FINITELY GENERATED COMMUTATIVE DIVISION
SEMIRINGS

J. JEZEK AND T. KEPKA

ABSTRACT. One-generated commutative division semirings are found.

The aim of this (partially expository) note is to find all one-generated
(commutative) division semirings (see Theorem 8.5). In particular, all such
semirings turn out to be finite. To achieve this goal, we have to correct
some results from [1] (especially Proposition 12.1 of [1]) and to complete
some results from [2]. Anyway, all the presented results are fairly basic and
(with two exceptions) we shall not attribute them to any particular source.

1. INTRODUCTION

A semiring is an algebraic structure with two associative binary opera-
tions (usually denoted as addition and multiplication) such that the addition
is commutative and the multiplication distributes over the addition from ei-
ther side. If the multiplication is commutative, the semiring is called so. In
the sequel, we consider only commutative semirings.

A semiring S is called

- congruence-simple if S has just two congruence relations;

- ddeal-simple if S is non-trivial and I = S whenever [ is an ideal of
S containing at least two elements;

- a division semiring if S is non-trivial and contains an element w
such that S\ {w} C Sa for every a € S\ {w};

- a semifield if S is non-trivial and contains a multiplicatively absorb-
ing element w such that S\ {w} is a subgroup of the multiplicative
semigroup of 5

- a parasemifield if the multiplicative semigroup of S is a non-trivial
group.

We denote by N the semiring of positive integers, by Ny the semiring
of non-negative integers, by Z the ring of integers, by Q the field of ratio-
nal numbers, by QT the parasemifield of positive rational numbers, by Qg
the semifield of non-negative rational numbers, and by R the field of real
numbers. Put R" ={a € R:a >0} and R~ ={a € R:a < 0}.
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Notice that all semifields and parasemifields are ideal-simple division
semirings. On the other hand, zero multiplication rings of finite odd prime
order are both congruence- and ideal-simple, but they are not division semir-
ings. Observe that every division semiring has at most two ideals.

For a semiring S, let Ida(S) = {a € S : a + a = a}. Clearly, Ida(9) is
either empty or an ideal of S. The semiring S is called

- additively idempotent if Ida(S) = S;
- almost additively idempotent if the set S\ Ida(S) has at most one
element.

1.1. Lemma. Let S be an almost additively idempotent semiring and
S\ Ida(S) = {w}. Put s =w+ w. Then:
(i) s € Ida(9).
(ii) wa = sa for every a € Ida(9).
(iii) Either w? = w and s> = s or else w? = 5.

Proof. 1t is easy. O

1.2. Lemma. Let P be a parasemifield. Put K ={a € P:a+ 1p # 1p}
and L={a€ P:a+1p=1p}. Then:

(i) KUL=Pand KNL=1.
(i) K #0.
(iii) Ifa € L and a # 1p, thena™! € K.
(iv L+LCL and LL C L.
v) If L # 0, then L is a sebsemiring of P.
(vi) K+ LCK.
(vii) P is additively idempotent if and only if 1p € L.
(viii) If P is additively idempotent, then K + P C K.
(ix) If P is additively cancellative, then L = ().

Proof. 1t is easy. ([

1.3. Lemma. Let P be a parasemifield and e € P. Put K, = Ke and
L. = Le, where K and L are as in 1.2. Then:

(i) Kc={a€P:at+e#e} and Le={a€ P:a+e=e}.
K.UL.=P and K.N L, =

Le+ Lo C L. and LoL, C Lee = L2
K.+ L. CK.,.
P is additively idempotent if and only if e € Le.

Ifa € L, and a # e, then a'e? € K,.
IfP is addztwely zdempotent then K. + P C K,.

Proof. 1t follows from 1.2. O
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Denote by P the variety of universal algebras with two binary operations
(addition and multiplication) and one unary operation x~!, determined by
the equations of commutative semirings and the equations of (multiplica-
tively denoted) commutative groups. Clearly, there is a one-to-one corre-
spondence between parasemifields and the non-trivial algebras from P. In
this paper we prefer to consider parasemifields as special semirings, rather
than elements of P. However, there could be a confusion if we need to speak
about generating subsets of parasemifields. We say that a parasemifield P
(or any semiring) is generated by a subset X as a semiring if P is the least
subsemiring of P containing X. We say that a parasemifield P is generated
by a subset X as a parasemifield if P is the least subparasemifield of P
containing X.

Similarly, we need to distinguish between subsets of a ring generating the
given ring as a subsemiring or as a subring.

1.4. Lemma. Let P be a parasemifield. Then P is not one-generated as
a Semiring.

Proof. Since P is a variety, there exists a one-generated free object F'in P. It
is easy to see that F' is isomorphic to the parasemifield Q* (considered as an
element of P). Also, it is easy to see that Q" is congruence-simple. From this
it follows that Q% is, up to isomorphism, the only non-trivial one-generated
algebra in P. Of course, Q% is one-generated as a parasemifield. On the
other hand, it is easy to see that it is not one-generated as a semiring. [

The following folklore type result is usually attributed to I. Kaplansky.

1.5. Lemma. Let A be an infinite field. Then A is not finitely generated
as a Ssemiring.

2. AUXILIARY RESULTS ON COMMUTATIVE SEMIGROUPS

In this section let S be a non-trivial commutative semigroup (denoted
multiplicatively), containing an element w such that T'= S\ {w} C Sa for
every a € T'. (Clearly, T'C SS.)

2.1. Lemma. Ifw=1g¢€TT, then S is a group.

Proof. We have 1g = ab for some a,b € T. If ¢ € T\ {a}, then a = cd for
some ¢,d € T and 1g = cdb. Thus every element of S has an inverse in .5,
which means that S is a group. ([

2.2. Lemma. Ifw=1g¢ TT, then T is a subgroup of S.

Proof. The result is clear for |T'| = 1. If a,b are two distinct elements of T,
then ac = b and bd = a for some ¢,d € T'; we get acd = a and then obviuosly
cd = 17; now it is clear that 7" is a subgroup of S. O

2.3. Lemma. Ifw # lg and wa = a for alla € T, then w? = 17 € T and
T is a subgroup of S.
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Proof. Since w # 1g, we have w? € T and then w? = 1p. Furthermore,
bc = wbe for all b,c € T and it follows that bc € T. Now it is easy to see
that T is a subgroup of S. (|

2.4. Lemma. If wag # ag for at least one ag € T, then 170 € T.

Proof. We have ag = agbg for some by € T'. For every ¢ € T thereisa d € S
with ¢ = agd and then c¢bg = ¢. Thus by = 17 € T. [l

2.5. Lemma. If wag # ag for at least one ag € T and wlyp = a1 € T,
then a1 # 17, wa = aja for every a € T, w? = a%, SSCT and T is a
subgroup of S.

Proof. We have wa = wlra = aja for every a € T. Since wag # ag, we
have a1 # 1. If b,c € T, then bc = bclp implies be € T and it follows that
STCT.

