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Abstract. We describe all minimal quasivarieties and all minimal va-
rieties of semilattices with one automorphism (considered as algebras
with one binary and two unary operations).

1. Introduction

We denote by S the variety of ∧-semilattices with one automorphism f
and its inverse f−1. Thus the signature of the algebras in S consists of one
binary and two unary operation symbols. A set of equations characterizing
S is: x∧ (y∧z) ≈ (x∧y)∧z, x∧y ≈ y∧x, x∧x ≈ x, f(x∧y) ≈ f(x)∧f(y),
f−1(x ∧ y) ≈ f−1(x) ∧ f−1(y), f(f−1(x)) ≈ x, and f−1(f(x)) ≈ x.

In this paper we are going to find all minimal subquasivarieties and all
minimal subvarieties of S. It may be considered as a continuation of the
earlier paper [4], in which all subdirectly irreducible algebras in S were
described; but the present paper is independent of that former one. For the
standard terminology and basic facts from universal algebra the reader is
referred to [9], for quasivarieties to [8] or [2].

Minimal varieties (quasivarieties) are the first objects of interest once we
try to describe the lattice of varieties (quasivarieties) that are contained in a
concrete variety (quasivariety, respectively). This is so because they are the
atoms in those lattices and generated by single nontrivial algebras. However,
practice shows that a concrete description of any of these lattices often ends
up on providing a complete list of their atoms only or on showing that
this list is uncountable (see, for example, [3], [5], [6], [11], and [12]), since
in general these lattices are highly complex, if not downright idiosyncratic
(see, for example, [1]). The lattice of varieties (quasivarieties) contained
in S is uncountable; see the end of this paper. Obviously, this is far from
being sufficient to claim that neither the lattice of varieties nor the lattice of
quasivarieties contained in S admits a good mathematical description. The
only proven fact, however, we can offer in this paper is that both lattices
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admit (a good) description of all their atoms even though in the case of
quasivarieties infinitely many atoms are individually generated by infinite
algebras.

An excellent survey of the results up to the end of the 80s on locally finite
minimal varieties is [10]. A complete and satisfactory characterization in
terms of generators of minimal varieties which are locally finite is contained
in [7]. The literature about minimal quasivarieties which are locally finite is
incomparably much more modest (see the references in [2]).

If a semilattice A (or an algebra from S) has the least element, then this
least element will be denoted by oA, or just by o. Instead of saying that A
has (or has not, resp.) the least element, we will write more briefly o ∈ A
(or o /∈ A, resp.); in the last case we put A \ {o} = A.

By a flat semilattice we mean a nontrivial semilattice in which each non-
least element is an atom.

By an equation u ≈ v we mean the ordered pair 〈u, v〉. By an inequality
u ≤ v we mean the equation u ∧ v ≈ u. By an equation u ≈ o we mean the
inequality u ≤ z, where z is a variable not occurring in u.

The set of integers is denoted by Z, and the set of nonnegative integers
by ω.

2. Minimal quasivarieties

Lemma 2.1. Let t be a unary term of the signature of S-algebras. Then

(1) there exists a nonempty finite set I ⊂ Z so that S |= t(x) ≈
∧

i∈I f
i(x),

(2) t is an endomorphism on any S-algebra A, and
(3) if o ∈ A, then t(o) = o.

Proof. Let F be the one-generated free algebra in the variety of S-algebras
generated by x. Then the set T = {

∧

i∈I f
i(x) : ∅ 6= I ⊂ Z, |I| < ℵ0 }

contains x (for I = {0}) and is closed under the meet operation. Since both
f and f−1 are automorphisms, T is closed under f and f−1 as well, thus
T = F . This proves statement (1).

To prove statement (2), let t(x) =
∧

i∈I f
i(x) for some nonempty finite set

I ⊂ Z. Now, f(t(x)) ≈ f
(
∧

i∈I f
i(x)

)

≈
∧

i∈I f
i+1(x) ≈ t(f(x)), similarly

f−1(t(x)) ≈ t(f−1(x)), and t(x∧y) ≈
∧

i∈I f
i(x∧y) ≈

∧

i∈I

(

f i(x) ∧ f i(y)
)

≈
t(x) ∧ t(y). This proves that t is an endomorphism on any S-algebra.

