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Abstract. We investigate definability in the set of isomorphism types of finite semilattices

ordered by embeddability; we prove, among other things, that every finite semilattice is a
definable element in this ordered set. Then we apply these results to investigate definability
in the closely related lattice of universal classes of semilattices; we prove that the lattice

has no non-identical automorphisms, the set of finitely generated and also the set of finitely
axiomatizable universal classes are definable subsets and each element of the two subsets is
a definable element in the lattice.

1. Introduction

Let K be a fixed class of structures of some given finite signature. Consider
the collection L of all subclasses of K that are axiomatizable by a selected type
T of axioms (like equations, quasi-equations, or universal sentences). Usually, this
collection is a complete lattice with respect to inclusion. Let us say that L has
positive definability if one can prove the following statements:

(1) the collection of all finitely T -axiomatizable subclasses of K is a definable
subset of L and every element of that collection is definable in L up to the
automorphisms of L;

(2) the collection of all finitely generated T -subclasses of K is a definable sub-
set of L and every element of that collection is definable in L up to the
automorphisms of L;

(3) the collection of the subclasses of K that are axiomatizable by a single
T -axiom is a definable subset of L;

(4) L has no other automorphisms than the obvious, syntactically defined ones.

It has been proved in the series of papers [1] that the lattice of subvarieties (i.e.,
equationally definable subclasses) of the variety of all universal algebras of a given
signature has positive definability. So far, no other variety has been found to have
positive definability for its lattice of subvarieties (except for trivial cases). The
paper [3] contains some partial results for the lattice of varieties of semigroups.
In [2] the investigation was started but not finished for the lattice of varieties of
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commutative groupoids. In [4] it has been proved that the lattice of varieties of
commutative semigroups has uncountably many automorphisms, so that it has
negative definability.

As far as the authors know, no attempt has been done to investigate definability
in lattices of quasivarieties or universal classes. In the present paper we are going
to establish positive definability for the lattice of universal subclasses of the variety
of semilattices. We will start with the investigation of definability for the closely
related quasi-ordered set of finite semilattices, where the ordering is embeddability;
we will prove that every element of this quasi-ordered set is definable.

Let 〈Q,≤〉 be a quasi-ordered set (i.e., the binary relation ≤ is reflexive on
Q and transitive). An n-ary relation R on Q is said to be definable (in 〈Q,≤〉)
if there exists a first-order formula φ(x1, . . . , xn) with free variables x1, . . . , xn in
the language of ≤ such that for any a1, . . . , an ∈ Q, φ(a1, . . . , an) holds in 〈Q,≤〉
if and only if 〈a1, . . . , am〉 ∈ R. A subset of Q is said to be definable if it is
definable as a unary relation. An element a of Q is said to be definable if the set
{x ∈ Q : x ≤ a and a ≤ x} is definable.

By a semilattice we mean a meet semilattice. We denote by S the quasi-ordered
set of finite semilattices, where the quasi-ordering is given by A ≤ B if and only
if A is isomorphic to a subsemilattice of B (i.e., there exists an embedding of A
into B). Strictly speaking, S is not a set but a proper class. This can be corrected
by considering only those finite semilattices the underlying set of which belongs to
a fixed countably infinite set. The best candidate for such a set is the hereditarily
finite universum (the smallest set containing the empty set and closed under the
binary operations {x, y} and x∪ y). Thus S becomes a countable set. Or we could
consider, instead of S, the ordered set of isomorphism types of finite semilattices;
this equivalent approach would have some technical difficulties.

For two elements A,B of S write A < B if A ≤ B and B � A. We have A ≃ B
if and only if A ≤ B and B ≤ A. If all elements of S with a certain property are
isomorphic to a given element A of S, we say that A is essentially the only element
with that property.

The least element of a finite semilattice A will be denoted by 0A. A finite
semilattice has the largest element if and only if it is a lattice. If it exists, the
largest element of A will be denoted by 1A.

For other concepts of universal algebra and lattice theory the reader is referred
to [5].

2. The ordered set of finite semilattices

An element A of S is said to be covered by an element B of S if A < B and
there is no C ∈ S with A < C < B. We write A ≺ B and also say that B is a cover
of A or that A is a subcover of B.

2.1. Proposition. Let A,B ∈ S. Then A ≺ B if and only if A ≤ B and |B| =
|A|+ 1.
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Proof. Let A ≺ B. Clearly, |A| < |B|. Suppose that |A| ≤ |B|−2. Take a maximal
element c in B − A. Then c is meet-irreducible in B, so that C = B − {c} is a
subsemilattice of B. We get A < C < B, a contradiction. Thus |B| = |A|+1. The
converse implication is obvious. �

For every n ≥ 0 we denote by Cn the (essentially unique) chain with n + 1
elements. The height h(A) of a finite semilattice A is the largest nonnegative
integer n such that Cn ≤ A. By a flat semilattice we mean a finite semilattice of
height at most 1. For every n ≥ 0 we denote by An the (essentially unique) flat
semilattice with n atoms. Thus C0 ≃ A0 is the trivial semilattice.