For every a € T thereis a d € S with ad = 1p. If d = w, then 17 = aw =
aia and we see that every element of T is invertible. Thus T is a group.
Finally, a? # a1 and w?1y = wa; = a}. Thus w? = af. (]

2.6. Lemma. Ifwag # ag for at least one ag € T, wlp = w and 1p € Sw,
then S is a group.

Proof. We have 17 = 1g and the rest is clear. O

2.7. Lemma. Ifwag # ag for at least one ag € T, u1T = w and 17 ¢ Sw,
then Sw = {w} and T is a subgroup of S.

Proof. We have 17 = 1g and T is the set of invertible elements of S. Then,
of course, T is a subgroup of S. Since w is not invertible, we have Sw =
{w}. O

2.8. Proposition. Let S be a non-trivial commutative semigroup and
w € S be an element such that T = S\ {w} C Sa for every a € T. Then
either S is a group, or else T is a subgroup of S and at least one of the
following three cases takes place:

(1) w=1g;
(2) wlp =e €T, w? =e? and wa = ea for all a € T}
(3) wS ={w}.
Proof. Combine the preceding seven lemmas. U

2.9. Remark. If S is either a group or the two-element semilattice, then
for an arbitrary element w € S the pair S, w serves as an example for the
above investigated situation; in the semilattice case, with one choice of w
we get the case 2.8(1) and with the other one the case 2.8(3). If S is neither
a group nor the two-element semilattice, then the element w is unique and
only one of the three cases 2.8(1),(2),(3) can take place.
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3. DIVISION SEMIRINGS — CLASSIFICATION

Let S be a division semiring and and let w € S be such that T' = S\ {w} C
Sa for every a € T. If follows from 2.8 that the pair (S, w) belongs to exactly
one of the following four types:

(I) S is a parasemifield;
(IT) T is a subgroup of S(-) and w = 1g;
(IIT) T is a subgroup of S(-), wly = e € T, w? = €2 and wa = ea for all
a€eT;
(IV) T is a subgroup of S(-) and w is a multiplicatively absorbing element
of S.

We say that S is of type (X) if there exists an element w € S such that the
pair (S, w) is of type (X). Clearly, the type of a division semiring is uniquely
determined, with just four exceptions: the two-element division semirings
Zy, Zs, Zg, Zs (see 4.1) are of type (II) and of type (IV) at the same time.

If S is a parasemifield, then S is infinite and w can be any element of S.
If S is not a parasemifield, then the element w is uniquely determined by S
together with the specification of the type of S; and if |\S| > 3, it is uniquely
determined by S.

3.1. Example. Let S be a zero multiplication ring of finite prime
order. Then S is both congruence- and ideal-simple, but S is not a division
semiring.

3.2. Example. Let S = {nv2—m:n,m € Ng, n+m > 1}. Define
operations @ and ® on S by a @ b = min(a,b) and a © b = a +b. Then
S = S(®,®) is an additively idempotent congruence-simple semiring that
is not ideal-simple and that is not a division semiring.

3.3. Example. The product S = Q" x Q7 is a parasemifield, and hence
S is an ideal-simple division semiring. Of course, S not congruence-simple.

3.4. Example. Let G be a commutative group (denoted multiplicatively),
o0¢ Gand S = GU{o}. Put x +y = o for all z,y € S and extend the
multiplication of G by xo = ox = o for all z € S. Then S becomes a division
semiring (moreover, a semifield) and o is the only additive idempotent of S.
If G is non-trivial, then S is not congruence-simple.

3.5. Example. Let m be a non-negative integer. Put S = Z U {w} where
w is an element not belonging to Z and define two binary commutative
operations @ and ® on S as follows: a®b=a+bforalla,bEeZ; wOxr =x
forall z € S; a®b = min(a,b) for all a,b € Z; wda = min(0,a) forall a € Z
with a < m; w®a = w for all @ € Z with a > m; finally, we define the element
w @ w to be either 0 or w. We obtain two division semirings S = S(®,®)
(they differ only by the value of w@®w). These division semirings are neither
congruence- nor ideal-simple; they are almost additively idempotent; only
that one with w ® w = w is additively idempotent.
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4. A FEW CONSTRUCTIONS

4.1. Construction. The following eight semirings Z1, ..., Zs are (up to
isomorphism) all two-element semirings:

+ | 0 + | o

0 o 0]l o0 o0 0 o 0| 0 0

1l oo0o 1100 11oo0o 11 01
Zl ZQ

+\0 0 1 +\ 01

ol o000 o] o0 o0 ol oo ol 11

1101 1100 1101 11 11
Zg Z4

+\ 0 1 +\ 0

oloo oo 1 ol o0 o 0o

1101 1111 1101 11 01
Z5 ZG

o1 o o1 o

olo1 oo o0 0 1 0| 0 0

1110 1100 1110 11 01
Z7 Z8

All of them are congruence- and ideal-simple division semirings.

4.2. Construction. Let P be a parasemifield and let A be a subset of P
such that A+ P C A, B+ B C Band 1p+b = 1p for all b € B, where
B=P\A
4.2.1. Lemma.

(i) If B # 0, then B is a subsemiring of P.

(i) If b€ B and b # 1p, then b~! € A.

(iii) A is non-empty.
(iv) If 1p € B, then P is additively idempotent.

Proof. (i) Let b,c € B. We have bc+b+c=0b(c+1p)+c=b+c€ B and
hence be ¢ A.

(i) Ifb' € Bthen b= =b71(1p+b) =b"! +1p = 1p, so that b = 1p,
a contradiction.

(iii) follows from (ii) and (iv) is evident. O
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Let w ¢ P and S = P U {w}. Define addition and multiplication on S
(extending the operations on P) by w = 1g (multiplicatively neutral in 5),
wH+a=a+w=1p+a for every a € A and w+ b = b+ w = w for every
b € B. It remains to define the element w + w = 2w. We have two options.

(1) Assume that P is additively idempotent and put 2w = w. In this case,
S will be denoted by Z(P, A,1). It is easy to check that S = Z(P, A,1) is
an additively idempotent division semiring, (S,w) is of type (II), P is a
subparasemifield of S and P is an ideal of S.

(2) With P arbitrary, put 2w = 1p + 1p. In this case, S will be denoted
by Z(P, A,2). Tt is easy to check that S = Z(P, A,2) is a division semiring,
(S,w) is of type (II), P is a subparasemifield of S, P is an ideal of S and S
is not additively idempotent.

4.2.2. Lemma. LetS=Z7Z(P,A,1).
(i) S and P are the only ideals of S.
(ii) The semiring S is not ideal-simple.

Proof. Tt is obvious. U

4.2.3. Lemma. LetS=Z(P,A1).
(i) The equivalence p = ids U {(w, 1p), (1p,w)} is a congruence of the
semiring S and S/p ~ P.
(ii) The semiring S is not congruence-simple.

