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Abstract. Let P be the ordered set of isomorphism types of finite
ordered sets (posets), where the ordering is by embeddability. We study
first-order definability in this ordered set. We prove among other things
that for every finite poset P , the set {p, p∂} is definable, where p and
p∂ are the isomorphism types of P and its dual poset. We prove that
the only non-identity automorphism of P is the duality map. Then
we apply these results to investigate definability in the closely related
lattice of universal classes of posets. We prove that this lattice has only
one non-identity automorphism, the duality map; that the set of finitely
generated and also the set of finitely axiomatizable universal classes are
definable subsets of the lattice; and that for each member K of either of
these two definable subsets, {K,K∂} is a definable subset of the lattice.

Next, making fuller use of the techniques developed to establish these
results, we go on to show that every isomorphism-invariant relation be-
tween finite posets that is definable in the full second-order language
over the domain of finite posets is, after factoring by isomorphism, first-
order definable up to duality in the ordered set P.

1. Introduction

The set P of isomorphism types of finite posets, or as we say, finite order
types, is denumerable. This set becomes itself a poset under the order
induced by the substructure relation—we put p0 ≤ p1, where pi is the type
of the finite poset Pi, iff P0 is isomorphic to a sub-poset of P1. In this way
we obtain a poset 〈P,≤〉. In this paper, we explore the scope of first-order
definitions in the structure 〈P,≤〉. It is an interesting topic because that
scope is surprisingly wide: we shall see that in a quite precise sense, first-
order definability over this poset is equivalent to second-order definability
in the domain of finite posets.

The preceding remarks illustrate, by way of example, what we mean by the
phrase “definability in substructure orderings”. This paper is the second in
a series of four exploring definability in substructure orderings. The paper
[3] dealt with finite semilattices; [4] deals with finite distributive lattices;
and [5] treats finite lattices. The idea for these explorations arose during
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1
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our study of some combinatorial properties of these sub-structure orderings
(see [1], [2]). We realized also that certain kinds of results on definability
in substructure orderings would yield definitive results on definability in the
lattice of universal classes of the structures.

The application of definability results for the substructure ordering to ob-
tain definability results for the lattice of universal classes works smoothly for
semilattices, for ordered sets and for distributive lattices, but breaks down
for lattices because lattices do not form a locally finite class of structures.
The results we obtain for the substructure ordering over finite structures are
pretty much the same in all four cases, but the proof details are sufficiently
different for the different kinds of structures that we did not think it wise
to unify all our results in one paper.

By a universal class of posets we mean a class K defined by a set of
first-order universal sentences, equivalently, a class K closed under forming
substructures and ultraproducts. Since every poset is the union of its finite
sub-posets, the lattice of universal classes of posets is naturally isomorphic
with the lattice of order-ideals of the ordered set 〈P,≤〉, and within this
lattice, the principal order-ideals are the same as the strictly join-irreducible
elements of the lattice, and they constitute a definable subset of the lattice
that is order-isomorphic with P. Thus every subset or relation over the
elements of P that can be shown to be definable in 〈P,≤〉 gives rise to a
definable subset or relation in the lattice of universal classes.

A simple but important property of posets is that for every finite collection
F of finite posets, there is a finite poset A such that all members of F are
embeddable into A. From this fact, it is clear that a universal class of posets
is finitely generated iff it is contained in a strictly join-irreducible member of
the lattice of universal classes. Thus the set of finitely generated universal
classes is a definable subset of the lattice. It is easy to show that a universal
class K of posets is finitely axiomatizable (in the first-order language of
posets) iff up to isomorphism, there are only a finite number of minimal (in
the sense of embedding) finite posets lying outside of K. Thus it is easy to
write a first-order definition in the language of lattice theory for the class
of finitely axiomatizable universal classes: A universal class K is finitely
axiomatizable iff there is a strictly join-irreducible universal class O such
that for every universal class M , M 6≤ K ⇒M ∩O 6≤ K.

We have just proved two of the principal results about universal classes
of posets announced in the abstract. The remaining result, that for any
universal class K that is either finitely generated or finitely axiomatizable,
the set {K,K∂} is definable in the lattice of universal classes, is not so easy.
Our approach is to exhibit two three-element isomorphism types, p1 and p∂1 ,
and show that {p1, p

∂
1} is definable in 〈P,≤〉, and that when p1 is taken as

a parameter, every member of P becomes definable. This we accomplish in
Part I of the paper. We then conclude Part I with a derivation of our result
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that {K,K∂} is definable in the lattice of universal classes whenever K is a
finitely generated, or a finitely axiomatizable, universal class.

In Part II, building on results obtained in Part I, we develop a different
perspective on first order definability in 〈P,≤〉. In both parts, our principal
object of investigation is actually the quasi-ordered set Qposet whose mem-
bers are all the posets 〈A,≤A〉 with A a finite subset of the non-negative
integers, quasi-ordered by embeddability, so that 〈A,≤A〉 ≤ 〈B,≤B〉 means
that there is a one-to-one map f : A→ B such that x ≤A y ↔ f(x) ≤B f(y)
holds for all {x, y} ⊆ A. Members of Qposet will usually be identified no-
tationally with their universes, so that we write A ∈ Qposet with a specific
choice of a partial order ≤A on A understood. An exception is that spe-
cial posets that are to be held fixed throughout our study will be denoted
with boldface letters. Here is the first example of this practice: We define
E0 to be the poset with elements 0, 1, 2 and covers 0 ≺ 1 and 0 ≺ 2 (see
Figure 1). We can say more precisely that both in Part I and Part II of the
paper, we shall be studying first-order definability in the countable structure
Qposet′ = 〈Qposet,≤,E0〉 with one binary relation and one constant.

Fig. 1: E0

In Part II, we introduce the category Cposet whose objects are the mem-
bers A ∈ Qposet with universe identical to [n] = {0, 1, . . . , n− 1} for some
n ≥ 0, and whose morphisms are the monotone maps between these posets.
The set of morphisms from A to B where A and B are two objects in Cposet

will be denoted CP(A,B).
Here we shall be considering first-order definability in the enriched cat-

egory Cposet′ obtained by adding to the category structure four funda-
mental constants. The constants denote two objects, C0 = 〈{0},≤0〉 and
C1 = 〈{0, 1},≤1〉 (where this poset has one cover 0 ≺ 1) and the two mem-
bers of CP(C0,C1), namely f i : C0 → C1 with fi(0) = i (for i ∈ {0, 1}).

Our goal in Part II will be to prove that the structures Qposet′ and
Cposet′ are almost equivalent in terms of the expressibility of first-order
language applied to them.

But in fact, we shall show that this equivalence extends to expressibility
in a very strong second-order language L2 applied to the family of structures
(posets) which constitutes the set of objects of Cposet′. This language L2

is an expansion of the first-order language of Cposet′, containing not only
variables ranging over objects and morphisms of Cposet but also quantifi-
able variables ranging over elements of any object, over arbitrary subsets of
objects, over arbitrary functions between two objects, over arbitrary sub-
sets of products of finitely many objects (heteregenous relations), dependent
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variables giving the universe and the order relation of an object, and the ap-
paratus to denote order relations between elements, application of a function
to an element, and membership of a tuple of elements in a relation.

Specifically, we shall prove that for any positive integer N , any N -ary
relation R over Qposet is first-order definable in Qposet′ iff there is an
N -ary relation S over the set of objects of Cposet such that S is definable
in L2 and we have

R = {(A0, . . . , AN−1) ∈ QposetN : there are objects B0, . . . , BN−1

in Cposet with Bi
∼= Ai for i < N and (B0, . . . , BN−1) ∈ S} .

(The proof for “only if” is elementary; the proof for “if” seems quite non-
trivial.)

The above-described result is surely the central contribution of this paper.
Here is a reformulation of it. Let e0 denote the isomorphism type of the poset
E0. An n-ary relation S overQposet (or over the object set of Cposet) will
be called isomorphism-invariant iff whenever A0

∼= B0, . . . , An−1
∼= Bn−1

then (A0, . . . , An−1) ∈ S iff (B0, . . . , Bn−1) ∈ S. Then we have: The
isomorphism-invariant relations over the objects of Cposet that are L2-
definable are the same as the isomorphism-invariant relations first-order de-
finable in Cposet′, and the same, after identifying isomorphic posets, as the
relations first-order definable in the enriched ordered set P ′ = 〈P,≤, e0〉.

From this result, it is an easy corollary that for every sentence ϕ in the
second-order language of posets, {A ∈ Qposet : A |= ϕ} is identical with
the set {A ∈ Qposet : Qposet′ |= Φ(A)} for some formula Φ(x) in the
first-order language of the structure Qposet′ = 〈Qposet,≤,E0〉.

Specializing the corollary, we find that the set Qlatt of members of
Qposet that are lattice-ordered sets, is first-order definable in Qposet′, as
is the set Qslatt of meet-semilattice-ordered members of Qposet and the
subset Qdlatt of Qlatt consisting of the lattice-ordered sets where the
lattice is distributive. Moreover, the relation A ≤l B that holds between A
and B in Qlatt iff there is a lattice-embedding of A into B is definable,
as is the relation A ≤sl B of semilattice embeddability in Qslatt. Each
of the quasi-ordered sets 〈Qslatt,≤sl〉, 〈Qlatt,≤l〉 and 〈Qdlatt,≤dl〉 is
therefore definably present in Qposet′. The authors have studied the first-
order definability in these structures in the papers [3], [4] and [5], reaching
conclusions parallel to those obtained in this paper.

Birkhoff duality between finite distributive lattices and finite posets yields
a second way of definably recovering 〈Qdlatt,≤dl〉 in Qposet′. (This
application will be discussed briefly near the end of Section 9.)

Finally, we wish to observe that every subset of P is the set of all isomor-
phism types of all finite models of some set of first-order sentences in the
language of posets: Let S be a subset of P, and for every positive integer n,
let An,1, . . . , An,pn be a list of representatives of all the isomorphism types of
n-element posets that belong to S. Let φn be a sentence such that a poset
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A is a model of φn iff |A| = n ⇒ A ∼= Ai for some 1 ≤ i ≤ pn. Clearly, a
finite poset A represents an isomorphism type in S iff A |= φn for all n ≥ 1.
Consequently, our results imply that every subset of P is defined by the
simultaneous satisfaction in P ′ of some set of formulas {ψn(x) : n ≥ 1} in
the first-order language of the structure P ′. However, there are subsets of
P that can be defined by a single formula ψ(x) in the first-order language
of P ′, but cannot be defined as all isomorphism types of finite models of a
single sentence in the language of posets. For example, the set of isomor-
phism types of finite connected posets is such a set. (For the formula ψ(x)
see Theorem 6.4 below. A standard model-theoretic argument shows that
no single first-order sentence defines the property of connectedness among
all finite posets.)

We show in Part I (Theorem 6.12 and Theorem 5.3) that the relations
{(A,B,C) : A ∼= B + C} (cardinal sum) and {(A,B,C) : A ∼= B ⊕ C}
(ordinal sum) are definable in Qposet′. Let us finally remark that it will
become obvious in Part II that the relation {(A,B,C) : A ∼= B × C} is
definable in Qposet′ (since it is definable in the category Cposet).