2.2. Proposition. Cn (n ≥ 0) and An (n ≥ 0) are essentially the only elements

A of S such that (A] (the principal ideal of S generated by A) is a chain. The set of

finite chains is a definable subset of S and each finite chain is a definable element

of S. The set of flat semilattices is a definable subset of S and each flat semilattice

is a definable element of S.

Proof. Suppose that (A] is a chain and that A is not a chain, so that A contains two
incomparable elements x, y. If there exists an element z < x ∧ y then {x, y, x ∧ y}
and {z, x ∧ y, x} are two incomparable subsemilattices of A, a contradiction. Thus
x∧ y = 0A for any pair x, y of incomparable elements. If x, y are incomparable and
there exists an element z > x then {x, y, 0A} and {0A, x, z} are two incomparable
subsemilattices of A, a contradiction again. Thus A ≃ An for some n.

It follows that the union of the set of finite chains with the set of flat semilattices
is a definable subset. The chain with four elements has seven covers in S, while the
flat semilattice with four elements has only five covers in S. Thus each of the two
sets is definable; since each of the two sets is a subchain of S, their elements are
definable elements of S. �

2.3. Proposition. The following binary relation R on S is definable:

〈A,B〉 ∈ R if and only if B is the chain of the same height as A.

Proof. B is essentially the only maximal element of S such that B is a chain and
B ≤ A. �

For every n ≥ 1 denote by Bn the Boolean lattice of height n (so that it has
n atoms and 2n elements). For every n ≥ 1 denote by Yn the semilattice with
elements a0, . . . , an+1 and covers a0 < a1 < · · · < an−1 < an and an−1 < an+1.
For every n ≥ 1 denote by Vn the semilattice with elements a0, . . . , an+1 and
covers a0 < a1 < · · · < an and a0 < an+1. We have |Yn| = |Vn| = n + 2 and
h(Yn) = h(Vn) = n.

By a tree we mean a finite semilattice A such that B2 � A.

2.4. Proposition. Every semilattice with at most four elements is definable.

Proof. Except for chains and flat semilattices, there are essentially only three at
most four-element semilattices: the semilattices B2, V2 and Y2. The set consisting
of these three semilattices is definable, since they are (essentially) the only covers of
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C2 (or also of A2) that are not either chains or flat semilattices. Now Y2 is the only
one of them that is below only one of the five covers of A3, so that Y2 is definable.
B2 is the only one of the remaining two semilattices that has only six covers. Thus
B2 is definable. The remaining semilattice V2 is then also definable. �

2.5. Proposition. The set of trees is definable.

Proof. Since (by 2.4) B2 is definable, the set of trees is definable. �

2.6. Lemma. A finite semilattice A is isomorphic to Yn for some n ≥ 1 if and only

if A2 ≤ A, B2 � A, V2 � A and A3 � A. Consequently, the set {Yn : n ≥ 1} is

definable and its every element is definable. Moreover, the following binary relation

R on S is definable:

〈A,B〉 ∈ R iff A ≃ Yn and B ≃ Cn for some n ≥ 1.

Proof. Clearly, each Yn has these properties. Let A have these properties. Since
A2 ≤ A, there are two incomparable elements a, b in A. Since B2 � A and V2 � A,
the elements a, b are both maximal. Put c = a ∧ b. Since V2 � A, both a and b
are covers of c. If there is an element d > c different from both a and b, it must be
incomparable with both a and b and the set {a, b, c, d} is a subsemilattice isomorphic
with A3, a contradiction. Thus a, b are the only elements strictly above c. Suppose
that there is an element e incomparable with c. We can suppose that e covers c∧ e,
since otherwise we could replace e by a cover of c ∧ e that is below e. Clearly, e
cannot be below both a and b. Without loss of generality, e � a. Then a∧ e = c∧ e
and {a, c, c ∧ e, e} is a subsemilattice isomorphic with V2, a contradiction.

Thus c is comparable with all elements of A. If there are two incomparable
elements below c then A has a subsemilattice isomorphic with B2, a contradiction.
Thus the principal ideal generated by c is a chain and A is isomorphic to Yn for
some n.

For A ≃ Yn, Cn is essentially the only chain B with h(B) = h(A). �

Denote byU the semilattice with five elements a, b, c, d, e and coverings a < b < c
and a < d < e.

2.7. Lemma. U is a definable element of S.

Proof. U is essentially the only finite semilattice A such that for any B, B < A if
and only if B ≤ V2. �

2.8. Lemma. A finite semilattice A is isomorphic to Vn for some n ≥ 1 if and

only if A2 ≤ A, B2 � A, Y2 � A, A3 � A and U � A. Consequently, the set
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{Vn : n ≥ 1} is definable and its every element is definable. Moreover, the following

binary relation R on S is definable:

〈A,B〉 ∈ R iff A ≃ Vn and B ≃ Cn for some n ≥ 1.