Proof. 1t is easy. (|

4.2.4. Lemma. Let S = Z(P,A,1) and let r be a congruence of the
semiring S such that r | P = idp. Then either r = ids orr = p (see 4.2.3).

Proof. If r # idg, then (w, e) € r for some e € P. Now, (¢, ce) = (cw,ce) € r
for every ¢ € P, and hence ¢ = ce and e = 1p. Thus r = p. O

4.2.5. Lemma. Let S = Z(P,A,1) where B # () and r be a congruence
of the semiring S such that P x P Cr. Thenr =5 x 5.

Proof. There are a € A and b € B with (a,b) € r. Then (1p + a,w) =
(a+w,b+w)erandr=5xS. O

4.2.6. Lemma. LetS=Z(P,A,1) where B =1.
(i) n= (P x P)U{(w,w)} is a congruence of S and S/n ~ Zs.
(ii) If r is a congruence of S with P x P C r, then either r = n or
r=.58x5.

Proof. 1t is easy. O

4.2.7. Proposition. LetS = Z(P, A,1) and assume that the parasemifield
P is congruence-simple. Then the semiring S is subdirectly irreducible and:

(i) If B # 0, then ids, p and S x S are the only congruences of S; we
have idg Cp C S xS and S/p ~ P.
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(ii) If B =0, then idg, p, n and S x S are the only congruences of S;
we have idg CpCnCSxS,S/p~P and S/n~ Zs.

Proof. Combine the previous four lemmas. ([

4.2.8. Proposition. Let S=Z(P,A1).
(i) The semiring S is finitely generated if and only if P is finitely gen-
erated (as a semiring).
(i1) S is not one-generated.

Proof. 1t is easy. O

4.2.9. Lemma. LetS=Z(P,A,2).

(i) S and P are the only ideals of S.
(ii) The semiring S is not ideal-simple.

Proof. Tt is obvious. O

4.2.10. Lemma. LetS=Z(P,A,2).
(i) The equivalence p = ids U {(w, 1p), (1p,w)} is a congruence of the
semiring S and S/p ~ P.
(ii) The semiring S is not congruence-simple.

Proof. 1t is easy. O

4.2.11. Proposition. Let S = Z(P, A,2) and assume that the parasemi-
field P is congruence-simple. Then the semiring S is subdirectly irreducible
and:

(i) If B # 0, then idg, p and S x S are the only congruences of S; we
have ids C p C S xS and S/p ~ P.

(ii) If B = 0, then idg, p, n and S x S are the only congruences of S;
we have idg CpCnCSxS,S/p~P and S/n~ Zs.

Proof. 1t is similar to the proof of 4.2.7. O

4.2.12. Proposition. Let S = Z(P, A,2) and let R be the subsemiring of
S generated by the element w.
(i) If1p € A, then R = {w, 2p,3p,4p,... }
(ii) If P is additively idempotent (e.g., 1p € B), then R = {w,1p}.
(iii) If P is not additively idempotent, then 1p ¢ R.

Proof. (i) and (ii) are easy. In order to prove (iii), it is sufficient to prove
that for any n > 2, the element np (the sum of n copies of 1p) is different
from 1p. This is clear for n = 2. Let n > 3 and suppose that np = 1p.
Thennp+(n—2)p =1p+(n—2)p, ie.,a+a=awherea=1p+(n—2)p.
We see that P contains an additively idempotent element. But then all
elements of P are additively idempotent, a contradiction. ([

4.2.13. Proposition. Let S=Z(P, A,2).
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(i) The semiring S is finitely generated if and only if P is finitely gen-
erated (as a semiring).
(ii) S is not one-generated.

Proof. 1t is easy. O

4.2.14. Lemma. Let S = Z(P,A,2). The semiring S is almost additively
idempotent if and only if P is additively idempotent.

Proof. Tt is obvious. O

4.3. Construction. Let P be a parasemifield, e € P, and let A be a
subset of P such that A+ PC A, B+ B C Bande+b=cforallbe B,
where B = P\ A.
4.3.1. Lemma.

(i) BB C Be.

(i) If b € B and b # e, then b~ 1e? € A.
(iii) A is non-empty.
(iv) If e € B, then P is additively idempotent.

Proof. (i) Let b,c € B. We have bc = ae for some a € P. Suppose that
a € A. Then (b+ c)e = b(c+ €) + ce = ae + be + ce = (a + b+ c)e, so that
b+c=a+b+ce AN B, a contradiction. Thus a € B.
(ii) If b=te? € B then b~1e? = b~te(e + b) = b~ le? + e = ¢, so that b = e.
(iii) follows from (ii) and (iv) is evident. O

Let w ¢ P and S = P U {w}. Define addition and multiplication on S
(extending the operations on P) by w? = €2, wc = cw = ec for every c € P,
wH+a=a+w=e+aforeverya € Aand w+b=>0+w = w for every
b € B. It remains to define the element 2w. We have two options.

(1) Assume that P is additively idempotent and put 2w = w. In this case,
S will be denoted by Z(P, A,e,1). It is easy to check that S = Z(P, A, e, 1)
is an additively idempotent division semiring, (S, w) is of type (III), P is a
subparasemifield of S and P is an ideal of S.

(2) With P arbitrary, put 2w = 2e. In this case, S will be denoted by
Z(P, A e,2). It is easy to check that S = Z(P, A, e, 2) is a division semiring,
(S,w) is of type (III), P is a subparasemifield of S, P is an ideal of S and
S is not additively idempotent.

4.3.2. Lemma. LetS=Z(P,A,e,1).
(i) S and P are the only ideals of S.
(ii) The semiring S is not ideal-simple.

Proof. Tt is obvious. 0

4.3.3. Lemma. LetS=Z7Z(P Ae,l).
(i) The equivalence p = idg U {(w,e),(e,w)} is a congruence of the
semiring S and S/p ~ P.
(ii) The semiring S is not congruence-simple.
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Proof. 1t is easy. O

4.3.4. Proposition. Let S = Z(P, A e, 1) and assume that the parasemi-
field P is congruence-simple. Then the semiring S is subdirectly irreducible
and:

(i) If B # 0, then idg, p and S x S are the only congruences of S; we
have ids C p C S xS and S/p ~ P.

(ii) If B = 0, then idg, p, n = (P x P)U{(w,w)} and S x S are the
only congruences of S; we have ids CpCnC S xS, S/p~P and
S/n~Zs.

Proof. 1t is similar to that of 4.2.7 or 4.2.11. O

4.3.5. Lemma. Let S = Z(P, A e, 1); denote by R the subsemiring of S
generated by the element w and by Ry the subsemiring of P generated by e.
Then R C Ry U {w}.

Proof. 1t is easy. O

4.3.6. Proposition. Let S=Z(P, A e,l).
(i) The semiring S is finitely generated if and only if P is finitely gen-
erated (as a semiring).
(ii) S is not one-generated.