Let us remark that the results of this paper imply that the elementary
theory of 〈P,≤〉 is undecidable. Indeed, it is well known that where N0

is the set of nonnegative integers, the structure 〈N0,+,×〉 has undecidable
elementary theory; from this it easily follows that also the elementary theory
of 〈N,+,×〉, where N is the set of positive integers, is undecidable; an
obvious mapping is a bijection of N onto the set A or isomorphism types of
finite chains; and we will see that A is a definable subset and the images of
both + and × are definable operations in 〈P,≤〉.

Part I

2. Notation and first results

The elements of Qposet are the finite posets whose elements are non-
negative integers. For A,B ∈ Qposet we put A ≤ B iff A is isomorphic
with the poset induced by B on a subset of B. We put A ⊆ B iff A is
contained in B as a set, and the order in A is the restriction to this set of
the order in B—in other words, A is a poset induced by B on a subset of B.
Note that A and B are isomorphic, written A ∼= B, iff A ≤ B and B ≤ A.
We denote by E0 the poset with elements 0, 1, 2 and covers 0 ≺ 1 and 0 ≺ 2,
and by E1 its dual. We set Qposet′ equal to the pointed quasi-ordered set
〈Qposet,≤,E0〉.

When we say that a subset of Qposet or a relation over Qposet is
first-order definable in Qposet′, we shall mean definable by a formula in
the first-order language with two non-logical symbols, ≤ and E0, and with-
out the equality symbol. As noted above, {(A,B) : A ∼= B} is definable
in Qposet′, and it is easily proved (say by induction on the complexity
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of formulas) that for every formula ϕ(x0, . . . , xn−1) in this language and
for A0, B0, . . . , An−1, Bn−1 ∈ Qposet with Ai

∼= Bi for i < n we have
Qposet′ |= ϕ(A0, . . . , An−1) if and only if Qposet′ |= ϕ(B0, . . . , Bn−1).
Thus with our convention about the language (omitting equality) first-order
definability in Qposet′ is only “up to isomorphism”. In particular, {E0} is
not definable, although {A : A ∼= E0} is definable. However, we write that
“E0 is a definable member of Qposet′”, meaning that it is definable up to
isomorphism; and we shall generally use this language with respect to all
definable elements, definable subsets and definable relations over Qposet′.

The relation of isomorphism, definable in Qposet′, is an equivalence rela-
tion over Qposet that gives rise to the pointed ordered set of isomorphism
types, P ′ = 〈P,≤, e0〉. Via the map sending A ∈ Qposet to A/∼= ∈ P,
definable relations over Qposet′ become definable relations over P ′, and
conversely. Thus working over Qposet′ is simply a convenient means to
give a more concrete feel to the study of definability over P ′.

For every n ≥ 0 we denote by Cn the chain of height n,

Cn = 〈{0, 1, . . . , n},≤〉

in which ≤ is the usual order. For every n ≥ 0 we denote by An the
n+ 1-element antichain, An = 〈{0, 1, . . . , n},≤〉, in which ≤ is the discrete
order—x ≤ y iff x = y for any elements x, y in An. Note that C0

∼= A0.
The height, ht(P ), of a finite poset P , is the largest n such that Cn ≤ P

(i.e., such that P has an n+ 1-element chain).
The cardinal sum, A + B, and ordinal sum, A ⊕ B, of two posets are

defined only up to isomorphism. Thus C ∼= A + B if and only if C is the
disjoint union of ordered subsets isomorphic respectively to A and to B,
such that there are no order relations in C between elements of the two
subsets; and C ∼= A⊕ B if and only if C is the disjoint union of sub-posets
isomorphic respectively to A and to B, such that for every element x of the
copy of A in C and for every element y of the copy of B, we have x < y in
C.

If A,B ∈ Qposet we say that A is covered by B if A < B and there is
no C ∈ Qposet with A < C < B. We write A ≺ B, or Qposet′ |= A ≺ B,
to denote that B covers A in Qposet′.

The cardinality of A is the number of elements of A, written |A|.
For an element e of a poset, e↓ denotes the principal ideal of the poset

generated by e.

Proposition 2.1. Let a and b be members of Qposet. Then A ≺ B iff
A ≤ B and |B| = |A|+ 1.

This fact is obvious.

Theorem 2.2. {Cn/ ∼= : n ≥ 0} and {An/ ∼= : n ≥ 0} are the only infinite
order-ideals in P that are chains. The set of finite chains is a definable
subset of Qposet′ and each finite chain is a definable member of Qposet′.
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The set of finite antichains is a definable subset of Qposet′ and each finite
antichain is a definable member of Qposet′.

Proof. If a finite poset A is neither a chain nor an antichain then A1 ≤ A

and C1 ≤ A, so that (A/ ∼=)↓ is not a chain in P. In Figure 2 below, we
diagram the lowest four levels of P. The top row consists of the following
posets (from left to right): C3, C0⊕E0, C2,0,− (introduced later), E0⊕C0,
C0 ⊕A0, E2 +C0, C2,−,2 (introduced later), E1 ⊕C0, E0 +C0, the four-
element fence, A1 ⊕ A1, C1 + C1, C1 +A1, E1 + C0, A2 ⊕ C0, A3. The
next row consists of C2, E0, C1 + C0, E1, A2; the atoms are C1 and A1.
We see that A2/ ∼= has six covers in P while C2/ ∼= has seven covers. Thus
P ∈ Qposet is a chain iff for every A,B ∈ Qposet with A ≤ P and
B ≤ P we have either A ≤ B or B ≤ A, and there is Q ∈ Qposet with
either Q ≤ P or P ≤ Q such that {R ∈ Qposet : R ≤ Q} has precisely
three non-isomorphic members, all of them pairwise comparable, and up to
isomorphism Q has precisely seven covers in Qposet. From this, it readily
follows that the set of chains is definable, the set of antichains is definable,
and each individual chain or antichain is a definable member of Qposet′

(meaning, “up to isomorphism”, of course). •

Fig. 2: The lowest four levels of P

Proposition 2.3. Every finite poset of at most five elements is a definable
member of Qposet′.

Proof. With a little ingenuity, the reader can extract from Figure 2 the fact
that {E0,E

∂
0} is definable in 〈Qposet,≤〉, and thus that each poset of at

most three elements is definable in Qposet′. Then it can be shown that
each poset of four or five elements is determined up to isomorphism by the
posets that properly embed into it. (The verification that this is so will be
left to the reader.) •
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Proposition 2.4. For every positive integer n, the set of finite posets of
cardinality n is a definable subset of Qposet′.

This is obvious, from Proposition 2.1.

Remark 2.1. We remarked above that each poset of four or five elements
is determined up to isomorphism by the isomorphism types of its proper
sub-posets This is not true for smaller posets; as witnessed by E0 and E1.
It may be that every poset of no fewer than four elements is determined up
to isomorphism by the set of isomorphism types of its proper sub-posets. If
this were true, it would yield a direct proof of one of the principal results
of this paper, that every finite poset is definable in Qposet′. (See J. X.
Rampon [7].)

3. Covers of chains, and cutpoints

We have Cn ≺ Cn+1 of course. We introduce notation for all the remain-
ing covers of Cn.

For 1 ≤ ℓ ≤ n, Cn,−,ℓ is the poset with elements a0, . . . , an+1 and covers
ai < ai+1 for 0 ≤ i < n and an+1 < aℓ.

For 0 ≤ k < n, Cn,k,− is the poset with elements a0, . . . , an+1 and covers
ai < ai+1 for 0 ≤ i < n and ak < an+1.

For 0 ≤ k < ℓ ≤ n with k + 1 < ℓ, Cn,k,ℓ is the poset with elements
a0, . . . , an+1 and covers ai < ai+1 for 0 ≤ i < n and ak < an+1 and an+1 <
aℓ.

Proposition 3.1. The covers of Cn are Cn+1, Cn + C0, and the posets
Cn,−,ℓ, Cn,k,−, and Cn,k,ℓ defined above.

The proof is very easy, using Proposition 2.1.

Proposition 3.2. For each integer n ≥ 0, every cover of Cn is a definable
member of Qposet′. Each of the sets {Cn,−,1 : n ≥ 1}, {Cn,−,n : n ≥ 1},
{Cn,n−1,− : n ≥ 1}, {Cn,0,− : n ≥ 1}, {Cn,k,k+2 : n−2 ≥ k ≥ 0} is definable
in Qposet′

Proof. For n ≥ 1, we have that Cn,−,1 is the only cover of Cn of height n
that does not embed E0, does embed E1, and does not embed C2,−,2. (The
posets E1 and C2,−,2 have fewer than five elements and so are definable, by
Proposition 2.3.)

It is easy to verify that for n ≥ 1, Cn,−,n is the only cover of Cn of height
n that does not embed E0, does embed E1 and does not embed E1 ⊕ C1.
(The posets E1 and E1 ⊕C1 are definable, by Proposition 2.3.)

When 0 ≤ k and k + 2 ≤ ℓ ≤ n, we have that Cn,k,ℓ is the only cover
of Cn which has height n; embeds E0 and E1; embeds Cn−ℓ+1,−,1 and does
not embed Cn−ℓ+2,−,1; embeds Ck+1,k,− and does not embed Ck+2,k+1,−.

For n ≥ 2 we have that A ∼= Cn,k,k+2 for some k ≥ 0 with k + 2 ≤ n iff
A ∼= Cn,k,ℓ for some k, ℓ and A does not embed N5.
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Finally, we observe that Cn +C0 is the only cover of Cn of height n that
embeds neither E0 nor E1. •

By a cutpoint of a poset A we mean an element x ∈ A that is comparable
to all members of A. Note that if A is a finite poset, say of height n, and A
has a cutpoint c of height m, then c is the unique element of A of height m,
the co-height of c is n−m, and c belongs to every maximal chain in A.

Theorem 3.3. The relation {(Cn,Ck,Cℓ) : n = k + ℓ} is definable in
Qposet′.

Proof. For chains Cn, Ck, Cℓ we have that n = k + ℓ iff either ℓ = 0
and n = k, or ℓ = 1 and Ck ≺ Cn, or ℓ ≥ 2 and Cn+1 has a cover A
(= Cn+1,k,k+2) of height n + 1 that embeds Ck+1,k,− and does not embed
Ck+2,k+1,−, and does embed Cℓ,−,1 and does not embed Cℓ+1,−,1. •

Theorem 3.4. The relation {(A,Cm) : A has a cutpoint of height m} is
definable in Qposet′. The set of topped finite posets (those with the largest
element) and the set of bottomed finite posets (those with the least element)
are definable subsets of Qposet′.

Proof. A has a cutpoint of height m iff where n = ht(A), Cm ≤ Cn and if Q
is any cover of Cn with Q ≤ A, then Q is not isomorphic to Cn +C0 or to
Cn,k,− for a k < m, or to Cn,−,ℓ for a ℓ > m, or to Cn,k,ℓ for a k, ℓ satisfying
k < m < ℓ.

