
0 , . . . , Y

0
r′−1,M

′
0, . . . ,M

′
s′−1, Y

1
0 , . . . , Y

1
t′−1

with s′ ≤ 3N+7. Here, if r′ > 0 then r′ = r−N−2, and if t′ > 0 then t′ = t−N−2.
Where Y 0 is the union of the blocks of the lower ladder, and Y 1 the union of the
blocks of the upper ladder, our observations in the two paragraphs above imply
that there is at most one x ∈ P \ Y 0 such that Y 0 < {x} fails, and at most one
x ∈ P \ Y 1 such that {x} < Y 1 fails.

Now according to Theorem 3.12, the primitive ordered set M ′ = M ′
0∪· · ·∪M

′
s′−1

with h⋄(M
′) = s′ admits an aligned tower. We need to ensure that the elements of

the chambers of the long blocks in the aligned tower are all entirely above Y 0 and
below Y 1. This is important, and easily accomplished, but requires some space to
demonstrate. We do it as follows.

All the long blocks in M ′ = M ′
0, . . . ,M

′
s′−1 lie in the middle section M0, . . . ,

Ms−1. Applying Theorem 3.12 to this middle section, we are able to replace
M0, . . . ,Ms−1 by an aligned tower N0, . . . , Ns−1. Suppose that i0 is the least index
i such that Ni is a long block and that I[bi00 , bi01 ] is the chamber of Ni. We want it
to be the case that the union of the chambers of all the long blocks in N0, . . . , Ns−1

is entirely above Y 0. Since at most one element of P \ Y 0 is not above Y 0, the
only element of the union of the chambers that can possibly fail to be above Y 0

is bi00 . Suppose that Y 0 6< {bi00 }. Then Y 0 6= ∅ and so the aligned tower replacing
M ′

0, . . . ,M
′
s′−1 is

Z0
r−N−2, . . . , Z

0
r−1, N0, . . . , Ns−1, . . . .

Since all elements outside of Y 0 but bi00 are above Y 0, then bi0 is incomparable
to all elements of the preceeding block—Ni0−1 if i0 > 0, or the J2 block Z0

r−1 if
i0 = 0. Call this preceeding block N . We know from the Adjacency Lemma (3.8)

that, since the tower Z0
r−N−2, . . . , is fitting the only way it can happen that bi00 is

incomparable to all elements of N is if N is a J2-block, N = {u, v}, and bi00 has a

unique cover c in the chamber of Ni0 and N ′ = {u, v, bi00 } < {c}. Now {c} > Y 0

since c 6= bi00 . Thus after replacing N by N ′ (a J3-block) and Ni0 by Q = Ni0 \{b
i0
0 },

we achieve an aligned tower

Z0
r−N−2, . . . , Z

0
r−2, . . . , N

′, Q,Ni0+1, . . . , Ns−1, . . . ,



22 W. DZIOBIAK, J. JEŽEK, AND R. MCKENZIE

whose chambers in the long blocks are all totally above Y 0.
Now if these chambers are not all below Y 1, then Y 1 6= ∅ and so the above tower

actually ends with Z1
0 , . . . , Z

1
N+1. Now the same argument, applied to the right

end, yields the small adjustment needed to get the aligned tower M ′′
0 , . . . ,M

′′
s′−1 to

replace M ′
0, . . . ,M

′
s′−1 in which all the chambers of the long blocks are above Y 0

and below Y 1.
We can now define the required (M)-system. Namely, let i0 < i1 < · · · < iu−1

be the list of those i, 0 ≤ i < s′, such that M ′′
i is a long block. Let aj be the

orphan and I[b
ij
0 , b

ij
1 ] be the chamber, in M ′′

ij
. Take n = u (which may be 0) and

let bj = b
ij
0 and cj = b

ij
1 for 0 ≤ j < u. Take X to be the set consisting of the union

of all the blocks M ′′
i that are not long blocks together with all the elements aj .

It is easy to see that S1 = (X,Y 0, Y 1; b0, . . . , bu−1; c0, . . . , cu−1) is an (M)-system
for P , where M ≤ 3(3N + 7) ≤ 18N . The intervals of this system are all, by
definition, critical intervals of depth 1 in P . Since by Lemma 3.4, w(P ) ≤ 2N + 5,
these intervals each have width at most 2N + 4.