Proof. (i) is easy and (ii) follows from 1.4. O

4.3.7. Lemma. LetS=Z(P A e,2).
(i) S and P are the only ideals of S.
(i1) The semiring S is not ideal-simple.

Proof. 1t is obvious. ([

4.3.8. Lemma. Let S=Z(P A e,2).
(i) The equivalence p = idg U {(w,e),(e,w)} is a congruence of the
semiring S and S/p ~ P.
(ii) The semiring S is not congruence-simple.

Proof. 1t is easy. O

4.3.9. Proposition. Let S = Z(P, A, e,2) and assume that the parasemi-
field P is congruence-simple. Then the semiring S is subdirectly irreducible
and:
(i) If B # 0, then idg, p and S x S are the only congruences of S; we
have ids C p C S xS and S/p ~ P.
(ii) If B = 0, then idg, p, n = (P x P)U{(w,w)} and S x S are the
only congruences of S; we have ids CpCnC S xS, S/p~P and
S/n~2Z.

Proof. 1Tt is similar to that of 4.3.4. (|
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4.3.10. Lemma. LetS = Z(P, A, e,2); denote by R the subsemiring of S
generated by the element w and by Ry the subsemiring of P generated by e.
Then R C Ry U {w}.

Proof. 1t is easy. ([
4.3.11. Proposition. Let S =Z(P, A e,2).
(i) The semiring S is finitely generated if and only if P is finitely gen-

erated (as a semiring).
(ii) S is not one-generated.

Proof. (i) is easy and (ii) follows from 1.4. O

4.3.12. Lemma. Let S = Z(P,A,e,2). The semiring S is almost
additively idempotent if and only if P is additively idempotent.

Proof. Tt is obvious. O

4.4. Construction. Let P be a parasemifield, 0 ¢ P, and put S = PU{0}.
Define addition and multiplication on S (extending the operations on P) by
v0 =0 =0and v+0=0+v =v for all v € S (so that 0 is additively
neutral and multiplicatively absorbing in S). We denote S constructed in
this way by Z(P,0). One can easily check that S = Z(P,0) is an ideal-simple
division semiring, (.5, 0) is of type (IV) and P is a subparasemifield of S. Of
course, S is a semifield and 1p = 1g.

4.4.1. Lemma. Let S = Z(P,0).

(i) If r is a congruence of P, then r U {(0,0)} is a congruence of S.
(ii)) n = (P x P)U{(0,0)} is a congruence of S and S/n ~ Zs.

Proof. 1t is obvious. O

4.4.2. Lemma. Z(P,0) is not congruence-simple.

Proof. 1t follows from 4.4.1. O

4.4.3. Proposition. Let S = Z(P,0) and assume that P is congruence-
simple. Then S is subdirectly irreducible and idg, n, S x S are the only
congruences of S.

Proof. 1t is easy. O

4.4.4. Lemma. Z(P,0) is additively idempotent if and only P is additively
idempotent.

Proof. Tt is obvious. O

4.4.5. Proposition. Let S = Z(P,0).

(i) S is finitely generated if and only if P is finitely generated.
(ii) S 1is neither one- nor two-generated.

Proof. (i) is easy and (ii) follows from 1.4. O
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4.5. Construction. Let G be a commutative group (denoted multiplica-
tively), o ¢ G and S = G U {o}. Define addition and multiplication on S
(extending the multiplication on G) by o = ox = x and = + y = o for all
xz,y € S. We denote S constructed in this way by U(G). One can easily
check that S = U(G) is a division semiring and (S, 0) is of type (IV); if
|G| =1 then S ~ Zy. Of course, S is a semifield.
4.5.1. Lemma. LetS=U(G).

(i) n= (G x G)U{(0,0)} is a congruence of S and S/n ~ Z,.

(ii) If |G| > 2, then S is not congruence-simple.

Proof. 1t is easy. O

4.5.2. Proposition. Let S = U(G) where G is a finite group of prime
order. Then idg, n and S X S are the only congruences of S.

Proof. 1t is easy. O

4.5.3. Proposition. Let S =U(G).
(i) S is finitely generated if and only if the group G is finitely generated.
(ii) S is one-generated if and only if G is a finite cyclic group.

Proof. 1t is easy. U

4.5.4. Lemma. let S=U(G).

(i) S is not additively idempotent.
(i1) S is almost additively idempotent if and only if |G| = 1. (Then
S ~ ZQ)

Proof. Tt is obvious. O

4.6. Construction. Let G be a commutative group (denoted multiplica-
tively), o ¢ G and S = G U {o}. Define addition and multiplication on S
(extending the multiplication on G) by 2o = ox = 0, z+y =oand z+x = x
for all z,y € S with x # y. We denote S constructed in this way by V(G).
One can easily check that S = V(G) is an additively idempotent division
semiring and (S, 0) is of type (IV); if |G| =1 then S ~ Zs. Of course, S is
a semifield.

4.6.1. Proposition. V(G) is congruence-simple.
Proof. 1t is easy. O

4.6.2. Proposition. Let S =V(G).

(i) S is finitely generated if and only if the group G is finitely generated.
(ii) S is one-generated if and only if G is a non-trivial finite cyclic group.

Proof. 1t is easy. (|
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4.7. Construction. Let P be a parasemifield, o ¢ P, and put S = PU{o}.
Define addition and multiplication on S (extending the operations on P) by
vo=o0v=v+0=o0+v =oforall v €S (sothat o is a bi-absorbing
element). We denote S constructed in this way by U(P). One can easily
check that S = U(P) is a division semiring, (.5, 0) is of type (IV) and S is a
semifield.

4.7.1. Lemma. LetS=U(P).

(i) If r is a congruence of P, then rU{(0,0)} is a congruence of S.
(il) n = (P x P)U{(0,0)} is a congruence of S and S/n ~ Zg.

Proof. 1t is easy. O

4.7.2. Lemma. U(P) is not congruence-simple.

Proof. 1t follows from 4.7.1. U

4.7.3. Proposition. Let S = U(P) and assume that P is congruence-
simple. Then S is subdirectly irreducible and idg, n, S x S are the only
congruences of S.

Proof. 1t is easy. O

4.7.4. Lemma. U(P) is additively idempotent if and only P is additively
idempotent.

Proof. Tt is obvious. U

4.7.5. Proposition. Let S =U(P).

(i) S is finitely generated if and only if P is finitely generated.
(ii) S is neither one- nor two-generated.

Proof. (i) is easy and (ii) follows from 1.4. O

4.8. Construction. Let P be a parasemifield and let T'(-) be a com-
mutative group such that P(-) is a proper subgroup of 7'(-). Let o ¢ T
and S = T U {o}. Define addition and multiplication on S (extending the
operations on P and the multiplication on T") by

vVo=0v=v+0=0+7v=o0for every v €S,

a+b=oforall a,b €T such that a='b ¢ P,

a+b= (17 +a tb)a € T for all a,b € T such that a='b € P.
Observe that if a=1b € P then b=la € P, (17 + a'b)b~ta = b~ta + 17 and
a+b=(lr+a 'b)a = (17 +b ta)b. It is easy to check that S is a divisible
semiring. It will be denoted by V(P,T(-)). Clearly, (S,0) is of type (IV),
S is a semifield and P is a subparasemifield of S.