Indeed, if c is a cutpoint of height m in A, and Cn ≺ Q ≤ A, then we have
a sub-poset C of A isomorphic to Cn and a point q ∈ A \ C with C ∪ {q}
(the induced poset) isomorphic to Q. The cutpoint c must be the element
of height m in the chain C, and it must be comparable to q. This forces the
claimed restrictions on the possibilities for Q. On the other hand, suppose
that 0 ≤ m ≤ n = ht(A) and A has no cutpoint of height m. Choose a
sub-poset C of A order-isomorphic to Cn. Let am be the element of height
m in the induced order on C. Then the height of am in A is also m. Since
am is not a cutpoint of A, there is an element q ∈ A that is incomparable to
am. Clearly, q 6∈ C. Where Q = C ∪ {q}, the induced poset on Q is a cover
of Cn. The incomparability of q and am yields that Q is isomorphic to one
of the posets listed in the previous paragraph.

Now, A is topped iff where n = ht(A), A has a cutpoint of height n. A is
bottomed iff A has a cutpoint of height 0. •

4. Definability of some cardinality properties

For n > m ≥ 0 denote by Yn,m the poset with elements

a0, . . . , an+1, an+2

and covers a0 < · · · < an and am < an+1 and am < an+2.

Lemma 4.1. The binary relation

{(A,B) : A ∼= Cn and B ∼= Yn,m for some n > m ≥ 0}
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is definable in Qposet′.

Proof. Suppose that A ∼= Cn. Then B ∼= Yn,m for some n > m ≥ 0 iff: A
is a ≤-maximal subchain of B; there is Q with A ≺ Q ≺ B; C0 ⊕A2 ≤ B;
E1 6≤ B; and C0 ⊕ (C0 +E0) 6≤ B. •

Theorem 4.2. The following relation is definable in Qposet′:

{(A,B) : for some n ≥ 0, A ∼= An and B ∼= Cn} .

Proof. This will be a consequence of the following claim.
Suppose that A ∼= Am and B ∼= Cn. Then m ≤ n iff there is a finite

poset P with these properties:

1) ht(P ) = n, i.e., B ≤ P and if C is a chain and B < C then C 6≤ P .
2) P is a rooted tree, i.e., P is bottomed and E1 6≤ P .
3) Yn,m 6≤ P whenever n > m ≥ 0.
4) C0 ⊕ (C1 +C1) 6≤ P .
5) A ≤ P .

We remark that there is a largest poset with properties 1)-4), namely the
tree Tn pictured in Figure 3 for n = 4.

a0

a1

a2

a3

a4

b0

b1

b2

b3

Fig. 3: T4

To prove the claim, we observe that clearly Tn satisfies 1), 2), 3) and 4)
and embeds An and does not embed An+1. Thus it suffices to show that if
S satisfies 1), 2), 3) and 4) then S is obtained from Tn by removing some
subset (possibly the empty set) of the set of points {b0, . . . , bn−1}.

Thus suppose that S satisfies 1), 2), 3) and 4). Let C be an n+1-element
chain in S, say C = {a0, . . . , an} with a0 < · · · < an. Now S is a tree
with root a0, by 1) and 2). By 3), for i < n, ai has at most one successor
other than ai+1. If i < n − 1 and ai has two successors, ai+1 and bi, then
by 4) it follows that bi is a maximal element of S. If i = n − 1 and ai
has two successors, an and bn−1, then since ht(S) = n it follows again that
bn−1 is a maximal element. These considerations imply that S consists of
the elements a0, . . . , an and, for possibly some or all of i = 0, i = 1, . . .,
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i = n − 1, a maximal element bi 6= ai+1 that has ai as its unique subcover.
This completes our proof. •

Lemma 4.3. The relation {(A,E, F ) : A ∼= E ⊕ F and E is a chain} is
definable in Qposet′.

Proof. (A,E, F ) belongs to this relation iff there are n,m, ℓ with ht(A) = n,
E ∼= Cm, ht(F ) = ℓ and n = m + ℓ; and either F ∼= Cℓ or else: there is
0 ≤ k ≤ ℓ such that F has a cutpoint of height i for every 0 ≤ i < k and
F has no cutpoint of height k, and A has a cutpoint of height j for every
0 ≤ j < m+ k and A has no cutpoint of height m+ k, and there is a finite
un-bottomed poset Q such that Q ≤ A and Q ≤ F and whenever R is a
finite un-bottomed poset and R ≤ A and R ≤ F then R ≤ Q. •

Theorem 4.4. The following relation is definable in Qposet′:

{(A,B) : for some n ≥ 1, B ∼= Cn and |A| = n} .

Proof. Let n ≥ 1. To prove this theorem, it will suffice to show that for any
finite poset A, we have |A| ≥ n iff either A1 6≤ A (i.e., A is a chain) and
Cn−1 ≤ A, or else: A1 ≤ A (i.e., A is not a chain) and for some m ≥ 0,
ht(A) = m and every finite poset P with the following properties embeds
Cn. The properties are:

(1) C0 ⊕A ≤ P .
(2) For every chain C and finite poset Q with Cm < Q ≤ A and C⊕Q ≤

P there is Q′ with Cm ≤ Q′ ≺ Q and there is a chain D with C ≺ D
and D ⊕Q′ ≤ P .

To prove that this characterizes the relation |A| ≥ n, we assume first that
A is not a chain and |A| ≥ n, and say ht(A) = m. We need to show that
every P ∈ Qposet that satisfies (1) and (2) embeds Cn. So assume that
P satisfies (1) and (2). By induction on k = |A| − |Q|, using (1) for the
base step k = 0, and using (2) in the induction step, we can obviously show
that for 0 ≤ k ≤ |A| −m− 1, We have Ck ⊕Q ≤ P for some Q ∈ Qposet

satisfying Cm ≤ Q ≤ A and |A| − |Q| = k. At k = |A| −m − 1, it follows
that |Q| = m + 1 and since Cm ≤ Q then Q ∼= Cm: for this k we have
Ck ⊕Cm ≤ P . Thus

P ≥ Ck ⊕Cm
∼= Cm+k+1

∼= C|A| ≥ Cn .

Next, we assume that A is not a chain, |A| < n, and ht(A) = m. We need
to find a poset P ∈ Qposet that satisfies (1) and (2) and does not embed
Cn. Let Q0, . . . , Qp−1 be a list that contains exactly one isomorphic copy of
each poset Q ∈ Qposet such that Cm ≤ Q ≤ A. Then we put

P =
∑

0≤i<p

Cki ⊕Qi (ki = |A| − |Qi|) .

Clearly, ht(Qi) = m and ht(Cki ⊕ Qi) = ki + m + 1 so the component
Cki ⊕ Qi of largest height is the one with the largest value of ki, that is,
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when Qi
∼= Cm. For this Qi we have

Cki ⊕Qi
∼= Cki ⊕Cm

∼= Cki+m+1
∼= C|A| .

It follows that we have ht(P ) = |A| < n and so Cn 6≤ P .
It remains for us to show that P satisfies (1) and (2). The truth of (1) for

P is trivial. To prove (2), let C,Q ∈ Qposet with C ∼= Cℓ andCm < Q ≤ A
and C⊕Q ≤ P . Now C⊕Q ∼= Cℓ⊕Q is connected, because it has a bottom
element. Thus we have that

Cℓ ⊕Q ≤ Cki0
⊕Qi0

for some i0. This implies that

ℓ+m+ 1 = ht(Cℓ ⊕Q) ≤ ht(Cki0
⊕Qi0) = ki0 +m+ 1 .

Thus ℓ ≤ ki0 . We can assume that C ⊕Q ⊆ Cki0
⊕Qi0 (sub-poset).

Suppose first that ℓ < ki0 . Then we can choose d ∈ Cki0
\ C. Put

C ′ = {x ∈ C ⊕ Q : x < d} and R = {x ∈ C ⊕ Q : d < x}, and set
M = C ∪Q∪ {d}. Each of C ′, R,M is a sub-poset of Cki0

⊕Qi0 . Since d is

a cut-point in Cki0
⊕Qi0 then C ⊕Q ∼= C ′ ⊕ R. Also C ′ ⊆ Cki0

and so C ′

is a chain. Thus

M ∼= C ′ ⊕C0 ⊕R ∼= C0 ⊕ C ′ ⊕R ∼= C0 ⊕ C ⊕Q ∼= Cℓ+1 ⊕Q .

Finally, since Cm < Q ≤ A there is Q′ ≺ Q with Q′ ≥ Cm. For such a Q′

we have

Cℓ+1 ⊕Q′ ≺ Cℓ+1 ⊕Q ∼=M ≤ Cki0
⊕Qi0 ≤ P .

Thus the conclusion of (2) is established in the case that ℓ < ki0 .
Now suppose that ℓ = ki0 . In this case, since Cℓ ⊕Q ≤ Cki0

⊕Qi0 , then

we must have Q ≤ Qi0 . In fact, we can assume that Q ⊆ Qi0 (sub-poset).
Choose any m + 1-element chain D in Q and choose a ∈ Q \D ⊆ Qi0 \D.
Put Q′ = Q \ {a}. Then Q′ ⊆ Qi0 \ {a}

∼= Qi1 for some i1 < p. Obviously,
ki1 = ℓ+ 1. We have that Cm ≤ Q′ ≺ Q, C ≺ Cℓ+1, and

Cℓ+1 ⊕Q′ ≤ Cℓ+1 ⊕Qi1
∼= Cki1

⊕Qi1 ≤ P .

This completes our proof that P satisfies (2). •

5. Definability of the relation A ∼= E ⊕ F

Lemma 5.1. The relation {(A,E, F ) : A ∼= E ⊕ F and F is a chain} is
definable in Qposet′.

Proof. The proof follows the same pattern as our proof of Lemma 4.3. •

Lemma 5.2. The relation {(A,E, F ) : A ∼= E ⊕C0 ⊕ F} is definable in
Qposet′.
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Proof. We have that (A,E, F ) lies in this relation if and only if ht(E) = m,
say, and ht(F ) = n, and ht(A) = m + n + 2 (see Theorem 3.3), and A has
a cutpoint of height m + 1 (see Theorem 3.4) and for every finite poset R,
Cm+1 ⊕ R ≤ A iff R ≤ F , and R ⊕ Cn+1 ≤ A iff R ≤ E (see Lemma 4.3
and Lemma 5.1). •

Theorem 5.3. The relation

{(A,E, F ) : A ∼= E ⊕ F}

is definable in Qposet′.

Proof. We have that (A,E, F ) lies in this relation iff ht(E) = m, say, and
ht(F ) = n, and ht(A) = m+ n+1, and Cm ⊕F ≤ A and E ⊕Cn ≤ A, and
either n = 0 and A ∼= E ⊕C0, or there is a unique (up to isomorphism) R
with F ∼= C0 ⊕ R and for this R we have that A ∼= E ⊕C0 ⊕ R, or m = 0
and A ∼= C0 ⊕ F , or there is a unique R with E ∼= R ⊕C0 and for this R
we have that A ∼= R ⊕ C0 ⊕ F , or finally: E is not topped and F is not
bottomed and there is a finite poset A′ such that A′ ∼= E ⊕C0 ⊕ F and we
have A ≺ A′ and A has no cutpoint of height m+ 1. •

6. Definability of the relation A ∼= E + F

Lemma 6.1. The relation

{(A,E, F ) : E and F are chains and A ∼= E + F}

is definable in Qposet′.