Furthermore, we have obviously ensured that the assertions made in statements
(i) and (ii) of Theorem 5.7 are true of S1. •

Lemma 5.10. Let P be a primitive ordered set in PN , let k ≥ 1, and let S be an
(M)-system for P in which all the divided intervals are critical intervals of depth k

in P . Then P admits a (5M)-system S
′
such that for every divided interval I[b′i, c

′
i]

of S
′
, there is a divided interval of S which contains it and in which b′i and c′i are

two successive cut-points and I(b′i, c
′
i) is a primitive vertical component. Moreover,

if statements (i) and (ii) of Theorem 5.7 are true of S then they are true of S
′
as

well.

Proof. Write S = (X,Y0, Y1; b0, . . . , bn−1; c0, . . . , cn−1). Let i0 < i1 < · · · < iu−1

where I[bij , cij ], 0 ≤ j < u, are the divided intervals in S. For each j, let

bij = c
j
0 < · · · < c

j
ℓj−1 = cij

where cjr are the cut-points in the interval I[bij , cij ].
For each x ∈ X, there is at most one j such that and x < cij and x 6≤ bij . For

this j = j0x, if it exists, there is a unique r, 0 ≤ r < ℓj − 1, such that x < c
j
r+1 and

x 6≤ cjr. Put d
0
x = c

j0x
r and d1x = c

j0x
r+1.

For each x ∈ X, there is at most one j such that bij < x and cij 6≤ x. For

this j = j1x, if it exists, there is a unique r, 0 ≤ r < ℓj − 1, such that cjr < x and

c
j
r+1 6≤ x. Put e0x = c

j1x
r and e1x = c

j1x
r+1.

The set Z = {d0x, d
1
x, e

0
x, e

1
x}x∈X satisfies |Z| ≤ 4M . For each z ∈ Z, z is a

cutpoint in a unique interval I[bij , cij ] and either z has a predecessor z′ < z in the
sequence of cut-points of the interval and z′ ∈ Z, or z has a succesor z < z′ in the
sequence of cut-points of the interval and z′ ∈ Z.

For 0 ≤ j < u, write

bij = f
j
0 < f

j
1 < · · · < f

j
mj−1 = cij
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for the ordered sequence of all members of Z ∪ {bij , cij} in the interval I[bij , cij ].

We define the system S
′
to be the same as S except that the intervals will be

all the undivided intervals I[bi, ci] of S, together with all the intervals I[f j
r , f

j
r+1]

where 0 ≤ j < u and 0 ≤ r < mj − 1.

This is a system for P (easy to show). The divided intervals in S
′
are all among

the intervals I[d0x, d
1
x] and I[e0x, d

1
x] and each such interval has primitive interior

(since the endpoints of the interval are successive cut-points of a larger interval and
the interval is divided).

We added the set Z of points to the universe of the underlying basic skeleton in

order to generate these intervals. Thus S
′
is a (5M)-system for P . •

Lemma 5.11. Let P be a primitive ordered set in PN , N ≥ 3. Let k ≥ 1, and let
S be an (M)-system for P in which all the divided intervals are critical intervals

of depth k in P . Then P admits an (18N ·M)-system S
′′
such that every divided

interval of S
′
is a critical interval in P of depth k + 1. Moreover, if statements (i)

and (ii) of Theorem 5.7 are true of S, they are true of S
′′
as well.

Proof. First we produce the (5M)-system S
′
for P , from Lemma 5.10.

Let I[c, c′] be any one of the divided intervals of S
′
; say c, c′ are successive cut-

points of the critical interval I[bij , cij ] of depth k in P . (See the proof of Lemma
5.10). By Lemma 4.10, I(c, c′) is either a ladder Lm, or else h⋄(I(c, c

′)) ≤ 2N + 2.
By Proposition 4.8, if I(c, c′) is a ladder Lm, then m ≤ N +2. Thus in both cases,
h⋄(I(c, c

′)) ≤ 2N + 2.
Now we apply Theorem 3.12 to the primitive ordered set I(c, c′) to obtain an

aligned tower Q0, . . . , Qm−1 for this set. Here m ≤ 2N + 2.

Thus for every divided interval in S
′
we have an aligned tower of at most 2N +2

blocks.
To construct S

′′
, we take X ′′ to be the union of X ′ = X and all the elements

in all these intervals I(c, c′), excluding the members of the chambers of the long
blocks in these various towers.