4.8.1. Lemma. Let S = V(P,T(:)). Define a relation o on S by
(x,y) € o if and only if either x =y or else x,y € T and x~'y € P. Then
o is a congruence of the semiring S and S/o ~V(T(-)/P).

Proof. 1t is easy. (|
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4.8.2. Lemma. The semiring V(P,T'(-)) is not congruence-simple.

Proof. Use 4.8.1. O

4.8.3. Remark. Let S=V(P,T(.)).

(i) For every congruence « of the parasemifield P we can construct a
congruence 3 = () such that « = N (P x P) as follows. Put R = {a €
P :(a,1g) € a}, so that R is a subgroup of P(:). Now, put 8 = a3 U{(0,0)}
where a1 = {(a,b) :a,b€ T, a~'bc R}. Clearly, 3 is a congruence of the
multiplicative semigroup S(-). If (a,b) € § where a,b € T and ¢ € T is an
element such that a='c ¢ P, then b~'c ¢ P, since a~'b € P, and we have
(a+c,b+c)=(0,0) € B. If b=lc ¢ P, the proof is by symmetry. Finally,
ifa=lc € Pand b='c € P then (¢ 'a,c™'b) € o, (15 +cta, 15+ c71b) € a
and (a +c,b+c) = ((1g +cta)e, (1g + ctb)c) € B. Tt follows that 3 is a
congruence of the semiring S. Clearly, « = 5N (P x P).

(ii) Let us prove that every congruence  of S other than S x S can be
obtained as () for some congruence a of P. Clearly, 8 = $1U{(0,0)} where
B1=pB8N(T xT) is a congruence of the group T'(-). Put a = N (P x P).
Clearly, « is a congruence of the parasemifield P. Put R={a € T : (a,1g) €
B}. Then R is a subgroup pf T'(-) and, if a € R\ P, then a + 1g = o from
which we get (0, 1s+1g) € 3, a contradiction. Thus R C P and consequently
B = Bla).

(iii) It follows that the congruence lattice of S is isomorphic to the con-
gruence lattice of P with a new top element added. In particular, S is
subdirectly irreducible if and only if P is. If P is congruence-simple, then
idg, o (see 4.8.1) and S x S are the only congruences of the semiring S.

4.8.4. Lemma. The semiring V(P,T(-)) is additively idempotent if and
only if P is additively idempotent.

Proof. 1t is easy. O

4.8.5. Lemma. Let S =V (P,T(:)) and let M be a generating subset of
the semiring S. Then the set N = M NT is non-empty and generates S, as
well.

Proof. N is non-empty, since S # {o}. Denote by S; the subsemiring of S
generated by N. If o ¢ Si, then S; = T and 0 = 15+ a € S; for some
a € T\ P, a contradiction. Thus o € S7 and S; = S. O

4.8.6. Lemma. Let S=V(P,T(-)) and let N CT be a generating subset
of S. Then the factor-group T(-)/P is generated by the set {aP :a € N} of
cosets as a semigroup.

Proof. Let b € T. Then b = by + -+ + b, for some elements by,...,b,
(n > 1) belonging to the subsemigroup A of T(-) generated by N. For
every i = 1,...,n we have b; = bi¢; for some ¢; € P, and so b = bic where
c=c1+ --+c, € P. Then bP = b1 P and the rest is clear. O
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4.8.7. Lemma. Let S =V (P,T(-)) and let N be a subset of T such that
the factor-group T(-)/ P is generated by {aP :a € N} as a semigroup. If A
is the subsemigroup of T(-) generated by N, then T = AP.

Proof. 1t is easy. (|

4.8.8. Lemma. Let S=V(P,T(-)) and let N CT be a generating subset
of S. Denote by A the subsemigroup of T(-) generated by N. Then:
(i) B= AA"! is a subgroup of T(-) and B is generated by NU N1 as
a semigroup.
(ii) P is generated by the subgroup C = BN P of B as a semiring.

Proof. (i) is obvious.

(ii) Let a € P. We have a = a1 + - - + a, for some n > 1 and elements
a; € A. For every ¢ we have a; = b;a; for some b; € C, so that a = ba;
where b = by +---+b,. Of course, a,b € P,and so a; =ab~' € ANP =C.
Consequently, the elements a; = b;a; belong to C. O

4.8.9. Proposition. S =V(P,T(-)) is a finitely generated semiring if and
only if P is a finitely generated semiring and T(-)/P is a finitely generated
group.

Proof. The direct implication follows from 4.8.5, 4.8.6 and 4.8.8, taking into
account the following two well-known facts: any subgroup of a finitely gen-
erated commutative group is finitely generated; if a commutative group is
finitely generated, then it is finitely generated as a semigroup. The converse
follows from 4.8.7. U

4.8.10. Proposition. V(P,T(-)) is not a one-generated semiring.

Proof. Put S = V(P,T(-)) and suppose that S is generated by a single
element s. Clearly, s € T and s ¢ P. According to 4.8.6, the factor-group
T(-)/P is a (non-trivial) finite cyclic group, and so T(-)/P ~ Z,(+) for
some m > 2. It follows that a™ € P for every a € T.

Take a € P. We have a = l;s" + -+ + [,,s" for some n > 1, [; > 1,
1 < ki <ky<--- <k Since s + sk £ o, s¥* ¢ P and m divides
k; — k1. Furthermore, as™F = 1g+laskek 4 4 sknk e p gk e p

and m divides k1. Consequently, m divides all the numbers k1, ..., k, and we
conclude that the semiring P is generated by the element s, a contradiction
with 1.4. O

4.9. Construction. Let A be a subsemigroup of the additive group R(+)
of real numbers such that ANR™ # () # AN R™. Define operations @ and
® on A by a®b=min(a,b) and a ©b = a+b. It is easy to check that with
respect to these operations, the set A becomes an additively idempotent
semiring. This semiring will be denoted by W (A). According to Lemma
5.1.1 of [1], W(A) is congruence-simple.

4.9.1. Lemma. The following conditions are equivalent:
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) W(A) is ideal-simple;

i) W(A) is a division semiring;

) W(A) is a parasemifield;

) A is a subgroup of R(+).

Proof. 1t is easy. O

4.9.2. Lemma.
(i) W(A) is a finitely generated semiring if and only if A is a finitely
generated semigroup.
(ii) W(A) is not one-generated.

Proof. 1t is easy. O

5. DIVISION SEMIRINGS OF TYPE (II)

In this section let S be a division semiring that is of type (II) with respect
to an element w. That is, w = 1g € S and T'= S\ {15} is a subgroup of
the multiplicative semigroup S(-).