Proof. First, a finite poset A is the cardinal sum of two (nonvoid) chains iff
A is not a chain, A2 6≤ A, E0 6≤ A, and E1 6≤ A.

Next, a finite poset A satisfies A ∼= Cm + Cn with m ≤ n iff A is the
cardinal sum of two nonvoid chains, ht(A) = n ≥ m, and |A| = (m + 1) +
(n+ 1). •

Lemma 6.2. The relation

{(A,E, F ) : E is topped, F is a chain, and A ∼= E + F}

is definable in Qposet′.

Proof. Suppose that E is topped and F is a chain. To begin, assume for the
moment that also ht(F ) > ht(E) and E is not a chain. Then E 6≤ F 6≤ E.
Under all these assumptions, we claim that A ∼= E + F iff E ≤ A, F ≤ A,
|A| = |E| + |F |, whenever R ≤ A and E ≤ R and F ≤ R then R ∼= A, and
finally, if F ≺ Q ≤ A then Q ∼= C0 + F .

Now drop the assumptions that ht(F ) > ht(E) and E is not a chain. We
claim that A ∼= E + F iff: either E is a chain and A ∼= E + F ; or else E is
not a chain, and there is a chain C > F such that ht(C) > ht(E) and where
A′ = E + C then E ≤ A ≤ A′ and |E| + |F | = |A|. (Use Theorem 3.3 and
Theorem 4.4 to see that this characterization is first-order expressible.) •
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Lemma 6.3. The relation

{(A,E, F ) : E and F are incomparable and topped, and A ∼= E + F}

is definable in Qposet′.

Proof. We have that (A,E, F ) belongs to this relation iff |A| = |E|+ |F |; E
and F are topped; E 6≤ F 6≤ E; E ≤ A; F ≤ A; for all A′ ≤ A, if E ≤ A′

and F ≤ A′, then A′ ∼= A; whenever E ≺ Q ≤ A then Q ∼= E + C0; and
whenever F ≺ Q ≤ A then Q ∼= F +C0. •

Theorem 6.4. The property of A that it is a connected finite poset is de-
finable in Qposet′.

Proof. We claim that a finite poset A is disconnected iff A is neither topped
nor bottomed; and either A is the cardinal sum of two nonvoid chains, or
else A is not the cardinal sum of any two nonvoid chains, and there are
B < A and C < A and (nonvoid) chains D1, D2, D3, D4 such that where
E′ = D1⊕B⊕D2 and F

′ = D3⊕C⊕D4 then E
′ 6≤ F ′ 6≤ E′ and A ≤ E′+F ′.

Proof of the claim: (⇐) If A is connected, then clearly the condition fails.
(⇒) Assume that A is disconnected and is not the cardinal sum of two

chains. We can write A ∼= B + C where B is not a chain. Let h be the
maximum of ht(B), ht(C). Put D1 = Ch+1, D2 = C0 = D3, and D4 =
C2h+3, and define E′ = D1 ⊕ B ⊕D2 and F ′ = D3 ⊕ C ⊕D4. Now clearly
A ≤ E′ + F ′. We have that E′ 6≤ F ′ because E′ has a non-cutpoint b
(belonging to the copy of B in E′) of height at least h + 2 and F ′ has no
such element. Also, F ′ 6≤ E′ because ht(E′) ≤ 2h+3 while ht(F ′) ≥ 2h+4.
•

Lemma 6.5. The relation

{(A,E, F ) : E and F are incomparable and connected, and A ∼= E + F}

is definable in Qposet′.

Proof. A triple (A,E, F ) belongs to this relation iff E and F are connected
and E 6≤ F 6≤ E, E ≤ A, F ≤ A, |A| = |E| + |F |, whenever R ≤ A and
E ≤ R and F ≤ R then R ∼= A, whenever E ≺ Q ≤ A then Q ∼= E +C0,
and whenever F ≺ Q ≤ A then Q ∼= F +C0. •

Lemma 6.6. The relation

{(A,E, F ) : E is a chain, F is connected and A ∼= E + F}

is definable in Qposet′.

Proof. The proof is the same as the proof of Lemma 6.2, using now that the
property of being connected is definable. •

By a maximal connected component of a finite poset P we shall mean a
connected poset Q such that Q ≤ P and for every R with Q < R ≤ P , R is
disconnected.
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Lemma 6.7. The relation

{(A,E) : E is connected and A ∼= E + E}

is definable in Qposet′.

Proof. Suppose that E is connected. If E is a chain, then E+E is definable
relative to E as in Lemma 6.1. If E is not a chain, then A0 ⊕ E and
E⊕A0 are incomparable and connected. Then B = (A0⊕E)+ (E+A0) is
definable relative to E via Theorem 5.3 and Lemma 6.5. Now E +E is, up
to isomorphism, the unique finite poset A such that for some Q, A ≺ Q ≺ B,
A is not connected and E is the only maximal component of A. •

Lemma 6.8. The relation

{(A,E, F ) : E and F are connected and A ∼= E + F}

is definable in Qposet′.

Proof. Let E,F be connected. If E and F are incomparable, or isomorphic,
we can define E+F via the formula of Lemma 6.5 or Lemma 6.7 respectively.
Assume otherwise, and say, E < F . We claim that A ∼= E + F iff the
following is true.
A is disconnected, F is a maximal connected component of A, and for

every finite poset P that satisfies the conditions below, we have that

[C0 + (A⊕A0)]⊕A0

is a maximal connected component of P .
Let n = |F | − |E|. The conditions for P are:

(i) [Cn + ((E + E)⊕A0)]⊕A0 is a maximal connected component of
P .

(ii) Every maximal connected component Q of P is of cardinality 3 +
|E| + |F | and has the form Q = [C + (S ⊕A0)] ⊕A0 where C is a
chain and S is disconnected. S has a unique (up to isomorphism)
maximal connected component R, and |C|+ |R| = |F |+ 1.

(iii) Let Q ∼= [C + (S ⊕A0)] ⊕A0 be a maximal connected component
of P with |C| > 1. There is a maximal connected component Q′ of
P such that:
(1) Q′ ∼= [C ′ + (S′ ⊕A0)]⊕A0 where S ≺ S′ and C ′ ≺ C.
(2) S′ is disconnected (of course), and where R and R′ are the

unique maximal connected components of S and S′ respectively,
then R ≺ R′ ≤ F .

To prove the claim, we first tackle the necessity. Suppose that in fact,
A ∼= E+F . Let P be any member of Qposet that satisfies (i), (ii) and (iii).
Using the conditions recursively, we get a sequence of maximal connected
components of P , of the form Q0, Q1, . . . , Qn where Qi

∼= [Cn−i + (Si ⊕
A0)]⊕A0; S0 = E+E; Si is disconnected and Si ≺ Si+1 for 0 ≤ i < n; and
where Ri is the unique maximal connected component of Si, we have

E ∼= R0 ≺ R1 ≺ · · · ≺ Rn .
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Since Rn ≤ F and |Rn| = |F | then Rn
∼= F .

We claim that Si ∼= E + Ri for all 0 ≤ i ≤ n. This is true for i = 0. We
prove it for i = 1 and then inductively for 1 ≤ i ≤ n.

For i = 1, S1 has a sub-poset U ∪V where U ∩V = ∅, each of U and V is
isomorphic to E, and there are no order relations between elements of U and
elements of V . We have S1 \ (U ∪ V ) = {x1}, say. Since S1 is disconnected,
the element x1 cannot be related both to some element of U and to some
element of V , in S1. If x1 were related to no element of U ∪ V then U ∼= E
would be a maximal connected component of S1, which is false. Thus the
connected components of S1 are U and V ∪ {x1}, say (or V and U ∪ {x1}).
Clearly, R1 must be isomorphic to V ∪ {x1}, and we have S1 ∼= E +R1.

Now suppose that n > i ≥ 1 and that Si ∼= E + Ri. We have that
Si = U ∪W where U ∼= E and W ∼= Ri. Since Si ≺ Si+1, we can assume
that Si+1 = Si ∪ {xi+1}. Again, we have that the connected components
of Si+1 must be, either U ∪ {xi+1} and W , or U and W ∪ {xi+1}. If the
first case were to hold, W could not be properly embedded into U ∪ {xi+1}
because |W | > |U |, so Ri

∼= W would be a maximal connected component
of Si+1, giving Ri

∼= Ri+1; but this is false. Thus Ri+1
∼= W ∪ {xi+1} and

Si+1
∼= E +Ri+1.

This completes our proof that Si ∼= E+Ri for 0 ≤ i ≤ n. Since E+Rn
∼=

E+F ∼= A, we now have that [C0 + (A⊕A0)⊕A0 is a maximal connected
component of P , as required.

Next, we tackle the proof of sufficiency of our proposed condition to char-
acterize the relation A ∼= E + F when E and F are connected and E < F .
Since E and F are connected, and we are assuming that E < F , it is easy
to construct a sequence of connected posets Ri ∈ Qposet (0 ≤ i ≤ n) such
that E = R0 ≺ R1 ≺ · · · ≺ Rn−1 ≺ Rn = F . Define P to be the cardinal
sum of the posets [Cn−i + ((E +Ri)⊕A0)]⊕A0 (0 ≤ i ≤ n) (the cardinal
sum of n + 1 connected posets). Since all of the cardinal summands of P
are connected, pairwise non-isomorphic, and have the same cardinality, then
each connected component of P is a maximal connected component of P .
It is obvious that Ri is the unique maximal connected component of E+Ri

for each i. In fact, it is obvious that P satisfies (i), (ii) and (iii). Clearly,
[C0 +((E+F )⊕A0)]⊕A0 is the only maximal connected component of P
of the form [C0 + T ]⊕A0 with T connected. Thus if [C0 + (A⊕A0)]⊕A0

is a maximal connected component of P , then A ∼= E + F . •

Lemma 6.9. The relation

{(A,U, V ) : A ∼= U + V , U is a maximal connected component of A,

and V is disconnected}

is definable in Qposet′.

Proof. (A,U, V ) belongs to this relation iff U is a maximal connected com-
ponent of A; every maximal connected component M of A satisfies M = U
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or M ≤ V ; A and V are disconnected; A ≺ U + (V ⊕ A0); and A is not
isomorphic to any Z +W with Z, W connected.

The necessity of these conditions is obvious. For sufficiency, suppose
that they are satisfied. We have a poset W ∈ Qposet, isomorphic with
U + (V ⊕A0), such that W = A ∪ {x}, x 6∈ A, and A is a sub-poset of W .
We can write W = U ′ ∪ (V ′ ∪ {a}) where U ′ ∼= U , V ′ ∼= V , U ′ ∩ V ′ = ∅,
there are no order relations between elements of U ′ and V ′, and a > y for
all y ∈ V ′ while a is incomparable to all elements of U ′.

If x = a then A = U ′∪V ′ ∼= U+V . It is impossible to have x ∈ V ′ because
then A is the union of its two connected sub-posets U ′ and (V ′ ∪{a}) \ {x},
contradicting that A is not isomorphic to the cardinal sum of two connected
posets.