For the intervals in S
′′
we take the undivided intervals of S together with the

chambers of the long blocks in the chosen aligned towers for the divided intervals
of S.

The lower and upper ladders of S
′
, Y0 and Y1, are unchanged.

The only possible divided intervals in S′′ are some of the chambers of these long

blocks in the towers for divided intervals of S
′
. These intervals are, by definition,

critical intervals in P of depth k + 1.

Finally, how large is the universe S′′ of the underlying basic skeleton of S
′′
. We

have added points to X and points to define the new intervals. In each of the

divided intervals of S
′
, we have added at most 3 · (2N + 2) points altogether. The

number of those divided intervals is at most 2|X| ≤ 2M . (See the proof of Lemma

5.10). Thus S
′′
is an (M ′′)-system where

M ′′ ≤ 5M + 2|X| · 3(2N + 2) ≤ 5M + 12M(N + 1) = M(17 + 12N) ≤
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M(6N + 12N) = 18N ·M .

•

Proof of Proposition 5.8 and Theorem 5.7. The proposition follows imme-
diately by induction, from Lemmas 5.9 and 5.11. Thus, by this proposition, where
k = w(P ), we get a ((18N)k−1)-system Sk−1 for P where each divided interval
(if any) is a critical interval of depth k − 1. By Lemma 4.5, each of these divided
intervals I[b, c] has width at most 1; i.e., the interval is a chain. Thus the procedure
followed in the proof of Lemma 5.10 now produces a (5 · (18N)k−1)-system S for
P that is nice (has no divided intervals). By Lemma 3.4 (3), we have k ≤ 6N + 5.
This proves Theorem 5.7.

6. Avoiding {Jk : k ≥ N}, III: conclusion

Theorem 6.1. For each N ≥ 1 the class AN is well-quasi-orderd by embeddability.

Proof. We can assume that N ≥ 3. Assume that this theorem is false. Choose, by
Theorem 1.1, a minimal bad sequence 〈Ln : n < ω〉 in AN . By removing finitely
many terms from the sequence, we can assume that every Ln is +o-indecomposable.
Let Pn = L∂

n for n < ω. The Pn are primitive. By Theorem 5.7, Pn is nicely (M)-
structured by a system Sn, M = 5(18N)6N+4. By successively cutting down to
subsequences, we can assume that:

• There is a basic skeleton S
b
= (X; b0, . . . , bm−1, c0, . . . , cm−1), such that

every Sn is an expansion (X,Y0, Y1; b0, . . . , bm−1; c0, . . . , cm−1) of S
b
.

• We have Pn = Sn(Q
n
0 , . . . , Q

n
m−1) where Qn

j are convex subsets of Pn with

Qn
j
∂ < P ∂

n
∼= Ln.

• The characters (c̄n0 , c̄
n
1 ) of Sn satisfy (c̄i0, c̄

i
1) ≤ (c̄j0, c̄

j
1) whenever i < j < ω.

Since Qn
r
∂ < Ln, then the collection {Qn

r
∂ : 0 ≤ r < m, 0 ≤ n < ω} is well-quasi-

ordered. Thus by successive further cutting down to infinite subsequences, we can
assume that

• When i < j we have Qi
r

∂
≤ Qj

r

∂
for all 0 ≤ r < m.

But now, by Theorem 5.6, P ∂
0 ≤ P ∂

1 , equivalently, L0 ≤ L1. This is a contradic-
tion, and it concludes our proof of the theorem. •

Theorem 6.2. The unavoidable members of 〈D,≤〉 are precisely the lattices iso-
morphic to a proper sublattice of some Jn.

Proof. Since {Jn : n < ω} is an anti-chain, any unavoidable finite distributive
lattice must be isomorphic to a proper sublattice of some Jn. But we immediately
see that if L is isomorphic to a proper sublattice of Jn, then L < Jn+m for all
m ≥ 0. Thus in this case, {K ∈ D : L 6≤ K} is contained in An−1 and, by Theorem
6.1, is well-quasi-ordered. This means that L is unavoidable. •
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Theorem 6.3. Let A be any order-ideal in 〈D,≤〉. Then 〈A,≤〉 is well-quasi-
ordered iff A ⊆ AN for some N . If 〈Ln : n < ω〉 is any minimal bad sequence in
〈D,≤〉, then all but finitely many Ln are among the terms of the sequence 〈Jn :
n < ω〉.