For the last statement, observe that f i(o) = o for any i ∈ Z, therefore
t(o) = o. �

Lemma 2.2. Let Q be a minimal quasivariety of S-algebras, and A ∈ Q be
a nontrivial algebra generated by a ∈ A.

(1) If t(a) = o ∈ A for some unary term t, then every member of Q has
the least element and Q |= t(x) ≈ o.

(2) If t(a) ≈ s(a) for a pair s, t of unary terms, then Q |= t(x) ≈ s(x).
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Proof. Assume that t(a) = o for some unary term t. Since A is nontrivial,
it generates Q. Every element of A can be expressed as r(a) for some
unary term r, and then t(r(a)) = r(t(a)) = r(o) = o by Lemma 2.1. Thus
A |= t(x) = o, that is, A |= t(x)∧ y ≈ t(x), and this identity must also hold
in Q.

The second statement is proved similarly. �

Lemma 2.3. Let Q be a minimal quasivariety of S-algebras, A be the one-
generated free algebra in Q generated by a ∈ A, and

K = { i ∈ Z : a ∧ f i(a) 6= o }.

Then either Q |= f(x) ≈ x, or the following are true:

(1) Any nonzero element of A generates a nontrivial subalgebra.
(2) If i ∈ K and n ≥ 0, then a ∧ f i(a) ∧ f2i(a) ∧ · · · ∧ fni(a) 6= o.
(3) There exists a unique integer k ≥ 0 so that K = { kn : n ∈ Z }.
(4) For any integer n ≥ 0, a ∧ fk(a) ∧ · · · ∧ fnk(a) = a ∧ fnk(a).
(5) A \ {o} = { f i(a) ∧ f i+nk(a) : i ∈ Z and n ≥ 0 }.
(6) If a ∧ fnk(a) ≤ fmk(a) for integers m > n ≥ 0, then a ≤ fk(a).
(7) If a ∧ fnk(a) ≤ fmk(a) for integers n ≥ 0 > m, then a ≥ fk(a).

Proof. Clearly, A is trivial if and only if Q |= f(x) ≈ x, so we assume that
A is nontrivial and prove the above statements.

For (1), take b ∈ A\{o}. AsA is generated by a, there exists a unary term
t so that t(a) = b, and by Lemma 2.1, there exists i ∈ Z so that b ≤ f i(a).
If b ∧ f j(a) = b for all j ∈ Z, then for all unary terms r, b ∧ r(a) = b by
Lemma 2.1 again, which implies that b = o. This is a contradiction, so there
exists j ∈ Z so that b ∧ f j(a) < b. Then b ∧ f j−i(b) ≤ b ∧ f j−i(f i(a)) ≤
b ∧ f j(a) < b, so b generates a nontrivial subalgebra.

Suppose that statement (2) does not hold, so a ∧ f i(a) ∧ · · · ∧ fni(a) = o
for some i ∈ K and n ≥ 0. Since i ∈ K, a∧ f i(a) 6= o, thus n ≥ 2. Choose a

counterexample where n is minimal, so b = a∧f i(a)∧· · ·∧f (n−1)i(a) 6= o. By
statement (1), the subalgebra generated by b is nontrivial. Then b∧ f i(b) =
a∧ f i(a)∧ · · · ∧ fni(a) = o, and from Lemma 2.2, Q |= x∧ f i(x) ≈ o, which
contradicts the assumption that i ∈ K.