It remains to consider the case where x ∈ U ′. In this case, Q = V ′ ∪ {a}
is a connected subset of A, and we must have Q ≤ M for some maximal
connected component M of A. Since Q is bigger than V , then Q ≤M ≤ U .
But also,

A = (U ′ \ {x}) ∪Q ∼= (U ′ \ {x}) ∪Q

in this case, so the connected poset U satisfies U ≤ Q as U 6≤ U ′ \ {x}.
Thus Q ∼= U . Hence U ′ ∼= U has a top element b, and U ′ \ {b} ∼= V . If
b 6= x then U ′ \ {x} has a top element and is connected. But then, the
displayed formula above shows that A is isomorphic to the cardinal sum of
two connected posets, a contradiction. We are left with the conclusion that
x = b. But now U ′ \ {x} ∼= V . Combining this with the fact that Q ∼= U ,
the displayed formula now becomes A ∼= V + U . •

Lemma 6.10. The relation

{(A,U, V ) : A ∼= U + V and U is a maximal connected component of A}

is definable in Qposet′.

Proof. (A,U, V ) belongs to this relation iff either (1) it belongs to the rela-
tion of Lemma 6.9; or (2) U , V are connected, A ∼= U +V and either U ∼= V
or U 6≤ V . In case (2), Lemma 6.8 shows that the conditions are first-order
expressible. •

Lemma 6.11. The relation

{(A,E,C) : A ∼= E + C and C is a chain}

is definable in Qposet′.

Proof. If E is connected, we can use the formula of Lemma 6.6.
Suppose that E is disconnected. Then (A,E,C) belongs to this relation iff

(1) there are U, V such that E ∼= U +V and U is a maximal connected com-
ponent of E of largest cardinality among all maximal connected components
of E; (2) C is a chain; (3) there is B ≻ A such that B ∼= V +[(U +C)⊕A0];
and (4) every maximal connected component of A (other than possibly C)
has cardinality no greater than |U |.
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Note that B is first-order definable relative to U , V by Lemma 6.6, The-
orem 5.3, and Lemma 6.10.

The necessity of these conditions being obvious, we focus on their suf-
ficiency. Suppose that E is disconnected and the conditions hold. We
can assume that B = {x} ∪ A and A is a sub-poset of B. We can write
B = V ′ ∪W ′ where there are no order relations linking an element of V ′ to
an element of W ′, and V ′ ∼= V and W ′ ∼= (U + C) ⊕ A0. Thus W ′ has a
top element. If x is not that top element of W ′ then either W ′ or W ′ \ {x}
is a connected component of A; but this set is bigger than U and bigger
than C, contradicting (4). So we must have A = V ′ ∪ (W ′ \ {x}) where
W ′ \ {x} ∼= U + C. This gives A ∼= V + (U + C) ∼= E + C. •

Theorem 6.12. The relation

{(A,E, F ) : A ∼= E + F}

is definable in Qposet′.

Proof. Let C be the chain of cardinality max{|E|, |F |}+ 3 = k + 3. Define
E′ = E + C and F ′ = F + C. Then put B = (E′ ⊕A0) + (F ′ ⊕A0). We
know that B is definable relative to E,F . It is the case that E′ + F ′ is
up to isomorphism the unique finite poset A′ of height k + 2 such that for
some Q, A′ ≺ Q ≺ B, and every connected subset of A′ that is not a chain
has at most k elements. We have that E + F is, up to isomorphism, the
unique poset A such that A+C +C ∼= A′. The proofs of our assertions are
straightforward, and we urge the reader to reconstruct them. •

A posetQ ∈ Qposet will be called a connected component ofA ∈ Qposet

iff A ∼= Q+R for some R ∈ Qposet, and Q is connected.

Corollary 6.13. The relation {(Q,A) : Q is a connected component of A}
is definable in Qposet′.

Proof. This follows from Theorem 6.4 and Theorem 6.12. •

7. Individual definability of the members of Qposet′

We can now prove a key result of this paper:

Theorem 7.1. Every member of Qposet is a definable member of Qposet′.

The proof will be finished at the end of this section. Let us start with
some definitions and lemmas.

Definition 7.2. Let 0 ≤ i < k be integers. ηk(i) is defined up to isomor-
phism, as a certain member of Qposet that encodes the pair (k, i). Namely,

ηk(i) ∼= Ci+2 ⊕A1 ⊕Ck−i .

Also, we define

ηk ∼=
∑

0≤i<k

ηk(i) ,
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the cardinal sum of the posets ηk(i). The posets ηk(i) will be called o-
numbers. The poset ηk will be called the k-list of o-numbers.

Fig. 4: η5(2) and η
′
5(2)

Lemma 7.3. The relation

{(Ci,Ck, ηk(i)) : 0 ≤ i < k}

and the relation
{(Ck, ηk) : 0 < k}

are definable in Qposet′.

Proof. The definability of the first relation is obvious, from Theorem 2.2
and Theorem 5.3. Note that ht(ηk(i)) = k + 4. For the second relation,
observe that ηk is, up to isomorphism, the ≤-least member of Qposet of
height k+4 whose connected components are precisely ηk(0), . . . , ηk(k− 1).
(See Corollary 6.13.) •

Definition 7.4. Let 0 ≤ i < k be integers. We define η′k(i) ∈ Qposet up
to isomorphism by the formula

η′k(i)
∼= {C0 + (Ci+2 ⊕A1 ⊕Ck−i−1)} ⊕C0 .

See Figure 5.

Definition 7.5. Suppose that A ∈ Qposet, |A| = k. Let B be any member
of Qposet such that the set of elements of B is [k] = {0, 1, . . . , k − 1} and
B is isomorphic to A. We define, up to isomorphism, a member of Qposet

that we denote by Pk(A,B).
First, make a poset B+ isomorphic to B ⊕A2 ⊕C0 by adjoining k, k +

1, k+2, k+3 to B and defining the order so that B ⊆ B+ as posets, the new
elements are above all elements of B, and k, k+1, k+2 are incomparable and
below k + 3. Next, find an isomorphic copy of ηk, say ηk ∼= Nk ∈ Qposet

with Nk disjoint from {0, 1, . . . , k + 3}. The set of elements of Pk(A,B) is
the disjoint union of Nk and {0, 1, . . . , k+3}. For 0 ≤ i < k let pi be the top
element of the unique copy of ηk(i) in Nk. The order on Pk(A,B) is defined



20 J. JEŽEK AND R. MCKENZIE

so that its covers are those of Nk together with those of B+ and, for each
0 ≤ i < k the cover i < pi.

Thus Pk(A,B) is the union of its disjoint sub-posets Nk and B+ and the
only order relations in Pk(A,B) besides those in Nk or in B+ are x < pi
when x ∈ B and B |= x ≤ i. Every poset Pk(A,B) will be called an
o-presentation of A.

For example, see Fig. 5 where Pk(A,B) is pictured for k = 5, A is the
(isomorphism type of) pentagon, and B is the pentagon labeled as shown in
the picture.

2

1
0

3

4

Fig. 5: P5(A,B) for a pentagon

Lemma 7.6. Let A,B, k be as above.

(1) The isomorphism type of the o-presentation of A, Pk(A,B), encodes
the poset B exactly. That is to say, let B be a poset with universe
{0, . . . , k − 1} and B′ be a poset with universe {0, . . . , ℓ − 1} and
let B ∼= A ∈ Qposet and B′ ∼= A′ ∈ Qposet. Then Pk(A,B) ∼=
Pℓ(A

′, B′) iff k = ℓ and B = B′ (implying that A ∼= A′).
(2) Each o-presentation Pk(A,B) is a definable member of Qposet′

(only up to isomorphism, of course).
(3) The relation {(A,P ) : where |A| = k, P ∼= Pk(A,B) for some B} is

definable in Qposet′.

Proof. To prove (1), we begin with the assertion that it should be obvious
that if k = ℓ and B = B′ then Pk(A,B) ∼= Pℓ(A

′, B′). Conversely, suppose
that Pk(A,B) ∼= Pℓ(A

′, B′). The height of Pk(A,B) is k+4 and of Pℓ(A
′, B′)

is ℓ+ 4, thus k = ℓ. The posets B and B′ thus have the same universe. We
need to show that they have the same order. This follows from

Claim: Let 0 ≤ i, i′ < k with i 6= i′. Then B |= i < i′ iff η′k(i) + ηk(i
′) 6≤

Pk(A,B) (and of course B′ |= i < i′ iff η′k(i) + ηk(i
′) 6≤ Pk(A

′, B′)).
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To prove the claim, suppose first that i 6≤ i′ in B. We have that the unique
copy of ηk(i) in Pk(A,B) together with the element i constitutes a sub-poset
of Pk(A,B) isomorphic to η′k(i). The unique copy of ηk(i

′) in Pk(A,B) is
disjoint from this copy of η′k(i); and the only possible relation involving
elements of the two sets is that the top element of the ηk(i

′) might be above
i. Since i 6≤ i′, then this does not happen. Thus η′k(i) + ηk(i

′) ≤ Pk(A,B).
Conversely, there is a unique copy of ηk(i)+ηk(i

′) in Pk(A,B). Assuming
that η′k(i) + ηk(i

′) ≤ Pk(A,B), then there must be an element x ∈ Pk(A,B)
that is below the top element of the ηk(i) and incomparable to all other
elements of the ηk(i) + ηk(i

′). This element x can only be an element of B,
and in fact, where pi and pi′ are the top elements of the ηk(i) and ηk(i

′),
then we must have pi > i ≥ x and pi′ 6≥ x in Pk(A,B). Since pi′ > i′ and
B |= i ≥ x then B |= i′ 6≥ i.

To prove (2), we write first-order properties of the element Pk(A,B) ∈
Qposet′ that determine it up to isomorphism. In fact, Pk(A,B) is, up
to isomorphism, the unique member P of Qposet′ satisfying: there is a

k-element poset B ∈ Qposet such that where B
+ ∼= B ⊕A2 ⊕C0 we have

(a) ht(P ) = k + 4.

(b) ηk ≤ P , B
+
≤ P , and |P | = |ηk|+ k + 4.

(c) If T ∈ Qposet′, T ≤ P , ηk ≤ T and B
+
≤ T then T ∼= P .

(d) The ≤-maximal topped posets embedded in P are, up to isomor-

phism, B
+
and, for each 0 ≤ i < k, a poset isomorphic to

{R+ (Ci+2 ⊕A1 ⊕Ck−i−1)} ⊕C0

for some topped R ≤ B.
(ei,i′) (Here 0 ≤ i, i′ < k, i 6= i′.) η′k(i) + ηk(i

′) 6≤ P iff B |= i < i′.

