COMMUTATIVE SEMIGROUPS THAT ARE NIL OF INDEX 2 AND HAVE NO IRREDUCIBLE ELEMENTS

Jaroslav Ježek, Tomáš Kepka and Petr Němec

ABSTRACT. Every commutative nil-semigroup of index 2 can be imbedded into such a semigroup without irreducible elements.

1. Introduction

Throughout this note, the word *semigroup* will always mean a commutative semigroup, the binary operation of which will be denoted additively.

- **1.1** An element w of a semigroup S is called absorbing if S + w = w. There exists at most one absorbing element in S and it will be denoted by the symbol $o = o_S$ in the sequel. The fact that S possesses the absorbing element will be denoted by $o \in S$.
- **1.2** A non-empty subset I of S is an *ideal* if $S + I \subseteq I$.
- **1.3 Lemma.** (i) A one-element subset $\{w\}$ is an ideal iff $w = o_S$.
- (ii) If I is an ideal then the relation $r = (I \times I) \cup id_S$ is a congruence of S and $I = o_T$, where T = S/r.
- (iii) If $o \in S$ and and s is a congruence of S then the set $\{a \in S \mid (a, o) \in s\}$ is an ideal. \square
- **1.4** Put $(Q_S(a) =) Q(a) = S + a$ and $(P_S(a) =) P(a) = Q(a) \cup \{a\}$ for every $a \in S$.
- **1.5 Lemma.** (i) $Q(a) \subseteq P(a)$ and both these sets are ideals of S.
- (ii) P(a) is just the (principal) ideal generated by the one-element set $\{a\}$. \square
- **1.6** Assume that $o \in S$. An element $a \in S$ is said to be nilpotent (of index at most $m \ge 1$) if ma = 0. We denote by N(S) $(N_m(S))$ the set of nilpotent (of index at most m) elements of S.

The semigroup S is said to be $nil\ (of\ index\ at\ most\ m)$ if $N(S)=S\ (N_m(S)=S)$ and reduced if o_S is the only nilpotent element of S.

- **1.7 Lemma.** (i) $o = N_1(S) \subseteq N_2(S) \subseteq N_3(S) \subseteq \dots$ and all these sets are ideals.
- (ii) $N(S) = \bigcup N_m(S)$ is an ideal.
- (iii) The factor-semigroup T = S/N(S) is reduced. \square

¹⁹⁹¹ Mathematics Subject Classification. 20M14.

Key words and phrases. Nil-semigroup, commutative.

Supported by the institutional grant MSM 0021620839 and by the Grant Agency of Czech Republic, grant $\#GA\check{C}R-201/05/0002$.

1.8	Lemma.	The	following	conditions	are	equivale	nt:
-----	--------	-----	-----------	------------	-----	----------	-----

- (i) $o \in S$ and 2x = o for every $x \in S$.
- (ii) S is nil of index at most 2.
- (iii) 2x + y = 2z for all $x, y, z \in S$.
- (iv) 2x + y = 2x for all $x, y \in S$. \square

1.9 A semigroup satisfying the equivalent conditions of 1.8 will be called *zeropotent* (or, in a colourless manner, a *zp-semigroup*) in the sequel.

A zp-semigroup without irreducible elements (i.e., when S+S=S) will be called a zs-semigroup.

- **1.10** Define a relation $|_S$ on S by $a|_S b$ iff b = a + u for some $u \in S^0$, where S^0 is the least monoid containing S and 0 denotes the neutral element of S^0 .
- **1.11 Lemma.** The following conditions are equivalent:
 - (i) $a|_S b$.
 - (ii) $b \in P(a)$.
 - (iii) $P(b) \subseteq P(a)$.

Moreover, if $a \neq b$ then these conditions are equivalent to:

- (iv) $b \in Q(a)$.
- (v) $P(b) \subseteq Q(a)$. \square
- **1.12 Lemma.** The relation $|_S$ is a fully invariant compatible quasiordering of the semigroup S and the equivalence $||_S = \ker(|_S)$ is a fully invariant congruence of the semigroup S. \square
- **1.13 Lemma.** The following conditions are equivalent:
 - (i) $a||_S b$.
 - (ii) P(a) = P(b).

Moreover, if $a \neq b$ then these conditions are engineent to:

(iii)
$$Q(a) = Q(b) = P(a) = P(b)$$
.

- **1.14 Lemma.** The following conditions are equivalent:
 - (i) S is a group.
 - (ii) $|_S = S \times S$.
 - (iii) $||_S = S \times S$.
 - (iv) P(a) = P(b) for all $a, b \in S$.
 - (v) P(a) = S for every $a \in S$.
 - (vi) Q(a) = S for every $a \in S$. \square
- **1.15 Lemma.** The relation $|_S$ is a (fully invariant compatible) ordering (or, equivalently, $||_S = id_S$), provided that at least one of the following four conditions is satisfied:
 - (1) S is not a group and id_S , $S \times S$ are the only fully invariant congruences of S;
 - (2) S is cancellative and $0 \notin S$;
 - (3) S is nil;
 - (4) S is idempotent.

