
COMMUTATIVE SEMIGROUPS THAT ARE NIL OF

INDEX 2 AND HAVE NO IRREDUCIBLE ELEMENTS

Jaroslav Ježek, Tomáš Kepka and Petr Němec

Abstract. Every commutative nil-semigroup of index 2 can be imbedded into such
a semigroup without irreducible elements.

1. Introduction

Throughout this note, the word semigroup will always mean a commutative
semigroup, the binary operation of which will be denoted additively.

1.1 An element w of a semigroup S is called absorbing if S + w = w. There exists
at most one absorbing element in S and it will be denoted by the symbol o (= oS)
in the sequel. The fact that S possesses the absorbing element will be denoted by
o ∈ S.

1.2 A non-empty subset I of S is an ideal if S + I ⊆ I.

1.3 Lemma. (i) A one-element subset {w} is an ideal iff w = oS .
(ii) If I is an ideal then the relation r = (I × I) ∪ idS is a congruence of S and
I = oT , where T = S/r.
(iii) If o ∈ S and and s is a congruence of S then the set { a ∈ S | (a, o) ∈ s } is an
ideal. �

1.4 Put (QS(a) =) Q(a) = S+a and (PS(a) =) P (a) = Q(a)∪{a} for every a ∈ S.

1.5 Lemma. (i) Q(a) ⊆ P (a) and both these sets are ideals of S.
(ii) P (a) is just the (principal) ideal generated by the one-element set {a}. �

1.6 Assume that o ∈ S. An element a ∈ S is said to be nilpotent (of index at most
m ≥ 1) if ma = 0. We denote by N(S) (Nm(S)) the set of nilpotent (of index at
most m) elements of S.
The semigroup S is said to be nil (of index at most m) if N(S) = S (Nm(S) = S)

and reduced if oS is the only nilpotent element of S.

1.7 Lemma. (i) o = N1(S) ⊆ N2(S) ⊆ N3(S) ⊆ . . . and all these sets are ideals.
(ii) N(S) =

⋃
Nm(S) is an ideal.

(iii) The factor-semigroup T = S/N(S) is reduced. �
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1.8 Lemma. The following conditions are equivalent:

(i) o ∈ S and 2x = o for every x ∈ S.
(ii) S is nil of index at most 2.
(iii) 2x+ y = 2z for all x, y, z ∈ S.
(iv) 2x+ y = 2x for all x, y ∈ S. �

1.9 A semigroup satisfying the equivalent conditions of 1.8 will be called zeropotent
(or, in a colourless manner, a zp-semigroup) in the sequel.

A zp-semigroup without irreducible elements (i.e., when S+S = S) will be called
a zs-semigroup.

1.10 Define a relation |S on S by a|Sb iff b = a + u for some u ∈ S0, where S0 is
the least monoid containing S and 0 denotes the neutral element of S0.

1.11 Lemma. The following conditions are equivalent:

(i) a|Sb.
(ii) b ∈ P (a).
(iii) P (b) ⊆ P (a).

Moreover, if a 6= b then these conditions are equivalent to:

(iv) b ∈ Q(a).
(v) P (b) ⊆ Q(a). �

1.12 Lemma. The relation |S is a fully invariant compatible quasiordering of the
semigroup S and the equivalence ||S = ker(|S) is a fully invariant congruence of
the semigroup S. �

1.13 Lemma. The following conditions are equivalent:

(i) a||Sb.
(ii) P (a) = P (b).

Moreover, if a 6= b then these conditions are euqivalent to:

(iii) Q(a) = Q(b) = P (a) = P (b). �

1.14 Lemma. The following conditions are equivalent:

(i) S is a group.
(ii) |S = S × S.
(iii) ||S = S × S.
(iv) P (a) = P (b) for all a, b ∈ S.
(v) P (a) = S for every a ∈ S.
(vi) Q(a) = S for every a ∈ S. �

1.15 Lemma. The relation |S is a (fully invariant compatible) ordering (or, equiv-
alently, ||S = idS), provided that at least one of the following four conditions is
satisfied:

(1) S is not a group and idS, S ×S are the only fully invariant congruences of
S;

(2) S is cancellative and 0 /∈ S;
(3) S is nil;
(4) S is idempotent.
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Proof. (1) Combine 1.13 and 1.14.
(2) If a 6= b, b = a+u and a = b+v, a, b, u, v ∈ S, then a = a+w, where w = u+v,
and hence w = 0, a contradiction.
(3) If a = a+ w, a, w ∈ S, then a = a+mv for every m ≥ 1, and hence a = o.
(4) If b = a+ u, a, b, u ∈ S, then a+ b = a+ a+ u = a+ u = b. �

1.16 Define a relation /S on S by a/Sb iff Q(b) ⊆ Q(a).

1.17 Lemma. The relation /S is an invariant compatible quasiordering of the
semigroup S and the equivalence //S = ker(/S) is an invariant congruence of the
semigroup S. �

1.18 Lemma. The following conditions are equivalent:

(i) /S = S × S.
(ii) //S = S × S.
(iii) S + a = S + b for all a, b ∈ S.
(iv) S + S = I is the smallest ideal of S and I is a subgroup of S. �

2. The distractibility ordering of zp-semigroups

2.1 In this section, let S be a zp-semigroup. Put Ann(S) = { a ∈ S |S + a = o }.

2.1 Lemma. (i) The relation |S is a fully invariant compatible ordering of the
semigroup S.
(ii) o is the greatest element.
(iii) Ann(S) \ {o} is the set of maximal elements of T = S \ {o}.
(iv) If |S| ≥ 2 then S \ (S + S) is the set of minimal elements of S.
(v) If |S| ≥ 3 then S has no smallest element. �

2.3 Lemma. If S is a non-trivial zs-semigroup then S has no minimal elements,
S is infinite and not finitely generated.

Proof. Being nil, S is finitely generated iff it is finite. The rest is clear from
2.2(iv). �

2.4 Lemma. If 0 ∈ S then S is trivial. �

3. Every zp-semigroup is a subsemigroup of a zs-semigroup

3.1 Proposition. Every zp-semigroup is a subsemigroup of a zs-semigroup.

Proof. Let S be a non-trivial zp-semigroup and Q = S \ (S + S). For every a ∈ Q,
put Ra = S \P (a); then o /∈ Ra and Ra 6= ∅, provided that |S| ≥ 3. Further, 0 /∈ S
by 2.4 and we put Ra,0 = Ra ∪{0a}, where the elements 0a, a ∈ Q, are all distinct,
Va,1 = Ra,0 × {1} and Va,2 = Ra,0 × {2}. Now, consider the disjoint union

T = S ∪
⋃

a∈Q

Va,1 ∪
⋃

a∈Q

Va,2

and define an addition on T in the following way:
(1) x+ y coincides in S(+) and T (+) for all x, y ∈ S;
(2) x + (y, i) = (x + y, i) = (y, i) + x for all x ∈ S, (y, i) ∈ Va,i, a ∈ Q, i = 1, 2,
x+ y ∈ Ra (i.e., x+ y /∈ P (a));
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(3) (x, i) + (y, j) = x+ y + a for all x, y ∈ Ra,0, a ∈ Q, i 6= j;
(4) α+ β = o if α, β ∈ T and the sum α+ β is not defined by (1), (2) or (3).
Clearly, α + β = β + α, α + α = o, α + o = o and o + α = o for every α ∈ T .

Next, we check that α+ (β + γ) = (α + β) + γ for all α, β, γ ∈ T .
Put δ = α+ (β + γ), ǫ = (α+ β) + γ and consider the following cases:

(a) α, β, γ ∈ S. Then δ = ǫ by (1).
(b) α, β ∈ S and γ = (x, i) ∈ Va,i. Assume first that α + β + x ∈ Ra. Then
ǫ = (α+ β + x, i) by (2). Moreover, β + x ∈ Ra, and hence β + γ = (β + x, i) and
δ = α+ (β + x, i) = (α+ β + x, i) = ǫ.
Assume next that α + β + x /∈ Ra. Then ǫ = o by (4). Moreover, either

β+ x /∈ Ra, β+ γ = o and δ = α+ o = o = ǫ, or β+ x ∈ Ra, β+ γ = (β+ x, i) and
δ = α+ (β + x, i) = o = ǫ.
(c) α, γ ∈ S, β ∈ Va,i (or β, γ ∈ S, α ∈ Va,i). These cases are similar and/or dual
to (b).
(d) α = (x, i) ∈ Va,i, β = (y, i) ∈ Va,i and γ ∈ S. Then α + β = o by (4), and so
ǫ = o + γ = o. Assume first that y + γ ∈ Ra. Then β + γ = (y + γ, i) by (2) and
δ = (x, i) + (y + γ, i) = o by (4). Thus ǫ = δ.
Assume next that y+ γ /∈ Ra. Then β+ γ = o by (4) and δ = (x, i) + o = o = ǫ.

(e) α, γ ∈ Va,i, β ∈ S (or β, γ ∈ Va,i, α ∈ S). These cases are similar to (d).
(f) α = (x, i) ∈ Va,i, β = (y, j) ∈ Va,j , i 6= j, γ ∈ S. Then α + β = x + y + a
by (3), and hence ǫ = x + y + a + γ by (1). Assume first that y + γ ∈ Ra. Then
β + γ = (y + γ, j) by (2) and δ = (x, i) + (y + γ, j) = x+ y + γ + a = ǫ.
Assume next that y+γ /∈ Ra. Then β+γ = o by (4), and hence δ = (x, i)+o = o.

However, y + γ /∈ Ra means y + γ ∈ P (a) and then a+ y + γ = o, since S is nil of
index at most 2. Thus ǫ = x+ a+ y + γ = x+ o = o = δ.
(g) α ∈ Va,i, γ ∈ Va,j , β ∈ S (or β ∈ Va,i, γ ∈ Va,j , α ∈ S). These cases are similar
to (f).
(h) α, β, γ ∈ Va,i. Then β + γ = o = α+ β, and hence δ = a+ o = o = o+ γ = ǫ.
(i) α = (x, i) ∈ Va,i, β = (y, i) ∈ Va,i and γ = (z, j) ∈ Va,j , i 6= j. Then α + β = o
by (4), and hence ǫ = o + (z, j) = o. Further, β + γ = y + z + a by (3). Now,
x+ y + z + a ∈ P (a) and δ = (x, i) + y + z + a = o by (4). Thus δ = ǫ.
(j) α, γ ∈ Va,i, β ∈ Va,j (or β, γ ∈ Va,i, α ∈ Va,j). These cases are similar to (i).
(k) In all the remaining cases we get δ = o = ǫ due to (4).
We have shown that T = T (+) is a zp-semigroup and S is a subsemigroup of T .

Clearly,

T + T = S ∪
⋃

a∈Q

(Ra × {1}) ∪
⋃

a∈Q

(Ra × {2}) .

Thus S ⊆ T + T and

T \ (T + T ) =
⋃

a∈Q

{(0a, 1), (0a, 2)} .

Finally, put T0 = S, T1 = T and consider a sequence

T0 ⊆ T1 ⊆ T2 ⊆ . . .

of zp-semigroups such that Ti is a subsemigroup of Ti+1 and Ti ⊆ Ti+1 + Ti+1.
Then

⋃
Ti is a zs-semigroup. �
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