Actually, the properties (a) – (d) are equivalent to P ∼= Pk(B,B
′) for

some k-element B′ ∈ Cposet, and the system of properties (ei,i′) then is

equivalent to B′ = B.
That Pk(A,B) satisfies all of the above properties is easily obtained from

the proof of (1) provided that we can show that Pk(A,B) has a unique
subset isomorphic to ηk and a unique subset isomorphic to B+. In order to
prove this, recall that Pk(A,B) is the disjoint union of Nk and B+, and that
Nk

∼= ηk. Suppose now that T ⊆ Pk(A,B), T ∼= B+. Let ⊤ denote the top
element of T . Below ⊤ we have three incomparable elements a1, a2, a3 with
a copy of B below all three of the ai. If ⊤ ∈ Nk then ⊤ can only be the
top element pi of the copy of a ηk(i) inside Nk, and one of a1, a2, a3 must
be below i in B (since ηk(i) has no three-element antichain). But then the
copy of B below a1, a2 and a3 must lie properly below i and actually be
a proper subset of B, which is impossible by cardinality considerations. It
follows then that ⊤ ∈ B+. This forces T ⊆ B+ since B+ is an order-ideal
in Pk(A,B). Since T ∼= B+, then T = B+. Thus there is only one copy of
B+ in Pk(A,B).
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Now let S be a copy of ηk in Pk(A,B). We need to prove that S = Nk.
Take any i ∈ [k] and let S(i) be the unique copy of ηk(i) inside S, and let
⊤i be the top element of S(i). Then the height of ⊤i in Pk(A,B) is at least
k + 4. The only elements of Pk(A,B) having height not less than k + 3 in
Pk(A,B) lie inside Nk; thus ⊤i ∈ Nk. In fact, ⊤i must be the top element
of the unique copy of ηk(j) inside Nk, for a certain j ∈ [k]. Let r be the
unique element of height k + 3 in S(i). Then likewise, r ∈ Nk, and then r
must in fact be the element of height k+ 3 in the copy of ηk(j) in Nk. Now
⊤i together with r and the elements below r in Pk(A,B) just constitute this
copy of ηk(j). Then by cardinality considerations, S(i) is identical with this
copy of ηk(j). This implies that j = i. Our reasoning gives the conclusion
that for each i ∈ [k], the copy of ηk(i) in Nk is included in S. By cardinality,
we conclude that S = Nk, as desired.

This completes our proof that Pk(A,B) satisfies the properties. Now
assume that P satisfies these properties. The first three, (a), (b), (c), imply
that P is the disjoint union of a subset N ′

k isomorphic to ηk and a subset

isomorphic to B
+
and that P contains just one subset isomorphic to ηk and

just one subset isomorphic to B
+
. To simplify notation, we can assume that

the copy of B
+
in P is

B
+
= B ∪ {a1, a2, a3} ∪ {t}

where a1, a2, a3 are incomparable, above all elements of B, and below t.
Now if t were above some element of N ′

k then t↓ in P would be a proper

extension of B
+
, and so by (d), B ∪{a1, a2, a3} would be order-embeddable

into

R+ (Ci+2 ⊕A1 ⊕Ck−i−1)

for some i ∈ [k] and R a topped subset of B. This is clearly impossible,
since it would force B to be properly embeddable into itself. Hence the only

comparabilities in P between an element of N ′
k and an element of B

+
must

be of the form x > y with x ∈ N ′
k and y ∈ B

+
.

For i ∈ [k] let pi and ri be the elements of height k + 4 and k + 3 in the
copy of ηk(i) inside N ′

k. We claim that the only elements of N ′
k that can

possibly be above an element of B
+

are the pi. If this fails to be the case,

then for some i we have ri > y with y ∈ B
+
. By (d), every ≤-maximal

topped subset of P has height k + 4. (Note that ht(B) < k.) Thus pi↓ in P
is clearly a ≤-maximal topped subset of P and by (d), ri↓≤ B or

ri↓∼= Ci+2 ⊕A1 ⊕Ck−i−1 .

Since the the height of ri in P is at least k + 3 and the height of the order-
ideal B is less than k, then the second alternative must prevail. But this
implies that ri↓ in P is contained in N ′

k and so we have a contradiction (to

the assumption that ri > y ∈ B
+
).
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Thus the only relations between N ′
k and B

+
are of the form pi > y,

y ∈ B
+
. Actually, (d), with height considerations, now implies that for each

i ∈ [k], pi↓ ∩B
+

is nonvoid and this set has a largest element, yi, and this
element yi belongs to B.

From what we have shown up to here, it is easily established that P has
a unique copy of ηk(i) for each i ∈ [k]. Then the conditions (ei,i′) yield that

the map i 7→ yi is one-to-one. Since |B| = k, then this map is also onto B.
Finally, conditions (e) show that B |= i < i′ iff B |= yi < yi′ , so we have
B ∼= B. This ends our proof of (2).

To prove (3), suppose that A ∈ Qposet and |A| = k, and that P ∈
Qposet. Then we claim that P ∼= Pk(A,B) for some B if and only if the
following hold:

(α) ht(P ) = k + 4.
(β) ηk ≤ P , A+ ≤ P , and |P | = |ηk|+ k + 4.
(γ) If T ∈ Qposet′, T ≤ P , ηk ≤ T and A+ ≤ T then T ∼= P .
(δ) The ≤-maximal topped posets embedded in P are, up to isomor-

phism, A+ and, for each 0 ≤ i < k, a poset isomorphic to {R +
(Ci+2 ⊕A1 ⊕Ck−i−1)} ⊕C0 for some topped R ≤ A.

(εi,i′) (Here 0 ≤ i, i′ < k, i 6= i′, and otherwise i, i′ are arbitrary.) Either
η′k(i) + ηk(i

′) ≤ P or η′k(i
′) + ηk(i) ≤ P .

The proof of this claim parallels our proof of (2), and is left for the reader
to supply. •

Let us finish the proof of Theorem 7.1. Let A ∈ Qposet. Say |A| = k.
Choose B ∼= A with the universe of B identical to {0, 1, . . . , k − 1}. By
Lemma 7.6(2), Pk(A,B) is a definable member of Qposet′. Now A is,
up to isomorphism, the unique R ∈ Qposet such that R ⊕ A2 ⊕ C1 is a
≤-maximal topped sub-poset of Pk(A,B).

8. Universal classes of posets

For a class K of posets, denote by K∂ the class of the posets dual to
the posets of K. The mapping K 7→ K∂ is clearly an automorphism of the
lattice of universal classes of posets.

Theorem 8.1. The lattice of universal classes of posets has only two au-
tomorphisms: the identity and the map K 7→ K∂. The set of all finitely
axiomatizable and also the set of all finitely generated universal classes of
posets are definable subsets of this lattice, and each member of either of these
two definable subsets is an element definable up to the two automorphisms
of this lattice.

Proof. As we mentioned in the introduction, the lattice of universal classes
of posets is isomorphic to the lattice of order-ideals of the poset 〈P,≤〉,
and also isomorphic to the lattice L of order-ideals of the quasi-ordered set
〈Qposet,≤〉. The members of L are the subsets K ⊆ Qposet such that
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A ≤ B ∈ K implies A ∈ K. Under the isomorphism between these lattices,
the finitely generated order-ideals are carried onto the finitely generated
universal classes, and the set-complements of the finitely generated order-
filters are carried onto the finitely axiomatizable universal classes.

Thus let I be an order-ideal in Qposet that is either finitely generated
or the complement of a finitely generated order-filter. We need to show that
{I, I∂} is first-order definable in the lattice L. There are finitely many finite
posets A1, . . . , An so that either we have

I = {B ∈ Qposet : B ≤ Ai for some 1 ≤ i ≤ n}

or we have

I = {B ∈ Qposet : for all i with 1 ≤ i ≤ n B 6≥ Ai} .

For A ∈ Qposet put A↓= {B ∈ Qposet : B ≤ A}. The set of strictly
join-irreducible members of L, definable in L, is precisely the set of order-
ideals of Qposet of the form A↓ (for A ∈ Qposet). Thus Theorem 7.1
implies that each of A1↓, . . . , An↓ is a definable member of the pointed lattice
(L,E0↓). Thus for 1 ≤ i ≤ n there is a first-order lattice-theoretic formula
ϕi(x, y) so that Ai↓ is the unique member x of L such that L |= ϕi(x,E0↓).
Also, there is a formula ε(x) so that E0↓,E

∂
0 ↓ are the only elements of L

that satisfy ε(x). (Because the set {E0,E
∂
0} is definable in Qposet′; see the

proof of Proposition 2.3.)
Define Φ(x) to be the formula

(∃y)(∃x1, . . . , xn)[ε(y) ∧
∧

1≤i≤n

ϕi(xi, y) ∧ x = x1 + · · ·+ xn] ;

and Ψ(x) to be the formula

(∃y)(∃x1, . . . , xn)[ε(y) ∧
∧

1≤i≤n

ϕi(xi, y) ∧

(∀z)[z ≤ x↔
∧

1≤i≤n

xi 6≤ z] .

In the first formula, + is the symbol for the lattice join operation in L.
We claim that for x ∈ L, L |= Φ(x) iff x = I or x = I∂ where I is the

order-ideal generated by A1, . . . , An; and L |= Ψ(x) iff x = J or x = J∂

where J is the largest order-ideal containing none of A1, . . . , An.
We shall prove just the claim for Ψ(x) and J . Suppose first that U ∈ L

and L |= Ψ(U). Let Y and X1, . . . , Xn be the elements of L that witness the
satisfaction of Ψ(U). Then L |= ε(Y ) and L |= ϕi(Xi, Y ) for i = 1, . . . , n. It
follows that Y = E0↓ or Y = E∂

0↓. If Y = E0↓ then it follows that Xi = Ai↓
for i = 1, . . . , n. In this case, the fact that L |= Ψ(U) tells us that U is
the largest member of L that fails to intersect {A1, . . . , An}, i.e., U = J .
In the case that Y = E∂

0 , consider U
∂ (= {A∂ : A ∈ U}). Since ∂ is an

automorphism of 〈Qposet,≤〉, it induces an automorphism of L. It follows
that L |= Ψ(U∂) with witnesses Y ∂ = E0↓ and X∂

i . This puts us in the first
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case, and we can conclude that U∂ = J . So it follows that U = J∂ in this
case. Since it is more or less obvious that L |= Ψ(J) and L |= Ψ(J∂), we
regard the proof of Theorem 8.1, as regards definability, to be finished.

It remains to show that U 7→ U∂ is the only non-identity automorphism of
L. Here is a proof. Let σ be any automorphism of L. Since {E0↓,E

∂
0↓} is a

definable subset of L then σ(E0↓) belongs to this set. Thus if σ(E0↓) 6= E0↓
then τ(E0↓) = E0↓ where τ is the automorphism U 7→ σ(U)∂ . We now show
that any automorphism which fixes the element E0↓ must be the identity.
It will follow that σ is the identity, or σ followed by the map ‘dual’ is the
identity; so that σ is the identity or the map U 7→ U∂ .