5.1. Lemma. If |T| =1, then S is isomorphic to one of the semirings
2o, Zs, Ze, Z3.
Proof. See 4.1. U

5.2. Lemma. If|T| > 2, then T is a subparasemifield of S.

Proof. T(+) is a non-trivial group. If a,b € T are such that a +b = 1g, then
lgs =a+b=alp+blyr =(a+b)ly = 1gly = 17, a contradiction. Thus
T+ T CT and T is a parasemifield. O

5.3. Lemma. Ifa €T is such that ls+a €T, then lg+a =17+ a.
Proof. 1s+a = (1g+a)lp =1glp +alyp =17 + a. O
5.4. Lemma. Ifa €T is such that 1g +a = 1g, then 10 +a = 17p.
Proof. We have 17 = 17lg = 1p(1lg +a) = 1rlg + lpa = 17 + a. O

5.5. Lemma.

(i) If 1g + 15 = 1g, then S is additively idempotent.

(ii) Ifls+1g €T, then 1g+1g = 1p + 1p.
Proof. (i) is obvious. If 1¢+ 1g = a € T, then ab = b+ b for every b € T.
In particular, a = alp = 17 + 17. O

PutA={aeT:1ls+a=1r+aland B={beT:1g+b=1g}.
5.6. Lemma.
(i) AUB=T and ANB = 1.
(ii) A+T C A,
(il) B+ B C B.
(iv) 1p +b =17 for every b € B.
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Proof. Use 5.3 and 5.4. O

5.7. Proposition. Precisely one of the following four cases takes place:

(1) S is isomorphic to either Zs or Zg and is additively idempotent;

(2) S is isomorphic to either Zy or Zg and S is not additively idempotent
(but is almost additively idempotent);

(3) T is a subparasemifield of S, S ~ Z(T,A,1) and S is additively
idempotent;

(4) T is a subparasemifield of S, S ~ Z(T, A,2) and S is not additively
idempotent; it is almost additively idempotent if and only it T is
idempotent.

Proof. Combine 5.5, 5.6 and 4.2. O
5.8. Corollary. The following conditions are equivalent:
(i) S is congruence-simple;

(ii) S is ideal-simple;
(iii) |S| = 2.

5.9. Corollary. S is a one-generated semiring if and only if it is isomor-
phic to either Zs or Zg.

6. DIVISION SEMIRINGS OF TYPE (III)

In this section let S be a division semiring that is of type (III) with
respect to an element w. That is, w € S, T'= S\ {w} is a subgroup of the
multiplicative semigroup S(-), wlyr =e € T, w? = €2 and wa = ea for every
ael.

6.1. Lemma. If|T| =1, then S is isomorphic to one of the semirings
Zy, Z3, Zs, Z7.

Proof. See 4.1. (|
6.2. Lemma. If|T|> 2, then T is a subparasemifield of S.

Proof. It remains to show that T+T C T'. If a,b € T are such that a+b = w,
then w =a+b=aly +bly = (a+ b)lp = wlp = e, a contradiction. O

6.3. Lemma. Ifa €T is such that w+a €T, thenw+a=¢e¢+ a.
Proof. w+a= (w+a)ly =wly+aly =e+a. O
6.4. Lemma. Ifbe T is such that w+ b= w, thene+b=ce.

Proof. We have e = wlp = (w4 b)1p = wlp + blp = e+ 0. O
6.5. Lemma. Ifw+weT, thenw+w=c¢e+e.

Proof. We have w +w = (w + w)ly = wlp + wlp = e +e. O

6.6. Lemma. Ifw+ w = w, then S is additively idempotent.
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Proof. We have e = wlp = (w+w)lp = wlp +wly = e+ e. Consequently,
a=a+aforalaecT. O

PutA={aeT:wt+a=e+aland B={beT:w+b=w}.
6.7. Lemma.
(i) AUB=T and ANB = 1.
(ii) A+ T C A,
(iii) B+ B C B.
(iv) e+ b=e for every b € B.

Proof. Use 6.3 and 6.4. O

6.8. Proposition. Precisely one of the following four cases takes place:

(1) S is isomorphic to either Zs or Zy and is additively idempotent;

(2) S is isomorphic to either Zy or Z7 and S is not additively idempotent
(but is almost additively idempotent);

(3) T is a subparasemifield of S, S ~ Z(T,A,e,1) and S is additively
idempotent;

(4) T is a subparasemifield of S, S ~ Z(T, A,e,2) and S is not additively
idempotent; it is almost additively idempotent if and only it T is
idempotent.

Proof. Combine 6.4, 6.5, 6.7 and 4.3. ([

6.9. Corollary. The following conditions are equivalent:
(i) S is congruence-simple;
(ii) S is ideal-simple;
(iii) |S| = 2.

6.10. Corollary. S is a one-generated semiring if and only if it is
isomorphic to one of Z1, Zs, Zy, Z7.
7. DIVISION SEMIRINGS OF TYPE (IV)

In this section let S be a division semiring that is of type (IV) with
respect to an element w. That is, w is a multiplicatively absorbing element
and T'= S\ {w} is a subgroup of the multiplicative semigroup S(-). Thus
S is a semifield and S is ideal-simple.

7.1. Lemma. If|T| =1, then S is isomorphic to one of Za, Zs, Zg, Zs.
Proof. See 4.1. U

7.2. Lemma. 17 = lg is multiplicatively neutral in S.

Proof. 1t is obvious. O

7.3. Lemma. Fither w = og is additively absorbing in S or w = Og 1is
additively neutral in S.
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Proof. We have w +w = (1g 4+ 1lg)w = w. If 1g + w = w, then w =
aw = a(lg + w) = alg + aw = a + w for every a € T, and so w = og.
On the other hand, if 1g + w # w, then 1g = (1g + w) }(lg + w) =
(1s + w)~! +w. From this, a = a(lg + w) ™! 4+ aw = a(lg + w) ™! + w and
at+w=a(lg+w) ' +w+w=a(lg+w)' +w=a for every a € T. Thus
w = Og. O

7.4. Lemma. Ifw = Og, then either S is a field, or S ~ Zs, or T is a
subparasefimield of S and S ~ Z(T,0).

Proof. If |S| = 2, then S is isomorphic either to Zs or to the two-element
field Zs. Let |S| > 3. Consider first the case when a + b = 0g for some
a,b € T. Then ¢+ ca™tb = ca™l(a +b) = ca='0g = 0g for every c € T
and it follows that S(+4) is a group. Then, obviously, S is a field. The
remaining case is when 7'+ T C T. Then, clearly, T is a subparasemifield
and S ~ Z(T,0). O

In the next seven lemmas assume that || > 2 and w = og = o is bi-
absorbing.
7.5. Lemma. If T+ a = {o} for at least one a € T, then S+ S = {o}
and S ~U(T(+)).