Proof. Clearly, each Vn has these properties. Let A have these properties. Since
A2 ≤ A, there are two incomparable elements a, b in A. Since Y2 � A, a∧ b = 0A.
We can assume that a, b are atoms. Since A3 � A, a and b are the only two atoms
of A. Since B2 � A and U � A, at least one of the elements a, b is maximal in A.
Without loss of generality, a is maximal. All the other elements of A are above b.
If two elements above b are incomparable then Y2 ≤ A, a contradiction. Thus the
elements above b form a chain and A is isomorphic to Vn for some n.

For A ≃ Vn, Cn is essentially the only chain B with h(B) = h(A). �

For n ≥ 1 and 0 ≤ m < n denote by Vn,m the semilattice with elements
a0, . . . , an+1 and covers a0 < a1 < · · · < an and am < an+1. Thus |Vn,m| = n + 2
and h(Vn,m) = n. We have Vn = Vn,0 and Yn = Vn,n−1.

2.9. Lemma. A finite semilattice A is isomorphic to Vn,m for some n,m if and

only if A is a tree, A is not a chain and there exists a chain C that is covered

by A. Consequently, the set {Vn,m : n ≥ 1, 0 ≤ m < n} is definable and its every

element is definable. Moreover, the following ternary relation R on S is definable:

〈A,B,C〉 ∈ R iff A ≃ Vn,m, B ≃ Cn and C ≃ Cm for some n,m.

Proof. Clearly, each Vn,m has these properties. Let A have these properties. There
exists a largest element a in A such that a is comparable with every element of A.
Since A is a tree, [0, a] is a chain. Since A is not a chain, the element a has at least
two covers b and c. Since A is a tree that becomes a chain after removing just one
element, the elements b and c are the only covers of a, one of them is maximal and
all the remaining elements of A form a chain above the second one of them. Thus
A ≃ Vn,m for some n,m.

For A ≃ Vn,m, Cn is essentially the only chain B with h(B) = h(A) and Cm is
the maximal chain such that Ym+1 ≤ A. �

2.10. Theorem. The following ternary relation R on S is definable:

〈A,B,C〉 ∈ R if and only if A,B,C are chains and h(C) = h(A) + h(B).

Proof. We have 〈A,B,C〉 ∈ R if and only if there exist D,E, F,G ∈ S such that
the following conditions are satisfied:

D ≃ Vn,m for some n,m;
E is the largest element of S such that E ≤ D and E ≃ Vk for some k;
F is the largest element of S such that F ≤ D and F ≃ Yr for some r;
A is a chain of the same height as E;
B is a chain of the same height as F ;
G is a chain of the same height as D;
C is a chain and C covers G in S. �

For n ≥ 2 and 2 ≤ m ≤ n denote by Dn,m the semilattice with elements
a0, . . . , an+1 and covers a0 < a1 < · · · < an and a0 < an+1 < am. Thus D2,2 = B2.



6 J. JEŽEK AND R. MCKENZIE

2.11. Lemma. A finite semilattice A is isomorphic to Dn,m for some n,m if

and only if B2 ≤ A, Y2 � A and there exists a chain C that is covered by A.
Consequently, the set {Dn,m : n ≥ 2, 2 ≤ m ≤ n} is definable. Moreover, the

following ternary relation R on S is definable:

〈A,B,C〉 ∈ R iff A ≃ Dn,m, B ≃ Cn and C ≃ Cm for some n,m.

Proof. Clearly, each Dn,m has these properties. Let A have these properties. Since
Y2 � A and A is not a chain, there are at least two atoms a, b in A. Since Y2 � A,
the principal filter generated by any non-zero element is a chain. If A has more than
two atoms then it has more than two maximal elements; but this is not possible,
since A becomes a chain after removing just one element. Thus a, b are the only
two atoms. Since B2 ≤ A, there is an element above both a and b; consequently,
the two atoms have a join d in A. Since A becomes a chain after removing just
one element (that one element must be either a or b), d is a cover of either a or b
(without loss of generality, d is a cover of b) and A becomes a chain after removing b.
Thus A ≃ Dn,m for some n,m.

For A ≃ Dn,m, Cn is essentially the only chain B with h(B) = h(A) and Cm is
the maximal chain such that Vm−1 ≤ A. �

2.12. Lemma. The set of all A ∈ S such that A has at least two atoms is definable.

The set of all A ∈ S such that A has precisely one atom is definable.

Proof. It is sufficient to prove the definability of the first set. A finite semilattice
A has at least two atoms if and only if it satisfies the following condition: there
exists a B ∈ S such that B ≤ A, h(B) = h(A) and either B ≃ Vn for some n or
B ≃ Dn,m for some n,m. �

For two finite semilattices A,B denote by A ⊕ B the finite semilattice with
underlying set the disjoint union of A and B, such that A and B are subsemilattices
and x < y whenever x ∈ A and y ∈ B. We call A⊕B the ordinal sum of A and B.