So finally, suppose that σ is an automorphism of L and that σ(E0↓) =
E0↓. For every A ∈ Qposet there is, as we noted above, a lattice-theoretic
formula ϕ(x, y) such that A↓ is the unique element U ∈ L for which L |=
ϕ(A↓,E0↓). Since L |= ϕ(A↓,E0↓) then L |= ϕ(σ(A↓), σ(E0↓)); but since σ
fixes E0↓ then L |= ϕ(σ(A↓),E0↓), and σ(A↓) = A↓ is forced. Thus the fixed
points of σ include all the A↓ and, consequently, every point of L is fixed
by σ, as every member of L is the join in L of some subset of the family of
members of the form A↓. •

Part II

9. Introduction to definability in Cposet and Cposet′

The category Cposet has for its set Obj of objects the members of
Qposet of the form A = 〈[n],≤A〉 where [n] = {0, . . . , n − 1}, n > 0.
For every A,B ∈ Obj the set CP(A,B) of morphisms in Cposet is the set
of triples f = (A,α,B) where α is a monotone map from A to B, i.e., a map
from the the universe of A to the universe of B such that whenever x ≤ y in
A then α(x) ≤ α(y) in B. The identity morphism in CP(A,A) is denoted
as 1A. Thus 1A = (A, idA, A) where idA is the identity function on A. Com-
position of morphisms in Cposet is, for every triple of objects A,B,C a
mapping CP(A,B)×CP(B,C) → CP(A,C). If f = (A,α,B) ∈ CP(A,B)
and g = (B, β,C) ∈ CP(B,C), the composition f ◦ g (written also as fg) is

f ◦ g = (A, β ◦ α,C)

where for x ∈ A, {β ◦ α}(x) = β(α(x)) ∈ C. When f ∈ CP(A,B), the
domain of f is A and the co-domain of f is B. Note that since a morphism
f is actually of the form f = (A,α,B), the domain and the co-domain
of f are unique. That is to say, for objects A,B,C,D ∈ Obj, we have
CP(A,B) ∩CP(C,D) = ∅ unless A = C and B = D.

It happens to be true that a morphism f ∈ CP(A,B) is one-to-one on
elements iff whenever g, h ∈ CP(U,A) for some object U then gf = hf ↔
g = h. Also, f onto the set of elements of B iff whenever g, h ∈ CP(B, V ) for
some object V then fg = fh ↔ g = h. Thus the properties of a morphism
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that it is injective, or surjective, are (first-order) definable in Cposet. We
have that f ∈ CP(A,B) is an isomorphism iff there is g ∈ CP(B,A) with
fg = 1A and gf = 1B (or just fg = 1A will do).

A morphism f = (A,α,B) (or the monotone map α) is called an embed-
ding iff for all x, y ∈ A it is the case that x ≤ y in A iff α(x) ≤ α(y) in
B. The property of being an embedding is definable in Cposet as well, but
this requires a little care.

To see it, note that C0 is the unique terminal object in Cposet; i.e., for
every object A there is a unique morphism A → C0. Thus C0 is definable.
There are two objects C with the property that |CP(C,C)| = 3, namely
〈[2],≤〉, with ≤ the usual order, and its dual, 〈[2],≥〉. These two objects
are isomorphic, and in that sense, either one deserves to be labeled as C1.
Now one can verify that a morphism f ∈ CP(A,B) is an embedding iff
whenever C ∈ Obj and |CP(C,C)| = 3 and CP(C0, C) = {ε0, ε1}, and
u, v ∈ CP(C0, A) and there is q ∈ CP(C,B) with ε0q = fu and ε1q = fv,
then there is p ∈ CP(C,A) with ε0p = u and ε1p = v.

Thus not only the properties of a morphism that it be injective, or sur-
jective, or an isomorphism, but also the property that it be an embedding,
are all first-order definable in Cposet. It follows that the quasi-order re-
lation ≤ of Qposet, restricted to Cposet, is definable in Cposet. Since
every member of Qposet is isomorphic to a member of Cposet, then every
subset or relation first-order definable in Qposet is first-order definable in
Cposet (or rather its restriction to Cposet is so).

Our goal in the remainder of this paper is to obtain a converse to the
result of the last paragraph. Namely, we shall show that every isomorphism-
invariant relation on objects in Cposet that is definable in the first-order
language of Cposet′ (or even definable in the second-order language L2

described in the introduction) is actually first-order definable in the much
more modest structure Qposet′. We hope that the following observations
will render the more technical work in the next section more readable.

In Qposet, we have only the posets as objects, and the relation of embed-
dability between objects, to work with. The internal structure of an object
(the elements, and the order relation) are officially unavailable. In Cposet,
we have only the objects and the morphisms and their compositions. The
internal structure of the objects is officially unavailable in Cposet. Nev-
ertheless, we have a way of reading the elements of an object in Cposet:
Clearly, [n], the set of elements of A = 〈[n],≤A〉 is naturally bijective with
CP(C0, A). In Cposet′, we can name C1 = 〈{0, 1},≤〉 and also name the
maps f0 = {(0, 0)} and f1 = {(0, 1)}, and with this help we can also read
the order ≤A in the object A. In fact, where f, g ∈ CP(C0, A) and say
f = (C0, α, A) and g = (C0, β, A) and α(0) = x and β(0) = y then x ≤A y
iff there is h ∈ CP(C1, A) such that f0h = f and f1h = g. In fact,

A = 〈[n],≤A〉 ∼= 〈CP(C0, A),≤d〉 = Ã
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where the order ≤d on CP(C0, A) is defined by the formula expressed in
the last sentence. The isomorphism is via the map i 7→ (C0, {(0, i)}, A) for
0 ≤ i < n. Here, both the set of elements and the order of the second

poset Ã have first-order definitions in the language of Cposet′. This means
that first-order language applied to the structure Cposet′ is equivalent in
expressive power to a certain second-order language L

′ applied to another
structure that exists inside Cposet′. This second-order language L

′ has

variables ranging over the collection {Ã : A ∈ Obj}, has for each A ∈ Obj

variables ranging over the elements of Ã, and has for every A,B ∈ Obj

variables ranging over the set of monotone maps from Ã to B̃. All these
variables can be quantified. In this language L′ we can express equality of
elements, of structures, of monotone maps, the application of a map to an
element, order-inclusions between elements.

To illustrate the power of these ideas, note that the property that the

range of a monotone map f : Ã → B̃ is a convex subset of B̃ can be
easily expressed by a formula in L

′. This formula can be converted to a
formula φ(x, Y, Z) in the first-order language of Cposet′ so that Cposet′ |=
φ(f,A,B) iff A,B ∈ Obj, f ∈ CP(A,B) and the range of the underlying
function of the morphism f is a convex subset of the poset B. In this way,
the relation between A,B ∈ Obj that holds iff A is a surjective monotone
image of a convex subset of B, is first-order definable in Cposet′. Via the
results proved in the next section, this relation is definable in Qposet′.

According to Birkhoff duality, there is an order ≪ on P under which it
becomes isomorphic to the set of isomorphism types of finite distributive lat-
tices ordered by embeddability. The observation in the previous paragraph
establishes that this order is first-order definable in P ′.

We can go further. The language L
′ can be enriched to full second-order

language L2 without changing the situation. To show that L2-expressibility
is no stronger than first-order expressibility over Cposet′ requires only one
additional simple observation. Let A1, . . . , An be any objects of Cposet and
R be any nonvoid subset of the Cartesian product A1 × · · · × An. Setting
k = |R|, there is a bijective map β : [k] → R. Via projections, this gives
maps βi : [k] → U(Ai) (where U(Ai) the set of elements of Ai) such that
(x1, . . . , xn) ∈ R (where xi ∈ U(Ai)) iff for some y ∈ [k], βi(y) = xi for
i ∈ {1, . . . , n}. Now where A = Ak = 〈[k],≤〉 is the k-element antichain, we
have that A is an object of Cposet and the maps βi are actually monotone,
A → Ai. Thus we have morphisms pi = (A, βi, Ai), i ∈ {1, . . . , n}. In
particular, choosing n = 2 for illustration, we find that arbitrary (non-void)

relations R̃ ⊆ U(Ã1) × U(Ã2) can be parametrized by triples (B, p1, p2)
where B ranges over all objects of Cposet′ while pi ranges over CP(B,Ai).
Here with the proper choice of (B, p1, p2) we have

R̃ = {(q1, q2) ∈ CP(C0, A1)×CP(C0, A2) : for some q ∈ CP(C0, B)

qi = qpi for i = 1, 2} .
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10. Interpreting Cposet′ in Qposet′

We wish to build a copy of the structure Cposet′ inside Qposet′, in
such a way that the fundamental relations of Cposet′—“A ∈ Obj”, “f ∈
CP(A,B)”, “g ∈ CP(A,B) and f ∈ CP(B,C) and h = fg ∈ CP(A,C)”—
are translated to relations in Qposet′ that are first-order definable in that
structure. The relation that links a member A of Qposet′ to a member
P of Qposet′ that plays the role (in the copy) of some B ∈ Cposet that
is isomorphic to A, should be first-order definable in Qposet′ as well. In
this way, we shall be enabled to construct a translation (or mapping) send-
ing any first-order formula Φ(X1, . . . , XM ) over Cposet′ whose free vari-

ables X1, . . . , Xn range over Obj to a first-order formula Φ̂(x1, . . . , xn) over

Qposet′ so that Qposet′ |= Φ̂(A1, . . . , An) (for elements Ai ∈ Qposet) iff
for some Bi

∼= Ai, Bi ∈ Obj we have Cposet′ |= Φ(B1, . . . , Bn). From the
observations with which we concluded Section 9, it will follow also that such
a translation can be extended to all formulas Φ(X1, . . . , Xn) of L2.

Most of the technical work involved in building this copy of Cposet′ in-
side Qposet′ has already been accomplished in Part I. Given A ∈ Qposet,
k = |A|, and B ∈ Obj with A ∼= B, we have the poset Pk(A,B) ∈ Qposet

(Definition 7.5). In a sense, this poset has both an existence in the quasi-
ordered set Qposet, and a parallel existence in the category Cposet:
A is encoded in Pk(A,B) in terms definable in Qposet′, as the up-to-
isomorphism unique Q ∈ Qposet such that Q+ is isomorphic to a ≤-
maximal topped subset of Pk(A,B). A presentation of B ∈ Obj is encoded
in Pk(A,B) also, by a first-order formula over Qposet′.

Much as the elements of B are encoded in Cposet′ by the members of
CP(C0, B), and the relation over CP(C0, B) encoding the order relation in
B is defined by a first-order formula overCposet′, we have that the elements
of B are encoded in Qposet′ by the posets ηk(i) (0 ≤ i < k), taken up to
isomorphism, and the relation between the ηk(i) that corresponds to the
order in B (again taken up to isomorphism between posets) is first-order
definable in Qposet′. This is the content of Definition 7.5 and Lemma 7.6.

Thus in our model of Cposet′ built inside Qposet′, the role of members
of Obj will be played by the posets P ∼= Pk(B,B) (corresponding to B ∈ Obj
with k = |B|). We have seen in Lemma 7.6(3) that the set of all such
P is definable in Qposet′ (and this will be critical in ensuring that our
translation of formulas works as advertised). The role of equality in Cposet′

(between objects, or between morphisms) will be played by the relation of
isomorphism in Qposet′.

It is now time to reveal how we propose to encode the morphisms of
Cposet′ by members of Qposet′.

Definition 10.1. Suppose that 0 ≤ i < k are integers. Recall the definition
of ηk(i) and ηk in Definition 7.2. We now put

λk(i) ∼= C0 ⊕A2 ⊕ ηk(i) ;
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λk ∼=
∑

0≤i<k

λk(i) .

For example, λ3 can be easily recognized in the right-hand part of Figure 6
(without the bottom element).

Observe that all of the posets λk(i) and λk have height k + 6.

Lemma 10.2. The relation

{(Ci,Ck, λk(i)) : k > 0 and 0 ≤ i < k}

and the relation

{(Ck, λk) : k > 0}

are definable in Qposet′.