Proof. (1) Combine 1.13 and 1.14.

- (2) If $a \neq b$, b = a + u and a = b + v, $a, b, u, v \in S$, then a = a + w, where w = u + v, and hence w = 0, a contradiction.
- (3) If a = a + w, $a, w \in S$, then a = a + mv for every m > 1, and hence a = o.
- (4) If b = a + u, $a, b, u \in S$, then a + b = a + a + u = a + u = b. \square
- **1.16** Define a relation $/_S$ on S by $a/_S b$ iff $Q(b) \subseteq Q(a)$.
- **1.17 Lemma.** The relation $/_S$ is an invariant compatible quasiordering of the semigroup S and the equivalence $//_S = \ker(/_S)$ is an invariant congruence of the semigroup S. \square
- **1.18 Lemma.** The following conditions are equivalent:
 - (i) $/_S = S \times S$.
 - (ii) $//_S = S \times S$.
 - (iii) S + a = S + b for all $a, b \in S$.
 - (iv) S + S = I is the smallest ideal of S and I is a subgroup of S. \square
 - 2. The distractibility ordering of zp-semigroups
- **2.1** In this section, let S be a zp-semigroup. Put $Ann(S) = \{ a \in S \mid S + a = o \}.$
- **2.1 Lemma.** (i) The relation $|_S$ is a fully invariant compatible ordering of the semigroup S.
- (ii) o is the greatest element.
- (iii) $Ann(S) \setminus \{o\}$ is the set of maximal elements of $T = S \setminus \{o\}$.
- (iv) If $|S| \ge 2$ then $S \setminus (S+S)$ is the set of minimal elements of S.
- (v) If $|S| \geq 3$ then S has no smallest element. \square
- **2.3 Lemma.** If S is a non-trivial zs-semigroup then S has no minimal elements, S is infinite and not finitely generated.

Proof. Being nil, S is finitely generated iff it is finite. The rest is clear from 2.2(iv). \square

- **2.4 Lemma.** If $0 \in S$ then S is trivial. \square
 - 3. Every zp-semigroup is a subsemigroup of a zs-semigroup
- **3.1 Proposition.** Every zp-semigroup is a subsemigroup of a zs-semigroup.

Proof. Let S be a non-trivial zp-semigroup and $Q = S \setminus (S+S)$. For every $a \in Q$, put $R_a = S \setminus P(a)$; then $o \notin R_a$ and $R_a \neq \emptyset$, provided that $|S| \geq 3$. Further, $0 \notin S$ by 2.4 and we put $R_{a,0} = R_a \cup \{0_a\}$, where the elements 0_a , $a \in Q$, are all distinct, $V_{a,1} = R_{a,0} \times \{1\}$ and $V_{a,2} = R_{a,0} \times \{2\}$. Now, consider the disjoint union

$$T = S \cup \bigcup_{a \in Q} V_{a,1} \cup \bigcup_{a \in Q} V_{a,2}$$

and define an addition on T in the following way:

- (1) x + y coincides in S(+) and T(+) for all $x, y \in S$;
- (2) x + (y, i) = (x + y, i) = (y, i) + x for all $x \in S$, $(y, i) \in V_{a,i}$, $a \in Q$, i = 1, 2, $x + y \in R_a$ (i.e., $x + y \notin P(a)$);

- (3) (x, i) + (y, j) = x + y + a for all $x, y \in R_{a,0}, a \in Q, i \neq j$;
- (4) $\alpha + \beta = 0$ if $\alpha, \beta \in T$ and the sum $\alpha + \beta$ is not defined by (1), (2) or (3).

Clearly, $\alpha + \beta = \beta + \alpha$, $\alpha + \alpha = o$, $\alpha + o = o$ and $o + \alpha = o$ for every $\alpha \in T$. Next, we check that $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$ for all $\alpha, \beta, \gamma \in T$.

Put $\delta = \alpha + (\beta + \gamma)$, $\epsilon = (\alpha + \beta) + \gamma$ and consider the following cases:

- (a) $\alpha, \beta, \gamma \in S$. Then $\delta = \epsilon$ by (1).
- (b) $\alpha, \beta \in S$ and $\gamma = (x, i) \in V_{a,i}$. Assume first that $\alpha + \beta + x \in R_a$. Then $\epsilon = (\alpha + \beta + x, i)$ by (2). Moreover, $\beta + x \in R_a$, and hence $\beta + \gamma = (\beta + x, i)$ and $\delta = \alpha + (\beta + x, i) = (\alpha + \beta + x, i) = \epsilon$.