Proof. This is an immediate consequence of Theorem 6.1 and the fact that {Jn :
n < ω} is an anti-chain. •

Corollary 6.4. A universal class K of distributive lattices has uncountably many
universal subclasses if and only if it contains infinitely many members of the se-
quence 〈Jn : n < ω〉.

Proof. Every subset of an infinite set of pairwise incomparable finite distributive
lattices in K generates a different order-ideal of 〈K ∩ D,≤〉. If K contains only
finitely many members of 〈Jn : n < ω〉, then 〈K ∩ D,≤〉 is well-quasi-ordered; by
Theorem 6.3, every order-ideal I in 〈K ∩ D,≤〉 is uniquely determined by the set
of minimal elements of 〈(K ∩ D) − I,≤〉, and the set of these minimal elements
is finite (up to isomorphism); thus there are only countably many order-ideals in
〈K ∩ D,≤〉. •

I0 I1 I2 I3 Jn

Fig. 3

Consider the following four lattices pictured together with Jn in Fig. 3: I0 =
1+oB2,3+o1, I1 is the lattice B3,3 with one of the two doubly irreducible elements
removed, I2 = B2,4 and I3 = 23. Clearly, every proper sublattice of any of these
four lattices is also a proper sublattice of some Jn. Thus, by Theorem 6.2, it is
also true that unavoidable members of 〈D,≤〉 are precisely the lattices isomorphic
to proper sublattices of the lattices from the extended sequence I0, I1, I2, I3, Jn

(n ≥ 0). The next theorem says that the extended sequence is a borderline between
unavoidable and avoidable members of 〈D,≤〉.
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Theorem 6.5. A finite distributive lattice is avoidable in 〈D,≤〉 if and only if it
has a sublattice isomorphic to a member of the sequence I0, I1, I2, I3, Jn (n ≥ 0).

Proof. Let us first prove the converse implication. If L is unavoidable then, by
Theorem 6.2 and the fact that no one of the four lattices I0, I1, I2 and I3 is
embeddable into any of the lattices Jn (n ≥ 0), it follows that no member of the
extended sequence can be isomorphic to a sublattice of L.

In order to prove the direct implication, assume that L ∈ D and L does not
contain a sublattice isomorphic to any of the lattices in the extended sequence I0,
I1, I2, I3, Jn (n ≥ 0).

Claim: If L is +o-indecomposable, then L is isomorphic to either B2,3 +′
o Dk or

Dk +′
o B2,3 or Dk+1 for some k ≥ 0.

Since L is +o-indecomposable, L∂ is a primitive ordered set. By Theorem 3.6(2),

L∂ admits an n-tower, where n = h⋄(L
∂). Let B0, . . . , Bn−1 be a tower for Lδ.

Recall from Section 3 that a lattice K is isomorphic to a sublattice of L if and only
if there is a monotone surjective mapping of some convex subset of L∂ onto K∂ .
This, by I2 � L and I3 � L, implies that every block of the tower B0, . . . , Bn−1

has type 2 or 2′. Moreover, as I0 � L, it follows that if Bi has type 2′, then either
i = 0 or i = n− 1. Also, since I1 � L, it follows that every two consecutive blocks

of the tower form an ordinal sum in the induced order of L∂ . Since Jn ≤ L for
no n, refining the previous observation about blocks of type 2′ we conclude that the
tower B0, . . . , Bn−1 has at most one block of type 2′. Thus L must be isomorphic
to either B2,3 +

′
o Dk or Dk +′

o B2,3 or Dk+1 for some k ≥ 0. The claim has been
proved.

If L is +o-indecomposable then, by the above Claim, L is isomorphic to a proper
sublattice of some Jn and so, by Theorem 6.2, L is unavoidable.