The proof is similar to that of Lemma 7.3

Definition 10.3. Suppose that m and n are positive integers and α is a
function [m] → [n]. We define F (m,α, n), up to isomorphism, as a member
of Qposet. The poset F (m,α, n) will be called the f -presentation of α.

The universe of this poset is the disjoint union of subsets isomorphic to
C0⊕λm and to λn⊕A2⊕C0. The order in F (m,α, n) is defined so that the
covers are those in the copy of C0 ⊕ λm, together with those in the copy of
λn ⊕A2 ⊕C0, and where pi is the maximal element in the copy of C0 ⊕ λm
which is the top element of a copy of C0⊕λm(i) in C0⊕λm (for 0 ≤ i < m),
and qj is the unique element x in the copy of λn ⊕A2 ⊕C0 such that x↓ is
isomorphic to λn(j) (for 0 ≤ j < n), an additional cover qα(i) < pi for each
0 ≤ i < m. (See Figure 6.)

Definition 10.4. Suppose that m and n are positive integers, 0 ≤ i < m
and 0 ≤ j < m. We define a poset λm,n(i, j) up to isomorphism by the
formula

λm,n(i, j) ∼= [{C1 ⊕A2 ⊕Ci+2 ⊕A1 ⊕Cm−i−1}+ λn(j)]⊕C0 .

Lemma 10.5. (1) F (m,α, n) ∼= F (m′, α′, n′) iff m = m′, n = n′ and
α = α′.

(2) The relation

{(Cm,Cn,Ci,Cj , L) : 0 ≤ i < m, 0 ≤ j < n and L ∼= λm,n(i, j)}

is definable in Qposet′.
(3) The relation

{(Cm,Cn, F ) : m > 0, n > 0 and
F ∼= F (m,α, n) for some α : [m] → [n]}

is definable in Qposet′.
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p0 p1 p2

q0 q1

Fig. 6: F (3, α, 2) with α(0) = α(1) = 0 and α(2) = 1

Proof. The proof of (2) is straightforward.
For the proof of (1) and (3), it is necessary to show that F = F (m,α, n)

contains a unique copy of C0 ⊕ λm and a unique copy of λn ⊕ A2 ⊕ C0.
This task is straightforward, if tedious, and is left to the reader. F (m,α, n),
then, can be characterized up to isomorphism as the member Q ∈ Qposet

such that C0 ⊕ λm ≤ Q, λn ⊕A2 ⊕C0 ≤ Q,

|Q| = |λm|+ |λn|+ 5 ,

every P ≤ Q such that C0⊕λm ≤ P and λn⊕A2⊕C0 ≤ P satisfies P ∼= Q,
and the ≤-maximal topped posets R ≤ Q are λn ⊕A2 ⊕C0 and for every
0 ≤ i < m, the poset λm,n(i, α(i)).

This characterization easily yields both (1) and (3). •

Now suppose that B1, B2 ∈ Obj and

f = (B1, α,B2) ∈ CP(B1, B2) .

Say Bi = 〈[mi],≤i〉, i ∈ {1, 2} so that α : [m1] → [m2]. We are encoding Bi

as (any member of Qposet isomorphic to) Pi = Pmi
(Bi, Bi). We encode f

as (any triple coordinatewise isomorphic to)M(f) = (P1, F (m1, α,m2), P2).

Proposition 10.6. Let B1, B2 ∈ Obj and U, V,W ∈ Qposet.

(1) If (U, V,W ) ∼=M(f), f = (B1, α,B2) ∈ CP(B1, B2), then f (and α)
are uniquely determined and for all i ∈ [m1] and j ∈ [m2], we have
that α(i) = j is equivalent to λm1,m2

(i, j) ≤ V .
(2) (U, V,W ) ∼=M(f) for some f = (B1, α,B2) ∈ CP(B1, B2) iff: where

mi = |Bi|, we have U ∼= Pm1
(B1, B1), W ∼= Pm2

(B2, B2), and V ∼=
F (m1, α,m2) for some α : [m1] → [m2]; and whenever we have
0 ≤ i, i′ < m1 and 0 ≤ j, j′ < m2, j 6= j′, and λm1,m2

(i, j) ≤ V
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and λm1,m2
(i′, j′) ≤ V , then η′m2

(j) + ηm2
(j′) ≤W implies η′m1

(i) +
ηm1

(i′) ≤ U .

The proof is straightforward.

Proposition 10.7. Let B1, B2, B3 ∈ Obj, f ∈ CP(B1, B2), g ∈ CP(B2, B3)
and, say |Bi| = mi and f = (B1, α,B2) and g = (B2, β, B3). Let M(f) ∼=
(P1, F, P2) and M(g) ∼= (P2, G, P3). Then M(fg) ∼= (P1, H, P3), where H is,
up to isomorphism, the unique member of Qposet of the form F (m1, γ,m3)
that satisfies: for all i ∈ [m1], j ∈ [m2], k ∈ [m3] we have that λm1,m2

(i, j) ≤
F and λm2,m3

(j, k) ≤ G imply that λm1,m3
(i, k) ≤ H.

The proof is straightforward.

Theorem 10.8. Let N be a positive integer and R be an isomorphism-
invariant N -ary relation over Qposet. Then R is first-order definable over
Qposet′ iff the restriction of R to Obj is first-order definable over the cat-
egory Cposet′ (or equivalently, is L2-definable over Cposet′).

Proof. Since the property that a morphism is an embedding is definable
in Cposet′, the non-obvious direction in this theorem is the passage from
Cposet′ definability to Qposet′ definability.

So let R ⊆ QposetN be isomorphism-invariant and let S = R ∩ ObjN ,
and assume that

S = {(B0, . . . , BN−1) ∈ ObjN : Cposet′ |= Φ(B0, . . . , BN−1} ,

where Φ(X0, . . . , XN−1) is a formula of the first-order language of Cposet′

whose free variables are the object variablesX0, . . . , XN−1. We need to build
a formula Φ̃(x0, . . . , xN−1) in the first-order language of Qposet′ so that for
any A0, . . . , AN−1 ∈ Qposet and where Ai

∼= Bi ∈ Obj and ki = |Ai| for
0 ≤ i < N we have

Cposet′ |= Φ(B0, . . . , BN−1)
iff

Qposet′ |= Φ̃(Pk0(A0, B0), . . . , PkN−1
(AN−1, BN−1)).

We can then take Ψ(x0, . . . , xN−1) to be:

there exist ui (0 ≤ i < N) so that Φ̃(u0, . . . , uN−1) and
“ui ∼= Pki(xi, yi) for some yi where ki = |xi|, for 0 ≤ i < N”

and it will follow that

R = {(A0, . . . , AN−1) ∈ QposetN : Qposet′ |= Ψ(A0, . . . , AN−1)} .

To construct Φ̃, we extend the list of free variables in Φ to a list of all
the object variables that have an occurence, free or bound, in Φ; say this
list is X0, . . . , XM−1 (M ≥ N). We make a list f0, . . . , fK−1 of all the
morphism variables that occur in Φ. We introduce variables x0, . . . , xM−1
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and y0, . . . , yK−1 from the first-order language of Qposet′ to correspond
to the Xi and fj . Now by induction on length of a formula, we define a
mapping that sends all the sub-formulas φ of Φ to corresponding formulas
φ̃ in the first-order language of Qposet′.

(1) If φ is Xi = Xj then φ̃ is xi ≤ xj ∧ xj ≤ xi.

(2) If φ is fs = ft then φ̃ is ys ≤ yt ∧ yt ≤ ys.

(3) If φ is fs ∈ CP(Xi, Xj) then φ̃ is

(∃ui, uj)(“there are vi, vj so that where ki = |ui|, kj = |uj | we have
xi = Pki(ui, vi) and xj = Pkj (uj , vj) and

(xi, ys, xj) =M(f) for some f ∈ CP(vi, vj)”)

(4) If φ is

fr0 ∈ CP(Xs0 , Xs1) ∧ fr1 ∈ CP(Xs1 , Xs2)∧
∧fr2 = fr0 ◦ fr1

then φ̃ is

(∃us0 , us1 , us2)(“there are vs0 , vs1 , vs2 so that
where ki = |usi | we have xsi = Pki(usi , vsi) for i ∈ {0, 1, 2}

and (xs0 , yr0 , xs1) =M(f) for some f ∈ CP(vs0 , vs1)
and (xs1 , yr1 , xs2) =M(g) for some g ∈ CP(vs1 , vs2)

and (xs0 , yr2 , xs2) =M(fg)”).

(5) If φ is ¬ψ, or ψ ∧ χ then φ̃ is ¬ψ̃, or ψ̃ ∧ χ̃.
(6) If φ is (∃Xi)ψ then φ̃ is

(∃xi)([(∃ui)(“there is vi so that where ki = |ui|, xi = Pki(ui, vi)”)] ∧ ψ̃) .

(7) If φ is (∀Xi)ψ then φ̃ is

(∀xi)([(∃ui)(“there is vi so that where ki = |ui|, xi = Pki(ui, vi)”)] → ψ̃) .

(8) If φ is (∃fs ∈ CP(Xi, Xj))ψ then φ̃ is

(∃ys)[(∃ui, uj)(“there are vi, vj so that
where ki = |ui|, kj = |uj | we have xi = Pki(ui, vi)

and xj = Pkj (uj , vj) and (xi, ys, xj) =M(f)

for some f ∈ CP(vi, vj)”)∧ψ̃].

(9) If φ is (∀fs ∈ CP(Xi, Xj))ψ then φ̃ is

(∀ys)[(∃ui, uj)(“there are vi, vj so that
where ki = |ui| and kj = |uj | we have xi = Pki(ui, vi)

and xj = Pkj (uj , vj) and (xi, ys, xj) =M(f)

for some f ∈ CP(vi, vj)”)→ ψ̃].

One can prove by induction on the length of φ that for all sub-formulas
φ(X̄, f̄) of Φ, and for all Bi ∈ Obj, 0 ≤ i < M and fj = (Uj , αj , Vj) ∈
CP(Uj , Vj), 0 ≤ j < K, and where |Bi| = bi, |Uj | = uj and |Vj | = vj we
have
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Cposet′ |= φ(B0, . . . , BM−1; f0, . . . , fK−1) iff Qposet′ |=
φ̃(Pα0

(B0, B0), . . . , PαM−1
(BM−1, BM−1);F (u0, α0, v0), . . . ,

F (uK−1, αK−1, vK−1)).

Taking φ = Φ we then have the desired result. •

Remark 10.1. We have organized and written the material of Part II in a
way that we hope makes it readable for most algebraists and order-theorists.
It is quite possible that there is a more elegant way to express the essential
fact of Theorem 10.8 within set theory. Specifically, we believe that if one
deals directly with the quasi-ordered set 〈HF ,≤〉 whose members are the
posets 〈A,≤〉 such that A belongs to the set HF of all hereditarily finite
sets, quasi-ordered by embeddability ≤, then it should be possible to prove
that every isomorphism-invariant finitary relation overHF that is first-order
definable in the model 〈HF, ε〉 (where ε is the membership relation in the
domain HF ), is also first-order definable in the quasi-ordered set 〈HF ,≤〉.
(HF is the smallest set containing the empty set and closed under the binary
operation x ∪ {y}; with the restricted membership relation it is a model of
finite set theory.)
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