For two finite semilattices A,B we denote by A+c B the semilattice C with the
underlying set the almost disjoint union of A and B, with just the two least elements
glued into a single one, such that both A and B are subsemilattices and a∧ b = 0C
for all a ∈ A and b ∈ B. The semilattice A +c B is called the (amalgamated)
cardinal sum of A and B. We have |A+cB| = |A|+ |B|− 1. Put A1+c · · ·+cAk =
((A1 +c A2) +c . . . ) +c Ak. For example, An is isomorphic to the cardinal sum of
n copies of C1.

2.13. Lemma. The following ternary relation R on S is definable: 〈A,B,C〉 ∈ R
if and only if A has at least two atoms, B is a chain and C ≃ B ⊕A.

Proof. B ⊕A is essentially the only element C of S with these two properties:
h(C) = h(A) + h(B) + 1;
A is the largest element of S such that A ≤ C and A has at least two atoms. �

2.14. Lemma. The following ternary relation R on S is definable: 〈A,B,C〉 ∈ R
if and only if B is a chain and C ≃ B ⊕A.
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Proof. B ⊕ A is essentially the only element C of S such that either A is a chain
and C is a chain of height h(A) + h(B) + 1, or else A has at least two atoms and
C ≃ B ⊕A, or else there exist D,E ∈ S with the following properties:

D has at least two atoms;
E is a chain;
A ≃ E ⊕D;
C ≃ (E ⊕B)⊕D. �

2.15. Lemma. The following binary relation R on S is definable: 〈A,B〉 ∈ R
if and only if A has at least two atoms and B is the (essentially unique) chain of

height |A|.

Proof. By a component of an element C ∈ S we will mean (just in this proof) a
maximal element D of S with the following properties: D ≤ C, D is not a chain
and D has precisely one atom. Each component D of C can be written uniquely
as D = P ⊕Q where P is a chain and Q has at least two atoms. P will be called
the lower part and Q will be called the upper part of C. If D1 and D2 are two
components of C, then we say that D1 dominates D2 if the upper part of D1 is a
cover of the upper part of D2 and the lower part of D2 is a cover of the lower part
of D1. (Thus |D1| = |D2|.)

We have 〈A,B〉 ∈ R if and only if A has at least two atoms, B is a chain and
there exist C,E ∈ S with the following properties:

(1) E is a chain;
(2) E ⊕A is a component of C;
(3) for every component D1 of C such that the upper part of D1 is not isomor-

phic to V1 there exists another component D2 of C such that D1 domi-
nates D2;

(4) there is precisely one component D of C the upper part of which is iso-
morphic to V1; the lower part of this component is a chain of height
h(E) + h(B)− 3.

If this is true then (using the previous results) it is clear that R is definable. Of
course, this needs to be proved. Put n = |A|.

Let us start with the direct implication. Let 〈A,B〉 ∈ R. Take a chain E of
height larger than h(A). There exists a sequence A0, . . . , An−3 of elements of S
such that A0 = A and every Ai+1 is a subsemilattice of Ai obtained from Ai by
deleting a maximal element; if Ai has a maximal element that is not an atom, one
such should be chosen to be deleted. Since A0 has n elements, An−3 has three
elements and is isomorphic with V1; each Ai has at least two atoms. For each i
denote by Ei the chain of height h(E) + i. Denote by C the cardinal sum of the
semilattices Ei ⊕ Ai (i = 0, . . . , n − 3). Since E is a long chain, each Ei ⊕ Ai is a
component of C. Clearly, there are no other components of C. Now it is easy to
check that the conditions (1) through (4) are satisfied.

Conversely, let C and E have all the four properties. It follows from (2) and
(3) that there exists a sequence D0, . . . , Dm of components of C for some m ≥ 0
such that D0 = E ⊕ A, each Di dominates Di+1 and Dm has upper component
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isomorphic to V1. Since the cardinalities of the upper parts are decreasing by (1),
we have m = n− 3. Denote by F the lower part of Dm. Since the cardinalities of
the lower parts are increasing by (1), we have h(F ) = h(E) + |A| − 3. By (4) we
have h(F ) = h(E) + h(B)− 3. Thus h(B) = |A|. �

2.16. Theorem. The following binary relations R,R′, R′′ on S are definable:

〈A,B〉 ∈ R iff B is the chain of height |A|;
〈A,B〉 ∈ R′ iff |A| = |B|;
〈A,B〉 ∈ R′′ iff |A| ≤ |B|.

Proof. It follows easily from 2.15. �

Definability of various similar relations, like |A| > |B|+ 9, also follows immedi-
ately.

Let n ≥ 2 and let A be the flat semilattice with n atoms (so that A ≃ An).
We denote by A′ the semilattice with underlying set A ∪ {o, a} such that A is a
principal filter in A′ and the only new covers are o < a and o < 0A. We denote by
A′′ the semilattice with underlying set A∪{o, a} such that A is a principal filter in
A′′ and the only new covers are o < a < b and o < 0A, where b is one of the atoms
of A.