Let now L be +o-decomposable. Then L is of the form A1 +o · · ·+o Am, where
m > 1 and each Ai is either a one-element lattice or is +o-indecomposable. If Ai

is +o-indecomposable then, by the above Claim and the assumption that I0 � L,
it follows that:

• If 1 < i < m, then Ai
∼= Dk for some k ≥ 0

• If i = 1, then Ai
∼= B2,3 +

′
o Dk or ∼= Dk+1 for some k ≥ 0

• If i = m, then Ai
∼= Dk +′

o B2,3 or ∼= Dk+1 for some k ≥ 0

As Jn � L for all n, any combination of the three possibilities implies that L is
a proper sublattice of some Jn. Thus, by Theorem 6.2, L is unavoidable. •

Corollary 6.6. The set consisting of the lattices I0, I1, I2, I3 and Jn (n ≥ 0) is a
least complete infinite anti-chain in 〈D,≤〉.

Proof. It follows from Theorems 6.2 and 6.5. •
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7. Companions of ≤ on D

Each finite distributive lattice has both the smallest and greatest element. These
elements are denoted by 0 and 1, respectively. Thus there are three natural com-
panions of the pre-ordering ≤ on the class D. They are ≤2, ≤1, ≤0 defined at the
beginning of Section 2.

Following notations from section 1, we define for n ≥ 0

J0
n = 1+o B2,3 +

′
o Dn

J1
n = Dn +′

o B2,3 +o 1

J2
n = 1+o Jn +o 1.

We also define for N > 0

A2
N = {L ∈ D : ∀k ≥ N, Dk 6≤2 L, J0

k 6≤2 L, J1
k 6≤2 L, and J2

k 6≤2 L}

A1
N = {L ∈ D : ∀k ≥ N, B2,3 +

′
o Dk 6≤1 L and Jk +o 1 6≤1 L}

A0
N = {L ∈ D : ∀k ≥ N, Dk +′

o B2,3 6≤0 L and 1+o Jk 6≤0 L}

For P a finite ordered set and for i ∈ {0, 1, 2} and N > 0, we define P ∈ Pi
N to

mean that P ∂ ∈ Ai
N .

Theorem 7.1. For i = 0, 1, 2 and each order-ideal A of 〈D,≤i〉, 〈A,≤i〉 is well-
quasi-ordered iff A ⊆ Ai

N for some N > 0.

Proof. Case 1: i = 2. The direct implication follows from the observation that the
set consisting of Dn (n ≥ 1), J0

n (n ≥ 0), J1
n (n ≥ 0), and J2

n (n ≥ 0) is an infinite
anti-chain with respect to ≤2.

For the converse implication, we have to show that 〈A2
N ,≤2〉 is well-quasi-ordered

for each N > 0. Suppose that this is false, for a certain N > 0. Clearly, we can
assume that N ≥ 3. Choose, by Theorem 1.1, a minimal bad sequence 〈Ln : n < ω〉
in 〈A2

N ,≤2〉.

Claim 1: Ln ∈ AN for all n < ω.
The claim follows from the observation that, for all n, Dn+2 ≤2 Jn, J

0
n+1 ≤2

1+o Jn, J
1
n+1 ≤2 Jn +o 1, and J2

n = 1+o Jn +o 1.

Now let Pn = L∂
n.

Claim 2: There are only a finite number of n for which Pn has a cut-point other
than a top or bottom element.

For suppose that this fails. By cutting down to an infinite subsequence, we can
suppose that for every n, Pn has the cut-point cn that is neither least nor greatest
element in Pn. This means that Ln = An+oBn where each of An, Bn has at least
two elements. Put A′

n = An +o 1, B
′
n = 1 +o Bn. It follows that A′

n <2 Ln and
B′

n <2 Ln. (The reader can easily supply a 0, 1-embedding of A′
n into Ln, and it

is a proper embedding.) By the minimality of the bad sequence 〈Ln : n ∈ ω〉, there
is an infinite subsequence 〈Lin : n ∈ ω〉 such that A′

in
≤2 A′

im
whenever n < m.
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By the same token, this sequence has an infinite subsequence, which we denote as
〈Ljn : n ∈ ω〉, such that B′

jn
≤2 B′

jm
whenever n < m, and also A′

jn
≤2 A′

jm

whenever n < m. So now, we have A′
j0

≤2 A′
j1

and B′
j0

≤2 B′
j1
. This implies that

Aj0 ≤0 Aj1 and Bj0 ≤1 Bj1 . But these relations clearly imply that

Lj0 = Aj0 +o Bj0 ≤2 Aj1 +o Bj1 = Lj1 .

This contradiction establishes the claim.