For (3), first observe that 0 ∈ K since a 6= o, and for every integer i, i ∈ K
if and only if−i ∈ K since f is an automorphism. IfK = {0}, then we choose
k = 0. If K 6= {0}, then let k be the smallest positive integer in K. From (2)
and the above observation we get that K ⊇ { kn : n ∈ Z }. Suppose that
they are not equal and let j ∈ K be the smallest positive integer not divisible
by k. Since k ∈ K, b = a ∧ fk(a) 6= o, and by (1) the subalgebra generated
by b is nontrivial. By the choice of k and j, j > k and j − k 6∈ K. Thus
a ∧ f j−k(a) = o and Q |= x ∧ f j−k(x) ≈ o from Lemma 2.2. In particular,
fk(a)∧f j−k(fk(a)) = o and hence b∧f j(b) = a∧fk(a)∧f j(a)∧fk+j(a) = o.
Then using Lemma 2.2 again for the subalgebra generated by b, we get that
Q |= x ∧ f j(x) ≈ o which contradicts that j ∈ K.
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To prove (4), it is enough to show for all integers 0 ≤ m ≤ n, that
a ∧ fnk(a) ≤ fmk(a). Put b = a ∧ fk(a) ∧ · · · ∧ fnk(a). Then b ∧ fnk(b) =

a ∧ fk(a) ∧ · · · ∧ f2nk(a) and fmk(b) = fmk(a) ∧ · · · ∧ f (m+n)k(a), thus
b∧fnk(b) ≤ fmk(b). By (2) we know that b 6= o, and from (1) that b generates
a nontrivial subalgebra. Therefore, from Lemma 2.2, Q |= x ∧ fnk(x) ≤
fmk(x), which implies what we wanted to show.

Now we show (5). From Lemma 2.1 we know that every element of A
can be written as b =

∧

i∈I f
i(a) where I is a nonempty finite subset of Z.

Let i be the smallest member of I. If not all members of I are congruent to
i modulo k, then b = o by (3), a contradiction. Now, from (4) we get that
b = f i(a) ∧ f i+nk(a) where i+ nk is the largest member of I.

Assume that a ∧ fnk(a) ≤ fmk(a) for a pair m > n ≥ 0 of integers.

Put b = a ∧ fk(a) ∧ · · · ∧ f (m−1)k(a). From our assumption, b ∧ fk(b) =
a∧ fk(a)∧ · · · ∧ fmk(a) = b. However, b 6= o by (2), and by (1) it generates
a nontrivial subalgebra. So from Lemma 2.2 we get that Q |= x∧fk(x) ≈ x.
This proves statement (6).

To get (7), assume that a ∧ fnk(a) ≤ fmk(a) for a pair n ≥ 0 > m of

integers. Then for the element b = f (m+1)k(a) ∧ · · · ∧ fnk(a) we get that
f−k(b)∧b = b. Then with a similar argument as before, Q |= f−k(x)∧x ≈ x,
that is, Q |= x ∧ fk(x) ≈ fk(x), and thus a ≥ fk(a). �

For every k ≥ 1 we denote by Ak the flat algebra from S with underlying
set {o, 0, . . . , k − 1} where o is the least element, f(i) = i + 1 for i < k − 1
and f(k−1) = 0. We denote by A∞ the flat algebra from S with underlying
set {o} ∪ Z, where f(i) = i+ 1 for all i ∈ Z (so that f−1(i) = i− 1).

Denote by B+
1 the S-algebra with the underlying set Z, with the usual

ordering of integers and the automorphism f defined by f(x) = x+1. Denote
by B−

1 the S-algebra with the same underlying set and the same ordering,
but f(x) = x− 1.

For every k ≥ 2 we set k = {0, 1, . . . , k − 1} and denote by B+
k the S-

algebra with the underlying set (Z × k) ∪ {o}, where o is the least element,
〈x, i〉 ≤ 〈y, j〉 iff x ≤ y and i = j, f(o) = o, f(〈x, i〉) = 〈x, i+ 1〉 if i < k − 1
and f(〈x, k − 1〉) = 〈x + 1, 0〉. Denote by B−

k the S-algebra with the same
underlying set and the same ordering, but with f defined as follows: f(o) =
o, f(〈x, i〉) = 〈x, i+ 1〉 if i < k − 1 and f(〈x, k − 1〉) = 〈x− 1, 0〉.