A′
3 A′′

3

Fig. 2

2.17. Lemma. The following two binary relations on S are definable:

〈A,B〉 ∈ R1 iff A ≃ An and B ≃ A′
n for some n ≥ 2;

〈A,B〉 ∈ R2 iff A ≃ An and B ≃ A′′
n for some n ≥ 2.

Proof. A′
n and A′′

n are essentially the only two covers B of C0 ⊕ An such that
h(B) = 2 and An+1 � B. Moreover, A′′

n is the only one of them which is above
B2. �

2.18. Lemma. A finite semilattice A has the largest element and at least two

coatoms if and only if there exists a finite semilattice B with the following properties:

(1) A < B;

(2) where n = |A|, n ≥ 4, An ≤ B and An+1 � B;

(3) where m = h(A), Cm−1 ⊕An ≤ B;

(4) A′
n � B and A′′

n � B;

(5) the elements of S between A and B form (essentially) a chain;

(6) |B| = 2n and h(B) = m+ 1.

Consequently, the set of finite semilattices with the largest element and at least two

coatoms is a definable subset of S.
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Proof. Let A have the largest element 1A and at least two coatoms. Put n = |A|
and m = h(A), so that n ≥ 4 and m ≥ 2. Define B as the disjoint union of its
subsemilattice A with an n-element set {b1, . . . , bn}, with the only covers not in A
being 1A < bi (1 ≤ i ≤ n). It will be clear that the conditions are satisfied if we
prove that whenever U is a subsemilattice of B isomorphic with A then either U = A
or U = (A−{1A})∪{bi} for some i. Since U has the largest element, it can contain
at most one of the elements bi. If it contains no element bi then clearly U = A.
Let bi be the only element of U not belonging to A. Then there is precisely one
element a ∈ A not in U . If a 6= 1A then U contains only one coatom (namely 1A),
so that it is not isomorphic to A. Thus a = 1A and U = (A− {1A}) ∪ {bi}.

Conversely, let there exist a B with the five properties. Let U be any subsemi-
lattice of B isomorphic with A. By (3), B contains a subsemilattice with elements
a0, . . . , am, b1, . . . , bn and covers a0 < a1 < · · · < am and am < bi (i = 1, . . . , n);
since B has height m + 1, all these covers are also covers in B and every bi is a
maximal element of B; so, if some bi belongs to U then it is also maximal in U .

Suppose that there exists an element c ∈ B such that c < bi for some i and c
is incomparable with am. Then c ∧ bi = c ∧ am < am. For every j 6= i we have
c ∧ bj = c ∧ bi ∧ bj = c ∧ am. Thus {b1, . . . , bn, am, c, c ∧ am} is a subsemilattice
isomorphic to A′′

n, a contradiction.
Thus c < bi implies c ≤ am for any c ∈ B and any i.
Suppose that an element c of B is incomparable with am. Then for every i, c

is incomparable with bi and we have c ∧ bi < am, so that c ∧ bi = c ∧ am. Thus
{b1, . . . , bn, am, c, c ∧ am} is a subsemilattice isomorphic to A′

n, a contradiction.
Thus every element of B is comparable with am. Since every element larger than

am is maximal in B and An+1 � B, every element of B except the elements bi is
≤ am.

Suppose that for some i, both bi and am belong to U . There exists an index j
such that bj /∈ U . Also, there exists an element a ∈ U such that a < am. Denote
by k the number of maximal elements in the subsemilattice U ∪ {a} of B. The
number of maximal elements in the subsemilattice U ∪{bj} is k+1, so that the two
subsemilattices are non-isomorphic; since they are of the same cardinality, they are
incomparable elements of S; this is a contradiction with (5).

Thus if U contains an element of {b1, . . . , bn} then it contains only one such
element and am /∈ U . From this it follows that either U = (am]B or else U =
((am]B − {am}) ∪ {bi} for some i. In particular, U (and thus A) contains a largest
element. If A contained only one coatom c, then we would have two incomparable
elements of S between A and B: the first with the coatom removed and two covers
of 1A added, the other just with one cover of 1A added. �

2.19. Lemma. The following ternary relation R on S is definable:

〈A,B,C〉 ∈ R iff A has the largest element and at least two coatoms, B is a chain

and C ≃ A⊕B.

Proof. Let A have the largest element and at least two coatoms, and let B be a
chain. It is sufficient to prove that A ⊕ B is essentially the only element C of S
with the following properties:
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(1) |C| = |A|+ |B|;
(2) h(C) = h(A) + h(B) + 1;
(3) A is the largest element of S such that A ≤ C, A is a lattice and A has at

least two coatoms.