Claim 3: There are only a finite number of n for which Pn has a bottom element
and a top element.

Suppose that this fails. Thus (by cutting down the original sequence) suppose
that every Pn has top and bottom elements. Thus Ln = 1 +o An +o 1 for some
non-empty lattice An, for each n. By Claim 1, Ln and thus also An belong to
AN . Since 〈AN ,≤〉 is well-quasi-ordered (Theorem 6.3), there is i < j for which
Ai ≤ Aj . But this clearly gives that Li ≤2 Lj .

The three claims above demonstrate that we can assume (by cutting down the
sequence) that there are primitive ordered sets Qn such that either Pn = Qn for
all n, or Pn = Qn +o 1 for all n, or Pn = 1 +o Qn for all n. Since the second and
third cases are dual, we shall treat only the first and second case.

Case 1.1: Pn = Qn is primitive for all n.
Now Pn ∈ P2

N ⊆ PN and, in particular, Dk 6≤2 P ∂
n for every k ≥ N , implying

that h⋄(Pn) < N . Thus by Theorem 5.7 (especially statement (i) of the theorem),
Pn is nicely (M)-structured, M = 5 · (18N)6N+4 and in fact admits a nice basic
(M)-system Sn = (X; b0, . . . , bkn−1; c0, . . . , ckn−1). The ordered subset of Pn of
which this is the basic skeleton, namely Sn = X ∪{b0, . . . , bkn−1}∪{c0, . . . , ckn−1},
has at most M elements.

Now by cutting down our sequence, and by replacing some Pn by isomorphic
ordered sets, we can assume that the ordered sets Sn are the same for all n, and
likewise the basic skeletons Sn. Write

S = (X; b0, . . . , bk−1; c0, . . . , ck−1)

for this skeleton. Then Pn = S(P 0
n , . . . , P

k−1
n ) where the P i

n are pairwise disjoint
convex subsets of Pn. (See the paragraph following Definition 5.5.) For 0 ≤ r < k,
IPn

[br, cr] = P r
n∪{br, cr} is a bounded convex subset of Pn, and there is a monotone

map of Pn onto this interval. Since Pn is primitive, the interval is certainly a proper
subset of Pn. It follows that IPn

[br, cr]
∂ <2 Ln.

Now again using the minimality of our sequence and cutting it down k times,
we find that we can assume that for all i < j and for all 0 ≤ r < k we have that
there is a monotone map of IPj

[br, cr] onto IPi
[br, cr]. Now returning to the proof

of Theorem 5.6 and visiting Remark 5.1, we see that this gives a monotone map of
Pj onto Pi, consequently a 0, 1-embedding of Li into Lj . This is a contradiction.

Case 1.2: Pn = Qn +o 1 for all n where Qn is primitive. To prove this, we need
the following claim, which is obvious; recall that 〈Ln : n < ω〉 is a minimal bad
sequence in 〈A2

N ,≤2〉.
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Claim 4: There are only finitely many n for which Qn is a ladder.

Continuing with Case 1.2, we next observe that since Pn ∈ P2
N and so P ∂

n 6≥2 J1
k

for all k ≥ N , it follows that Q∂
n 6≥0 Dk +′

o B2,3 for every k ≥ N . Thus by
Claim 4 and Theorem 5.7 (especially statement (ii) of the theorem), Qn is nicely
(M)-structured, M = 5 · (18N)6N+4, in fact admits a nice (M)-system

Sn = (X, ∅, Y1; b0, . . . , bkn−1; c0, . . . , ckn−1) .

As we did above for Case 1.1, we now work through the steps of our argument
for Theorem 6.1.

By cutting down (and replacing some Pn by isomorphic ordered sets), we can
assume that for all n, the basic skeletons

S
′

n = (X; b0, . . . , bkn−1; c0, . . . , ckn−1)

are the same sets, i.e.,

S
′

n = S
′
= (X; b0, . . . , bk−1; c0, . . . , ck−1) ;

and have the same induced order from Qn. Thus we can write

Pn = Sn(Q
0
n, . . . , Q

k−1
n ) +o 1 .