Assume next that $\alpha + \beta + x \notin R_a$. Then $\epsilon = o$ by (4). Moreover, either $\beta + x \notin R_a$, $\beta + \gamma = o$ and $\delta = \alpha + o = o = \epsilon$, or $\beta + x \in R_a$, $\beta + \gamma = (\beta + x, i)$ and $\delta = \alpha + (\beta + x, i) = o = \epsilon$.

- (c) $\alpha, \gamma \in S, \beta \in V_{a,i}$ (or $\beta, \gamma \in S, \alpha \in V_{a,i}$). These cases are similar and/or dual to (b).
- (d) $\alpha = (x, i) \in V_{a,i}$, $\beta = (y, i) \in V_{a,i}$ and $\gamma \in S$. Then $\alpha + \beta = o$ by (4), and so $\epsilon = o + \gamma = o$. Assume first that $y + \gamma \in R_a$. Then $\beta + \gamma = (y + \gamma, i)$ by (2) and $\delta = (x, i) + (y + \gamma, i) = o$ by (4). Thus $\epsilon = \delta$.

Assume next that $y + \gamma \notin R_a$. Then $\beta + \gamma = o$ by (4) and $\delta = (x, i) + o = o = \epsilon$. (e) $\alpha, \gamma \in V_{a,i}, \beta \in S$ (or $\beta, \gamma \in V_{a,i}, \alpha \in S$). These cases are similar to (d).

(f) $\alpha = (x,i) \in V_{a,i}$, $\beta = (y,j) \in V_{a,j}$, $i \neq j$, $\gamma \in S$. Then $\alpha + \beta = x + y + a$ by (3), and hence $\epsilon = x + y + a + \gamma$ by (1). Assume first that $y + \gamma \in R_a$. Then $\beta + \gamma = (y + \gamma, j)$ by (2) and $\delta = (x, i) + (y + \gamma, j) = x + y + \gamma + a = \epsilon$.

Assume next that $y+\gamma \notin R_a$. Then $\beta+\gamma=o$ by (4), and hence $\delta=(x,i)+o=o$. However, $y+\gamma \notin R_a$ means $y+\gamma \in P(a)$ and then $a+y+\gamma=o$, since S is nil of index at most 2. Thus $\epsilon=x+a+y+\gamma=x+o=o=\delta$.

- (g) $\alpha \in V_{a,i}$, $\gamma \in V_{a,j}$, $\beta \in S$ (or $\beta \in V_{a,i}$, $\gamma \in V_{a,j}$, $\alpha \in S$). These cases are similar to (f).
- (h) $\alpha, \beta, \gamma \in V_{a,i}$. Then $\beta + \gamma = o = \alpha + \beta$, and hence $\delta = a + o = o = o + \gamma = \epsilon$.
- (i) $\alpha = (x, i) \in V_{a,i}$, $\beta = (y, i) \in V_{a,i}$ and $\gamma = (z, j) \in V_{a,j}$, $i \neq j$. Then $\alpha + \beta = o$ by (4), and hence $\epsilon = o + (z, j) = o$. Further, $\beta + \gamma = y + z + a$ by (3). Now, $x + y + z + a \in P(a)$ and $\delta = (x, i) + y + z + a = o$ by (4). Thus $\delta = \epsilon$.
- (j) $\alpha, \gamma \in V_{a,i}, \beta \in V_{a,j}$ (or $\beta, \gamma \in V_{a,i}, \alpha \in V_{a,j}$). These cases are similar to (i).
- (k) In all the remaining cases we get $\delta = o = \epsilon$ due to (4).

We have shown that T = T(+) is a zp-semigroup and S is a subsemigroup of T. Clearly,

$$T+T=S\cup\bigcup_{a\in Q}(R_a\times\{1\})\cup\bigcup_{a\in Q}(R_a\times\{2\})\,.$$

Thus $S \subseteq T + T$ and

$$T \setminus (T + T) = \bigcup_{a \in Q} \{(0_a, 1), (0_a, 2)\}.$$

Finally, put $T_0 = S$, $T_1 = T$ and consider a sequence

$$T_0 \subseteq T_1 \subseteq T_2 \subseteq \dots$$

of zp-semigroups such that T_i is a subsemigroup of T_{i+1} and $T_i \subseteq T_{i+1} + T_{i+1}$. Then $\bigcup T_i$ is a zs-semigroup. \square Department of Algebra, MFF UK, Sokolovská 83, 186 75 Praha 8, Czech Republic $E\text{-}mail\ address:}$ jezek@karlin.mff.cuni.cz

DEPARTMENT OF ALGEBRA, MFF UK, SOKOLOVSKÁ 83, 186 75 PRAHA 8, CZECH REPUBLIC $E\text{-}mail\ address:\ kepka@karlin.mff.cuni.cz}$

Department of Mathematics, ČZU, Kamýcká 129, 165 21 Praha 6 – Suchdol, Czech Republic

 $E\text{-}mail\ address{:}\ \mathtt{nemec@tf.czu.cz}$