Let C1 be the S-algebra with the underlying set { 〈i, j〉 ∈ Z× Z : i ≤ j }
with f(〈i, j〉) = 〈i+ 1, j + 1〉 and 〈i, j〉 ∧ 〈u, v〉 = 〈min(i, u),max(j, v)〉.

For an integer k ≥ 2 denote by Ck the S-algebra with underlying set
{ 〈i, j,m〉 ∈ Z×Z×k : i ≤ j }∪{o}, where o is the least element, 〈i, j,m〉 ≤
〈u, v, w〉 iff i ≤ u, j ≥ v and m = w, and f(o) = o, f(〈i, j,m〉) = 〈i, j,m+1〉
if m < k − 1 and f(〈i, j, k − 1〉) = 〈i+ 1, j + 1, 0〉.

Lemma 2.4. Let Q be a minimal quasivariety of S-algebras, and A be the
one-generated free algebra in Q. Then either A is trivial and Q is generated
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by A1, or A is nontrivial and isomorphic to A∞, Ak (k ≥ 2), B+
k , B

−

k or
Ck for some integer k ≥ 1.

Proof. Let A be the one-generated free algebra generated by a ∈ A in a
minimal quasivariety Q of S-algebras. If Q |= f(x) ≈ x, then A = {a}, and
Q is generated by A1 (which is isomorphic to a subalgebra of any nontrivial
member of Q). So assume that A is nontrivial, that is f(a) 6= a and so
Q 6|= f(x) ≈ x. Thus the statements of Lemma 2.3 are satisfied.

Let k be the unique integer satisfying statement (3) of Lemma 2.3. If
k = 0, then for any i 6= 0, a ∧ f i(a) = o. Define ϕ : A∞ → A as ϕ(o) = o
and ϕ(i) = f i(a) for i ∈ Z. Clearly, ϕ is a homomorphism, and we need to
show that ϕ is bijective. By statement (5), every element of A \ {o} equals
to f i(a) ∧ f i+n·0(a) = f i(a) for some i ∈ Z, thus ϕ is surjective. On the
other hand, if f i(a) = f j(a) then i − j ∈ K, so i = j, which proves that ϕ
is injective, and thus A ∼= A∞.

In the rest of the proof we consider the case when k ≥ 1. First assume
that a = fk(a). Define ϕ : Ak → A as ϕ(o) = o and ϕ(i) = f i(a) for
0 ≤ i < k. Clearly ϕ is a homomorphism, as fk(a) = a, and we need to
show that that ϕ is bijective. By statement (5), every element of A \ {o}
equals to f i(a) ∧ f i+nk(a) = f i(a) = f (i mod k)(a), thus ϕ is surjective. On
the other hand, if f i(a) = f j(a), then i − j ∈ K, so i ≡ j mod k, and
therefore f is injective. This proves, that A ∼= Ak. Note, that k = 1 is
impossible in this case, because we have assumed that A is nontrivial.

Now consider the case when a < fk(a). If k = 1, then by statements (3)
and (4), A has no least element. Define ϕ : B+

1 → A as ϕ(i) = f i(a) for
i ∈ Z. Clearly, f(ϕ(i)) = f i+1(a) = ϕ(i+ 1) = ϕ(f(i)). Since a ≤ f(a), for
any pair i < j of integers we have f i(a) ∧ f j(a) = f i(a ∧ f j−i(a)) = f i(a),
which proves that ϕ is a homomorphism. From statement (5) we get again
that ϕ is surjective. If f i(a) = f j(a) for a pair i < j of integers, then
a = f j−i(a), and therefore, by statement (4), a = a ∧ f j−i(a) = a ∧ f(a) ∧
· · · ∧ f j−i(a) ≤ a ∧ f(a) ≤ a, and consequently a = f(a). This contradicts
our assumption that a 6= f(a). So ϕ is injective and A ∼= B+

1 .
If a < fk(a) and k ≥ 2, then, by statement (3), A has the least element.