Clearly, A ⊕ B has all these properties. Let C satisfy (1), (2) and (3). By (3),
A ≤ C and we can assume that A is a subsemilattice of C. Put n = |A|, m = h(A)
and k = h(B). By (2), there is a maximal subchain a0 < · · · < am+k+1 of C. At
most m + 1 members of this chain belong to A, so that at least k + 1 members
belong to C−A. But (by (1)) |C−A| = k+1. Thus precisely k+1 members of the
chain belong to C −A, precisely m+1 members belong to A and C −A is a chain.
Since h(A) = m, those m+1 members are a maximal subchain of A; in particular,
the largest element 1A of A is among them. From this it follows that am+k+1 is the
largest element of C. It follows easily from (3) that all the k + 2 elements of the
chain (C − A) ∪ {1A} are above all elements of A− {1A}, so that C is isomorphic
to A⊕B. �

2.20. Lemma. The following ternary relation R on S is definable:

〈A,B,C〉 ∈ R iff B is a chain and C ≃ A⊕B.

Proof. It follows easily from 2.19. �

2.21. Theorem. The following ternary relation R on S is definable:

〈A,B,C〉 ∈ R iff C ≃ A⊕B.

Proof. Let A1 be the chain of the same height as A and let B1 be the chain of
the same height as B. Then A ⊕ B is the smallest element C of S such that
h(C) = h(A) + h(B) + 1, |C| = |A|+ |B|, A⊕B1 ≤ C and A1 ⊕B ≤ C. �

2.22. Theorem. The set of semilattices with the largest element (i.e., lattices) is

definable.

Proof. It follows from 2.21. �

For every n,m ≥ 1 we denote by Wn,m the cardinal sum of m copies of Cn.
Thus |Wn,m| = nm+ 1 and h(Wn,m) = n.

2.23. Lemma. The following ternary relation R on S is definable:

〈A,B,C〉 ∈ R iff A ≃ Cn, B ≃ Cm and C ≃ Wn,m for some n,m ∈ ω.

Proof. Wn,m is essentially the only element C of S with these properties: Am ≤ C;
Am+1 � C; Y2 � C; B2 � C; h(C) = n; every subsemilattice of C with at least
|C| −m+ 1 elements is of height n. �

2.24. Theorem. The following ternary relation R on S is definable:

〈A,B,C〉 ∈ R iff A ≃ Cn, B ≃ Cm and C ≃ Cnm for some n,m ∈ ω.

Proof. It follows from 2.23. �

By a regular semilattice we mean a finite semilattice A such that where a1, . . . , ak
are all the (pairwise distinct) maximal elements of A, the subsemilattices (ai] are
pairwise incomparable and A = (a1] +c · · ·+c (ak].
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By a max-sublattice of a finite semilattice A we mean any element B of S that
is maximal with respect to the property that B ≤ A and B is a lattice. Clearly,
every max-sublattice of A is isomorphic to (a]A for a maximal element of A; the
converse is not true.

2.25. Lemma. The set of regular semilattices is a definable subset of S.

Proof. The subset can be defined as follows. An element A of S is regular if and
only if the following two conditions are satisfied:

(1) for every C ≤ A, if every max-sublattice of A is ≤ C then C ≃ A;
(2) whenever B,C are two non-isomorphic max-sublattices of A and D is an

element of S such that B ≤ D ≤ A and C ≤ D, then |D| ≥ |B|+ |C| − 1.

The direct implication is easy. For the converse, let A satisfy (1) and (2). Denote
by A1, . . . , Ak all pairwise non-isomorphic maximal sublattices of A. There are
pairwise distinct maximal elements a1, . . . , ak of A such that (ai] ≃ Ai. Put C =
(a1] ∪ · · · ∪ (ak]. Then C is a subsemilattice of A and every max-subsemilattice of
A is ≤ C, so that C = A by (1). Thus a1, . . . , ak are the only maximal elements
of A. Let i 6= j. The subsemilattice (ai] ∪ (aj ] of A is above both Ai and Aj , so
that by (2) we have |(ai] ∪ (aj ]| ≥ |(ai]|+ |(aj ]| − 1 and consequently ai ∧ aj = 0A.
Thus A = (a1] +c · · ·+c (ak]. �

Let A be a finite semilattice. Put A+ = C0 ⊕A2 ⊕A2 ⊕ A ⊕ C0, so that A+

is a lattice and |A+| = |A| + 8. Denote by r the least positive integer such that
Ar � A+. For every k ≥ 1 we denote by βk(A) the regular semilattice with max-
sublattices A+ and Di = Ck−i ⊕Ar+i−1 ⊕C0 (i = 1, . . . , k). (Clearly, these k + 1
lattices are pairwise incomparable.) We have |Di| = k + r + 2 for all i.

2.26. Lemma. The following ternary relation R on S is definable:

〈A,B,C〉 ∈ R iff B ≃ Ck for some k ≥ 1 and C ≃ βk(A).

Proof. The proof, using 2.25, is obvious. �

Let A be a finite semilattice and a1, . . . , ak be a nonempty finite sequence of
elements of A. We denote by γ(A; a1, . . . , ak) the finite semilattice obtained from
βk(A) by adding new elements b1, . . . , bk and relations 1Di

< bi and ai < bi (i =
1, . . . , k). The cardinality of this semilattice is |βk(A)| + k. The semilattice has
k + 1 maximal elements 1A+ , b1, . . . , bk and (bi] are its k + 1 max-sublattices.