Proof. We have T'+ ab = (T +a)b = {o} for every b € T. Thus T+ T = {o}
and S+ S = {o}. The rest is clear. O

Now, assume that T+ a # {o} for every a € T. Put A, = {y € S :
x +y = o} for every z € S.
7.6. Lemma.
(i) o€ Ay and S+ A, C A,.
(i) Ay C Apqy forallz,y € S.
(ifi) A, = S.
(iv) Ag # S for everya € T.
(v) aAp =bA, for all a,b e T.
(vi) Ay = a"'bA, for all a,b e T.
(vii) Ay = aAig for everya € T.

Proof. 1t is easy. O

7.7. Lemma.
(i) P+ P C P and PP C P (i.e., P is a subsemiring of S).
(ii) P(-) is a subgroup of S(-).
(iii) If a,b € T, then a +b # o if and only if a='b € P.

Proof. (i) If a,b € P, then 1g+ a # o and 1g + b # o. Consequently,
lst+a+b+ab= (1g+a)(lg+b) # o. But then lg+a+b#o0, ls+ab#o0
and it follows that a +b € P and ab € P.

(i) If 15 +a # o, then a=! + 15 # o.

(iii) We have a + b # o if and only if 15+ a~1b # o. O
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7.8. Remark. We have A1, =T \ P and P is a subgroup of T'(-). Now
it is easy to see that 1¢ ¢ A1, and P={a €T : A, = aAi, = A1

7.9. Lemma. Leta,b<c T be such that a+b # o (equivalently, a=1b € P).
Thenlg+a b€ P, 1g+b"ta€ P anda+b=a(lg+a'b) = b(lg+b"ta).

Proof. Tt is easy (use 7.7). O

7.10. Lemma. If|P|=1, then P = {1g} and S ~V(T(-)).

Proof. Combine 7.7 and 7.9. (]

7.11. Lemma. IfP =T, then S ~U(P).

Proof. 1t is easy. O

7.12. Proposition. Let S be a division semiring of type (IV) with respect
tow and T = S\ {w}. Then one of the following cases takes place:

(1) S is a field or S is isomorphic to one of Za, Zs, Zgs;

(2) T is a subparasemifield of S and S ~ Z(T,0) (then S is additively
idempotent if and only if T is);

(3) IT| >2 and S~ U(T(-)) (then S is not additively idempotent);

(4) |T| > 2, w = og 1is bi-absorbing, 1g + a = og for every a € T \ {1s}
and S ~V(T(-)) (then S is additively idempotent);

(5) w = og is bi-absorbing, T is a subparasemifield of S and S ~ U(T)
(then S is additively idempotent if and only if T is);

(6) w = og is bi-absorbing, P = {a € T : 1g + a # os} is a sub-
parasemifield of S, P # T, and S ~ V(P,T(-)) (then S is additively
idempotent if and only if P is).

Proof. Combine 7.1, 7.3, 7.4, 7.5, 7.10 and 7.11. O

7.13. Corollary. S is congruence-simple if and only if either S is a field
or |S| =2 or S~ V(G(.)) for a commutative group G(-).

7.14. Corollary. S is one-generated if and only if one of the following
three cases takes place:

(1) [S]=2;

(2) S is aﬁmte field;

(3) S~ V(G(:)) for a non-trivial finite cyclic group G(-);
(4) S ~U(G(+)) for a non-trivial finite cyclic group G(-).

Proof. Easy, using 1.5. O
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8. SUMMARY

8.1. Theorem. Division semirings are commutative semirings of (exactly)
one of the following twelve types:

(1) The two-element semirings Z1, ..., Z7 (see 4.1);

(2) Flields;

(3) Parasemifields;

(4) The semifields U(G), where G is a non-trivial commutative group
(see 4.5);

(5) The semifields V(G), where G is a non-trivial commutative group
(see 4.6);

(6) The semifields U(P), where P is a parasemifield (see 4.7);

(7) The semifields Z(P,0), where P is a parasemifield (see 4.4);

(8) The semifields V(P,T(-)), where P is a parasemifield and the mul-
tiplicative group P(-) is a proper subgroup of a commutative group
T(-) (see 4.8);

(9) The semirings Z(P, A, 1), where P is an additively idempotent para-
semifield and A is a non-empty subset of P such that A+ P C A,
(P\A)+(P\A) CP\Aandlp+az=1p for everyx € P\ A (see
4.2);

(10) The semirings Z (P, A,2), where P is a parasemifield and A is as in
(9) (see 4.2);

(11) The semirings Z(P,A,e,1), where P is an additively idempotent
parasemifield, e € P and A is a non-empty subset of P such that
A+P CA (P\A)+ (P\A) C P\ A and e+ x = e for every
z € P\ A (seed3);

(12) The semirings Z (P, A, e,2), where P is a parasemifield, e € P and
A is as in (11) (see 4.3);

Proof. Combine 5.7, 6.8, 7.12. O

8.2. Remark. The semirings Z3, Z4, Zs, Zg, V(G), Z(P, A, 1) and
Z(P, A, e, 1) are additively idempotent. The semirings U(P), Z(P,0) and
V(P,T(-)) are additively idempotent if and only if the parasemifield P is.
The semirings Z (P, A,2) and Z(P, A, e, 2) are almost additively idempotent
if and only if P is additively idempotent. The semirings U(P) contain just
one additively idempotent element.

8.3. Remark. The semirings Z1,...,Z7 are finite, and hence finitely
generated. A field is a finitely generated semiring if and only if it is finite.
The semirings U(G) and V(G) are finitely generated if and only if the group
G is finitely generated. The semirings U(P), Z(P,0), Z(P, A, 1), Z(P, A, 2),
Z(P,A e 1), Z(P, A, e,2) are finitely generated if and only if the parasemi-
field P is finitely generated. The semirings V (P, T(-)) are finitely generated
if and only if P is finitely generated and the factor-group 7'(-)/P is finitely
generated.
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8.4. Remark. Taking into account 8.2 and 8.3, we conclude that the
following two statements are equivalent:

(A) A parasemifield is additively idempotent, provided that it is a finitely
generated semiring.

(B) A finitely generated division semiring is either almost additively
idempotent or it is a finite field or a copy of the semifield U(G)
for a non-trivial finitely generated commutative group G.

8.5. Theorem. One-generated division semirings are just (copies of) the
two-element semirings Z1, Zs, Z3, Z4, Z7, finite fields and the semifields
U(G) and V(G), where G is a non-trivial finite cyclic group. In particular,
all such semirings are finite.

Proof. Combine 4.1, 4.2.8,4.2.13, 4.3.6,4.3.11,4.4.5,4.5.3, 4.6.2, 4.7.5, 4.8.9
and 4.8.10. O

8.6. Remark. Division semirings containing an additively neutral element
are just the following ones:

(1) The two-element semirings Zs, ..., Zr;
(2) Fields;
(3) The semifields Z(P,0).

8.7. Remark. Division semirings containing a multiplicatively neutral
element are just the following ones:

Fields;
The semifields U
The semifields V'

);

(G
(G);

The semifields U(P);
(P
(

2)
3)
4)
5)
6) The semifields Z(P,0);
7) The semifields V/(P,T(+));
8) The semirings Z(P, A, 1);
9) The semirings Z(P, A,2).