Define ϕ : B+
k → A as ϕ(o) = o and ϕ(〈i, j〉) = f ik+j(a) for any i ∈ Z

and 0 ≤ j < k. Once again, it is clear that ϕ is compatible with f . From
statement (3) we get that ϕ(〈i, j〉) ∧ ϕ(〈u, v〉) = o whenever j 6= v. On the
other hand, from a ≤ fk(a) and statement (4) we get again, that f i(a) ∧
f i+nk(a) = f i(a) for any n ≥ 0. Thus ϕ is a homomorphism. Similarly
to the previous case, we can easily see that ϕ is bijective, and therefore
A ∼= B+

k .

If a > fk(a), then a proof analogous to the one above shows thatA ∼= B−

k .

The only remaining case is when a and fk(a) are incomparable. We
consider the case when k = 1. By statement (3), A has no least element.
Define ϕ : C1 → A as ϕ(〈i, j〉) = f i(a) ∧ f j(a). Clearly ϕ is compatible
with f . For i ≤ j and u ≤ v, we get that f i(a) ∧ f j(a) ∧ fu(a) ∧ fv(a) =
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f min(i,u)(a) ∧ f max(j,v)(a) by statement (4), thus ϕ is compatible with the
meet operation as well. We need to show that ϕ is a bijection. From
statement (5) we get that ϕ is surjective. Suppose that ϕ is not injective,
that is, f i(a) ∧ f j(a) = fu(a) ∧ fv(a) for integers i ≤ j and u ≤ v with
either i 6= u or j 6= v. Without loss of generality, we may assume that i < u
or j < v. If j < v, then a ∧ f j−i(a) ≤ fv−i(a), and from statement (6)
we get the contradiction that a ≤ f(a). If i < u, then using statement (7)
instead of (6) we get another contradiction. This proves that ϕ is injective,
and therefore it is an isomorphism.

In the case when a and fk(a) are incomparable and k ≥ 2, a similar
argument proves that A ∼= Ck, and finishes the proof of the lemma. �

Theorem 2.5. The minimal quasivarieties of S-algebras are precisely the
quasivarieties generated by one of the following algebras: A∞, Ak, B

+
k , B

−

k

and Ck for all integers k ≥ 1. These minimal quasivarieties are pairwise
distinct.

Proof. Let A be the set of algebras listed above. By Lemma 2.4, every
minimal quasivariety of S-algebras contains at least one member of A. We
need to show that every member of A generates a minimal quasivariety, and
that these quasivarieties are pairwise distinct.

If A ∈ A does not generate a minimal quasivariety, then the quasivari-
ety Q(A) generated by A contains a proper subquasivariety. Since every
quasivariety contains a minimal quasivariety (see [8]), this subquasivariety
can be taken to be minimal, and then by Lemma 2.4, Q(A) contains an-
other algebra B ∈ A \ {A}. So to finish the proof it is enough to show
that the quasivarieties generated by different members of A are pairwise
incomparable (under inclusion).

The algebra A∞ satisfies the equation x∧ f i(x) ≈ o (or rather, the equa-
tion x∧ f i(x)∧ y ≈ x∧ f i(x)) for all i 6= 0. No other member of A does so,
thus Q(A∞) ∩ A = {A∞}, and therefore A∞ generates a minimal quasiva-
riety.

The equation x ≈ f(x) is satisfied by A1 and by no other member of A,
so A1 generates a minimal quasivariety. The equation x ≤ f(x) is satis-
fied exactly by A1 and B+

1 . However, B+
1 also satisfies the quasiequation

x ≈ f(x) → y ≈ z, while A1 does not, therefore B+
1 generates a minimal

quasivariety. Similarly, B−

1 generates a minimal quasivariety.
The algebra C1 satisfies the quasiequations x ∧ f(x) ≤ f2(x) → y ≈ z

and f(x) ∧ f2(x) ≤ x → y ≈ z, while no other member of A does so, thus
C1 generates a minimal quasivariety.