For example, let A = V2 (elements a0, a1, a2, a3 and covers a0 < a1 < a2 and
a0 < a3. The semilattice γ(A; a3, a2, a2, a0) is pictured in Fig. 3.

2.27. Lemma. The following ternary relation R on S is definable:

〈A,B,C〉 ∈ R iff there exist a k ≥ 1 and a sequence a1, . . . , ak of elements of A
such that B ≃ Ck and C ≃ γ(A; a1, . . . , ak).

Proof. Let A be a finite semilattice and k be a positive integer; put E = βk(A) and
let r and Di have the same meaning as above; put A′ = C0 ⊕A2 ⊕A2 ⊕C0. We
are going to prove that 〈A,Ck, C〉 ∈ R if and only if the following conditions are
satisfied:
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Fig. 3

(1) E < C;
(2) |C| = |E|+ k;
(3) A+ is a max-sublattice of C;
(4) for every i = 1, . . . , k there exists (up to isomorphism) precisely one max-

sublattice of C larger than Di, and it is not isomorphic to A+;
(5) whenever D is a max-sublattice of C and D 6≃ A+ then D ≃ (Di+cH)⊕C0

for precisely one i and for a lattice H with A′ ≤ H and Ar � H;
(6) C0 ⊕A2 ⊕A2 ⊕Ar � C.

It will follow that R is definable.
The direct implication is easy.
Let (1) through (6) be satisfied. By (4), for every i there is a maximal element ei

of C such that Di < (ei] and (ei] is a max-sublattice of C. Since Di is incomparable
with A+, we have (ei] 6≃ A+ and thus, by (5), (ei] ≃ (Dj +c H)⊕C0 for precisely
one j and some lattice H with A′ ≤ H and Ar � H. Suppose that i 6= j. There
exists an embedding f of Di into (Dj +c H) ⊕ C0. Denote by gi the meet of the
antichain in Di. It follows from (6) that f(gi) does not belong to H; it cannot be
equal to ei, since ei is maximal; so, f(gi) ∈ Dj . But this is possible only if i = j.
Thus 1Di

≤ ei. But 1Di
is not above the largest element of A+ and thus 1Di

< ei.
It follows that ei ∈ C − E and then, by (2), that C − E = {e1, . . . , ek}.

Denote by di the largest element of Di. For each i we have (ei] = (di] +c Hi

where Hi is a lattice. Denote by ai the largest element of Hi. Obviously, ai belongs
to A+ (because it cannot belong anywhere else). Since A′ ≤ Hi, the largest element
of A′, i.e., the least element of A, is below ai. Since the largest element of A+ is a
maximal element in C, we get ai ∈ A. Thus C ≃ γ(A, a1, . . . , ak). �

Let A be a finite semilattice and a1, . . . , ak be a sequence of its pairwise dis-
tinct elements, so that k = |A|. Take variables X,Y, Z, Y1, . . . , Yk, Z1, . . . , Zk

and denote by Φ the formula in these variables expressing that if X is A then
Y ≃ γ(A; b1, . . . , bk) for a sequence b1, . . . , bk of elements of A, Z ≃ A+, Yi ≃ Di
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and Zi ≃ Hi for all 1 ≤ i ≤ k. For every pair i, j of different elements of {1, . . . , k}
denote by Ψi,j the formula in the same variables expressing that if U is the least
element of S below Y and above the two max-sublattices of Y that are above Di

and Dj , then |U | = |Zj |+ |Yi|+ |Yj |. Let Γ be the conjunction of the formulas Ψi,j

for all i 6= j such that ai ≤ aj and of the formulas ¬Ψi,j for all the remaining pairs
i, j ∈ {1, . . . , k} with i 6= j. Denote by Λ(X) the following formula with one free
variable X: there exist Y,Z, Y1, . . . , Yk, Z1, . . . , Zk such that Φ and Γ. Now it is
easy to see that Λ(X) is satisfied in S if and only if X ≃ A. Thus we have proved:

2.28. Theorem. Every element of S is definable. Consequently, the ordered set

of isomorphism types of finite semilattices, ordered by embeddability, has only the

identical automorphism.

3. Universal classes of semilattices

A class K of semilattices is called universal if it satisfies any of the following
equivalent conditions:

(1) K is axiomatizable and closed under subsemilattices;
(2) K is closed under isomorphic images, subsemilattices and ultraproducts;
(3) K is closed under subsemilattices and contains every semilattice A such

that all finite subsemilattices of A belong to K.

We denote by U the lattice of all universal classes of semilattices (with respect
to inclusion). Its least element is the empty class, the largest element is the class
of all semilattices. Since the union of finitely many universal classes is a universal
class, the lattice U is distributive; of course, it is a complete algebraic lattice.

As it is easy to see, the mapping K 7→ K ∩ S is an isomorphism of the lattice
U onto the lattice of order-ideals of S (including the empty order-ideal). Every
universal class of semilattices is generated by the set of its finite members.

We are well aware that it is illegal to speak about lattices of proper classes. One
way how to make U legal would be to replace it by the lattice of order-ideals of S.