It is true, also in Case 1.2, that for 0 ≤ r < k, IPn
[br, cr] = Qr

n ∪ {br, cr} is a
bounded convex subset of Pn, implying that there is a monotone map of Pn onto
this interval. Thus IPn

[br, cr] = IQn
[br, cr]

∂ <2 Ln.
Now the proof goes just as in Case 1.1, except in the very last step, where the

application of Remark 5.1 following Theorem 5.6 gives that where An = Q∂
n (and

Ln
∼= An +o 1) there is i < j with Ai ≤0 Aj . Clearly, this implies that Li ≤2 Lj .

This contradiction finishes our proof of this theorem in Case 1.

Case 2: i = 1. The direct implication follows from the fact that the set consisting
of B2,3 +

′
o Dn (n ≥ 1) and Jn +o 1 (n ≥ 0) is an infinite anti-chain with respect to

≤1. The converse follows from the case i = 2 just proved and the observations that
for any A,B ∈ D, A ≤1 B iff 1+o A ≤2 1+o B, and A ∈ A1

N iff 1+o A ∈ A2
N .

Finally, the result for the pre-order ≤0 is the dual of the result for Case 2, so we
omit the proof of it. •

Recall that I0 is the lattice 1 +o B2,3 +o 1 and I3 is the eight-element Boolean
lattice.

Theorem 7.2. The following are true for a finite distributive lattice L:

(1) L is avoidable in 〈D,≤2〉 if and only if it has a 0, 1-sublattice isomorphic
to either 1 or D1 or D1 +o 1 or 1+o D1 or I0.

(2) L is avoidable in 〈D,≤1〉 if and only if it has a 1-sublattice isomorphic to
either D1 or I0 or I3 +o 1.

(3) L is avoidable in 〈D,≤0〉 if and only if it has a 0-sublattice isomorphic to
either D1 or I0 or 1+o I3.
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Proof. (1): Each of the five lattices is avoidable in 〈D,≤2〉, since the first four
of them constitute a 0, 1-anti-chain together with the lattices J2

n (n ≥ 0), and
the last constitutes a 0, 1-anti-chain together with Dn (n ≥ 1). Thus every finite
distributive lattice containing a 0, 1-sublattice isomorphic to one of the five lattices
is avoidable in 〈D,≤2〉. Let L be a finite distributive lattice containing no 0, 1-
sublattice isomorphic to one of the five lattices. Since L 0, 1-avoids the first four
lattices, L is of the form 1+o K+o 1 for a finite lattice K (or L is the two-element
chain). Since it 0, 1-avoids I0, the lattice K avoids B2,3 and hence L is of the form
C0 +

′
o . . . +

′
o Ck−1 where k ≥ 1, C0 and Ck−1 are two-element lattices and every

Ci is either D1 or the two-element lattice. Clearly, all such lattices L are 0, 1-
embeddable into all sufficiently large lattices Dn, into all sufficiently large lattices
J0
n, into all sufficiently large lattices J1

n and into all sufficiently large lattices J2
n.

Thus it follows from Theorem 7.1(1) that L is unavoidable in 〈D,≤2〉.
(2): The three lattices are avoidable in 〈D,≤2〉, since the first of them constitutes

a 1-anti-chain (i.e., anti-chain with respect to ≤1) together with the lattices B2,3+
′
o

Dn and the last two constitute a 1-anti-chain together with the lattices Jn+o1. Let
L be a finite distributive lattice containing no 1-sublattice isomorphic to one of the
three lattices. Since D1 �1 L, L is of the form K+o 1 for a finite lattice K (or L is
trivial). Since K avoids both 1+o B2,3 and I3, L is of the form C0 +

′
o . . .+

′
o Ck−1

where k ≥ 1, Ck−1 is the two-element lattice, C0 is a sublattice ofB2,3 and everyCi

with i > 0 is either D1 or the two-element lattice. (To see that C0 is a sublattice of
B2,3, use the facts that 1+oB2,3 ≤ B2,4 and I3 � K.) Clearly, all such lattices L are
1-embeddable into all sufficiently large lattices B2,3 +

′
o Dn and into all sufficiently

large lattices Jn +o 1. Thus it follows from Theorem 7.1(2) that L is unavoidable
in 〈D,≤1〉.

(3): This statement is dual to (2). •

It follows that the quasi-ordered sets 〈D,≤2〉, 〈D,≤1〉 and 〈D,≤0〉 contain no
least complete infinite anti-chain. The quasi-ordered set 〈D,≤〉 is thus rather ex-
ceptional.

References
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