Fix an integer k ≥ 2. The algebra Ak satisfies the equations x∧f i(x) ≈ o
for every 1 ≤ i < k and x ≈ fk(x), but no other member of A satisfies them
all, thus Ak generates a minimal quasivariety.

The algebra B+
k satisfies the equations x ∧ f i(x) ≈ o for every 1 ≤ i < k

and x ≤ fk(x). The only member of A other than B+
k that satisfies these

equations is Ak. However, B
+
k also satisfies the quasiequation x ≈ fk(x) →
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x ≤ y while Ak does not, therefore B+
k (and similarly B−

k ) generates a
minimal quasivariety.

The algebra Ck satisfies the equations x ∧ f i(x) ≈ o for every 1 ≤ i < k
and the quasiequations x ∧ fk(x) ≤ f2k(x) → x ≤ y and x ∧ fk(x) ≤
f−k(x) → x ≤ y. If the two quasiequations are satisfied by an algebra
A ∈ A, then for all x ∈ A \ {o}, x ∧ fk(x) 6= o. But if A |= x ∧ f i(x) ≈ o
for every 1 ≤ i < k, then we must have A ∈ {Ak,B

+
k ,B

−

k ,Ck}. However,
among these only Ck satisfies the two quasiequations, so Ck generates a
minimal quasivariety. �

3. Minimal varieties

Theorem 3.1. The minimal quasivarieties Q(An) (n ≥ 1) and Q(A∞) are
varieties. There are no other minimal subvarieties of S.

Proof. First we are going to prove that Q(An) (n ≥ 1) and Q(A∞) are
varieties. For n = 1 we have the variety of semilattices. So, let n > 1 be an
integer, or n = ∞.

We need to prove that an arbitrary nontrivial algebra A ∈ HSP(An) is
isomorphic to a subdirect power of An. Define an equivalence r on A as
follows: 〈x, y〉 ∈ r if and only if y = f i(x) for some integer i. One block of
r is {o}, all the other blocks are sets with precisely n elements. For each
block B 6= {o} of r define a binary relation αB on A as follows: 〈x, y〉 ∈ αB

if and only if either x � b for all b ∈ B and y � b for all b ∈ B, or else there
exists an element b ∈ B such that x, y ≥ b.

Claim 1. Let B,C be two different blocks of r, both different from {o}.
Then precisely one of the following three cases takes place: (i) every element
of B is incomparable with every element of C; (ii) for every element b of
B there exists precisely one element c of C that is comparable with b, and
this element c is above b; (iii) for every element b of B there exists precisely
one element c of C that is comparable with b, and this element c is below b.
Let, for example, there exist elements b ∈ B and c ∈ C such that b < c.
Put bi = f i(b) and ci = f i(c). Then bi < ci, since f is an automorphism. If
bi ≤ cj for some cj 6= bi then ci ∧ cj ≥ bi, a contradiction since ci ∧ cj = o. If
bi ≥ cj for some j then cj ≤ bi < ci, cj = ci and thus ci = bi, a contradiction.

Claim 2. Let B 6= {o} be a block of r. Then every element z of A is above
at most one element of B. Suppose that x, y ∈ B, x < z, y < z and x 6= y.
We have y = f i(x) for some i. The elements z and f i(z) are two different
elements in the same block of r, so that z ∧ f i(z) = o. But they are both
above y, a contradiction.

Claim 3. Let B 6= {o} be a block of r. Then αB is an equivalence on A.
Clearly, αB is reflexive and symmetric. Let 〈x, y〉 ∈ αB and 〈y, z〉 ∈ αB. We
need to prove that 〈x, z〉 ∈ αB. If at least one of the three elements is not
above any element of B, then none of them is, and we get 〈x, z〉 ∈ αB. So,
let there exist two elements b1, b2 ∈ B such that b1 ≤ x, b1 ≤ y, b2 ≤ y and
b2 ≤ z. By Claim 2 we have b1 = b2 and thus 〈x, z〉 ∈ αB.
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Claim 4. Let B 6= {o} be a block of r. Then αB is a congruence of A.
It is clear that αB is a congruence with respect to the operation f . Let
〈x, y〉 ∈ αB and z ∈ A. We need to prove that 〈x ∧ z, y ∧ z〉 ∈ αB. This
is clear if neither x nor y is above any element of B. So, let there exist an
element b ∈ B such that b ≤ x and b ≤ y. If b ≤ z then b ≤ x ∧ z and
b ≤ y∧ z, so that 〈x∧ z, y∧ z〉 ∈ αB. Let b � z. If b′ ≤ x∧ z for some b′ ∈ B
then b = b′ by Claim 2 and thus b ≤ z, a contradiction. Thus x ∧ z is not
above any element of B. Similarly, y ∧ z is not above any element of B. We
get 〈x ∧ z, y ∧ z〉 ∈ αB.