8.8. Remark. Division semirings containing an additively absorbing
element are just the following ones:

(1) The two-element semirings 71, ..., Zs;
(2) The semifields U(G);
(3) The semifields V(G);
(4) The semifields U(P);
(5) The semifields V (P, T'(-)).

8.9. Remark. Division semirings containing a multiplicatively absorbing
element are just the following ones:

(1) The two-element semirings 71, ..., Zr;
(2) Fields;
(3) The semifields U(G);
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(4) The semifields V(G);
(5) The semifields U(P);
(6) The semifields Z(P,0);
(7) The semifields V(P,T'(-)).
Notice that (except for Z1, Z3, Z4 and Z7) all these semirings have a mul-
tiplicatively neutral element. Furthermore, except for Zr, fields and the
semifields Z (P, 0), the other semirings have an additively absorbing element.

4

8.10. Remark. All division semirings have at most two ideals. The
ideal-simple ones among them are just the following semirings:

(1) The two-element semirings 71, ..., Zr;
(2) Fields;

(3) Parasemifields (these are ideal-free);
(4) The semifields 8.1(4),...,(8).

8.11. Remark. Congruence-simple division semirings are just the follow-
ing ones:
(1) The two-element semirings 71, ..., Zr;
(2) Fields;
(3) Congruence-simple parasemifields (see 8.19);
(4) The semifields V(G), where G is a non-trivial commutative group.

8.12. Remark. Finite division semirings are just the following ones:

(1) The two-element semirings 71, ..., Zr;
(2) Finite fields;
(3) The semifields U(G), where G is a non-trivial finite commutative
group;
(4) The semifields V(G), where G is a non-trivial finite commutative
group.
Notice that every finite division semiring is ideal-simple.
8.13. Remark. Let S be a non-trivial semiring that is a division semiring
with respect to two different elements of S. According to 2.9, S is either a
parasemifield or a two-element semiring isomorphic to one of the semirings
Za, Zs, Ze, Zs-
8.14. Theorem. Ideal-simple commutative semirings are just the semir-
ings of one of the following five types:
1) The two-element semirings Za, . .., Zg;
2) Fields;
3) Zero multiplication rings of finite prime order;
4) Parasemifields (these are ideal-free);
5) Proper semifields (i.e., semifields that are not fields).

(
(
(
(
(

Proof. Let S be an ideal-simple commutative semiring with at least three
elements. If S is a ring, then either (2) or (3) takes place. Let S be neither a
ring nor a parasemifield. The multiplicative semigroup S(-) is not a group,
and hence it is not a division semigroup. Consequently, the set A = {a €
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S : Sa # S} is non-empty. Since S is ideal-simple, there exists an element
w € S such that Sa = {w} for every a € A. Of course, w is additively
idempotent and multiplicatively absorbing and we see that A is an ideal
of S. If A = {w}, then Sz = S for every x € S\ {w}, S is a division ring
and it follows from 8.1 and 8.9 that S is a proper semifield. Now, assume
that A =S5, i.e.,, SS = {w}. The set B =S + w is an ideal of S.

Let B =.S. For every a € S there exists an element b € S with a = b+ w;
we have a+w = b+w+w = b4+w = a. Thus w = Og is an additively neutral
element. The set C = {c € S:w € S+ c} is an ideal of S. If C' = S, then
S(+) is a group and S is a ring, a contradiction. Thus C' = {w}, so that
T+T CT,where T = S\ {w}. If R is a proper subsemigroup of 7'(+), then
RU{w} is an ideal of S, a contradiction. Consequently, T'(+) has no proper
subsemigroups, and hence |T'| =1 and |S| = 2, again a contradiction.

Next, let B = {w}. Then w is a bi-absorbing element in S. Let, for
a moment, d € S be such that S +d = S. Then d # w, d = d + e for
some e € S and e = d + f for some f € S. Clearly, e # w # f and
e+e=d+ f+e=d+ f=e Now, {w,e}is an ideal of S, {w,e} = S
and |S| = 2, a contradiction. It means that S+ d # S for every d € S. But
S +disanideal of S, S+d={w} and S+ 5 = {w}.

We have SS = {w} = S+ S. Every subset of S containing the element
w is an ideal, and therefore |S| = 2, the final contradiction. O

8.15. Theorem. Semifields are just the semirings of one of the following
seven types:

(1) The two-element semirings Za, Zs, Zg;

(2) Flields;

(3) The semifields U(G), where G is a non-trivial commutative group;
(4) The semifields V(G), where G is a non-trivial commutative group;
(5) The semifields U(P), where P is a parasemifield;

(6) The semifields Z(P,0), where P is a parasemifield;

(7) The semifields V(P,T(-)), where P is a parasemifield and the mul-
tiplicative group P(-) is a proper subgroup of a commutative group

().

Proof. Every semifield is a division semiring and thus the classitication fol-
lows from 8.1. (]

8.16. Remark. The (ideal-simple) semirings Z3, Z4, Zs, Zs, V(G)
are additively idempotent. The semifields U(P), Z(P,0) and V(P,T(-))
are additively idempotent if and only if the parasemifield P is additively
idempotent.

8.17. Remark. The following two statements are equivalent:

(A) A parasemifield is additively idempotent, provided that it is a finitely
generated semiring.
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(B’) A finitely generated ideal-simple commutative semiring is either ad-
ditively idempotent or it is finite or it is a copy of the semifield U(G)
for an infinite, finitely generated commutative group G.

8.18. Remark. One-generated ideal-simple commutative semirings are
just (copies of) the two-element semirings 71, Za, Z3, Zy, finite fields, zero
multiplication rings of finite prime order and the semifields U(G) and V(G),
where G is a non-trivial finite cyclic group. All these semirings are finite.

8.19. Theorem. Congruence-simple commutative semirings are just the
semirings of one of the following six types:
(1) The two-element semirings Zi . .., Zg;
(2) Flields;
(3) Zero multiplication rings of finite prime order;
(4) The semifields V(G), where G is a non-trivial commutative group;
(5) The semirings W (A), where A is a subsemigroup of R(+) with AN
RT #£(0#ANRT;
(6) Subsemirings S of the parasemifield Rt of positive real numbers such
that
(6a) for all a,b € S there exist ¢ € S and a positive integer n with
b+ c=na;
(6b) for all a,b,c,d € S with a # b there exist e, f € S with ae +
bf +c=af +be+d;
(6¢) for all a,b € S there exist c,d € S such that bc + d = a.

Proof. This is Theorem 10.1 of [1]. O

8.20. Remark.

(i) Every finitely generated congruence-simple commutative semiring is
either finite or additively idempotent.

(ii) One-generated congruence-simple commutative semirings are just
(copies of) the two-element semirings Z1, Za, Z3, Zy4, finite fields,
zero multiplication rings of finite prime order and the semifields
V(G), where G is a non-trivial finite cyclic group. All these semirings
are finite.
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