A universal class K ∈ U is said to be finitely generated if it is generated (as a
universal class) by finitely many finite semilattices. Clearly, K ∈ U is finitely gen-
erated if and only if it contains up to isomorphism only finitely many semilattices;
also, if and only if it does not contain any infinite semilattice; also, if and only if it
has only finitely many universal subclasses.

3.1. Theorem. The set of finitely generated universal classes of semilattices is a

definable subset of U .

Proof. An element K of U belongs to the set if and only if for every X ≤ K with
X > 0U there exists an Y with Y ≺ X. �

For every finite semilattice A denote by U(A) the universal class generated by A,
i.e., the class of all semilattices isomorphic to a subsemilattice of A. Universal
classes obtained in this way from individual finite semilattices will be called finitely
one-generated.



14 J. JEŽEK AND R. MCKENZIE

3.2. Theorem. A finitely generated universal class of semilattices is finitely one-

generated if and only if it is a completely join-irreducible element of U . Conse-

quently, the set of finitely one-generated universal classes is a definable subset of U .

Proof. It is obvious. �

3.3. Theorem. Every finitely generated universal class of semilattices is a definable

element of U . The lattice U has no non-identical automorphisms.

Proof. The definable subset of finitely one-generated universal classes is an ordered
set isomorphic to the quasiordered set S factored by the equivalence ≡, where
X ≡ Y means X ≤ Y and Y ≤ X. Thus it follows from2.28 that every finitely
one-generated universal class is a definable element of U and every automorphism
of U is identity on F = {U(A) : A ∈ S}. Since every element K of U is the join
of {U(A) : A ∈ K ∩ S}, and this set is finite if K is finitely generated, it follows
that every automorphism of U is the identity and every finitely generated universal
class is a definable element. �

Denote by C the class of all chains and by A the class of all flat semilattices.

3.4. Theorem. C and A are definable elements of U . The set of not finitely

generated universal classes of semilattices is the union (C]U ∪ (A]U of two principal

filters of U .

Proof. Clearly, C and A are not finitely generated universal classes. Let K be a
not finitely generated universal class of semilattices not containing all chains. Then
K does not contain all finite chains and thus all finite semilattices in K are of a
bounded height. But K contains infinitely many non-isomorphic finite semilattices,
so that (as it is easy to see) K contains all the semilattices An and thus it contains
all flat semilattices.

From this it follows easily that C and A are definable elements. �

3.5. Lemma. The following conditions are equivalent for a universal class K of

semilattices:

(1) K is finitely axiomatizable;

(2) K is axiomatizable by one universal sentence;

(3) the set of the minimal finite semilattices not belonging to K is finite up to

isomorphism.

Proof. The equivalence of the first two conditions is obvious.
Let K be the class of all semilattices satisfying the universal closure of a quanti-

fier-free formula φ(x1, . . . , xn) and let A be a minimal semilattice not belonging
to K. There exists an n-tuple 〈a1, . . . , an〉 of elements of A such that φ(a1, . . . , an)
is not true in A. But then φ(a1, . . . , an) is not true in the subsemilattice B of A
generated by a1, . . . , an. Since |B| < 2n and A is minimal, we get |A| < 2n.

Conversely, let there exist a finite sequence A1, . . . , An of finite semilattices such
that K is the class of all semilattices avoiding A1, . . . , An. For every i = 1, . . . , n it
is easy to find a quantifier-free formula in |Ai| variables that is satisfied under all
interpretations in a semilattice B if and only if Ai is not embeddable into B. �
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3.6. Theorem. The set of finitely axiomatizable universal classes of semilattices is

a definable subset of U . Every finitely axiomatizable universal class of semilattices

is a definable element of U .

Proof. It follows from 3.5 that a universal class K is finitely axiomatizable if and
only if there exists a finitely one-generated element U(A) of U such that U(B) ≤
U(A) for every finitely one-generated elementU(B) of U such thatU(B) is minimal
among the elements of U that are not below K. The second statement also follows
easily from 3.5 and 2.28. �

4. Open problems

4.1. Problem. For which positive integers n is it true that every semilattice with
n elements is uniquely determined up to isomorphism by the isomorphism types of
its proper subsemilattices?

We know that the answer to this question is no when n = 4, and yes for both
n = 5 and n = 6. If it is true for all numbers n ≥ 5, we would have a more simple
proof of Theorem 2.28. (We would get the definability of a finite semilattice A just
by induction on the number of elements of A.)

We have seen in Theorem 3.4 that the set of not finitely generated universal
classes of semilattices is the union of two principal filters of U . It is easy to see
that the set of not finitely generated universal classes of distributive lattices is a
principal filter in the lattice of universal classes of distributive lattices (the principal
filter generated by the class of chains). Thus it is natural to ask:

4.2. Problem. Which locally finite universal classes K (or just varieties) have the
property that the set of not finitely generated universal subclasses of K is the union
of finitely many principal filters in the lattice of all universal subclasses of K?
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