Claim 5. Let B 6= {o} be a block of r. Then A/αB is isomorphic with An.
This is obvious.

Claim 6. The intersection of the congruences αB, with B running over
all blocks of r different from {o}, is the identity on A. Let x, y be two
different elements of A. If x = o and y 6= o then x, y are separated by the
congruence αB, where B is the block of y. Let x 6= o and y 6= o. Denote by
B the block of x and by C the block of y. If B = C then x, y are separated
by αB. If B � C then x, y are separated by αB. If C � B then x, y are
separated by αC .

These claims prove that A is isomorphic to a subdirect power of An.
We see that Q(An) are varieties for n ≥ 1, including n = ∞. Since they

are minimal quasivarieties, they are also minimal as varieties. It remains
to prove that S has no other minimal subvarieties. By 2.5, this will be
accomplished if we show that whenever a subvariety V of S contains either
B+

k or B−

k or Ck for some k ≥ 1, then it contains A1.

If V contains an algebra A ∈ {B+
k ,B

−

k ,Ck} for some k ≥ 2, then V
contains the algebra A1 because A1 is isomorphic to the factor A/β where
β is the congruence of A defined as follows: 〈x, y〉 ∈ β if and only if either
x = y = o or x, y ∈ A\{o}. If V contains the algebraC1, then it also contains
B+

1 as the projection π : C1 → B+
1 , 〈i, j〉 7→ i to the first coordinate is a

surjective homomorphism.
Let V contain the algebra B = B+

1 (the underlying set of which is the
set of integers). Put C = Bω. Denote by P the set of all u ∈ C for which
there exist a c ∈ B and an n ∈ ω such that u(i) = c for all i ≥ n. Denote
by Q the set of all v ∈ C for which there exist a c ∈ B and an n ∈ ω such
that v(i) = i + c for all i ≥ n. It is easy to see that P , Q and P ∪ Q are
subalgebras of C. The equivalence on P ∪ Q with two blocks P and Q is
a congruence of the subalgebra P ∪ Q and the factor by this congruence is
isomorphic to A1.

The proof is similar in the case when B−

1 ∈ V . �

Remark 3.2. The fact that for n finite the algebra An generates a minimal
variety follows from the profound result established in [7] which classifies all
finite algebras generating minimal varieties.

Remark 3.3. It is easy to see that for n ≥ 1 finite, the equational theory of
An is based on the equations of S, together with the following equations:
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fn(x) ≈ x and x ∧ f i(x) ≈ o for all i = 1, . . . , n− 1. The equational theory
of A∞ is based on the equations of S, together with the following equations:
x ∧ f i(x) ≈ o for all positive integers i. Thus the varieties HSP(An) are
finitely based for n finite, while the variety HSP(A∞) is not.

Remark 3.4. There are 2ℵ0 subvarieties of S. To see this, denote by VP ,
for any set P of prime numbers, the variety generated by the algebras An

with n ∈ P . We will show that these varieties are pairwise different. It
is sufficient to prove that if a prime number q does not belong to P then
Aq /∈ VP . Suppose Aq ∈ VP . Since q is a prime number, every algebra An

with n ∈ P satisfies x∧f q(x) ≈ o. Thus VP satisfies this equation and hence
Aq satisfies it, a contradiction.
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