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Abstract. One-generated commutative division semirings are found.

The aim of this (partially expository) note is to find all one-generated
(commutative) division semirings (see Theorem 8.5). In particular, all such
semirings turn out to be finite. To achieve this goal, we have to correct
some results from [1] (especially Proposition 12.1 of [1]) and to complete
some results from [2]. Anyway, all the presented results are fairly basic and
(with two exceptions) we shall not attribute them to any particular source.

1. Introduction

A semiring is an algebraic structure with two associative binary opera-
tions (usually denoted as addition and multiplication) such that the addition
is commutative and the multiplication distributes over the addition from ei-
ther side. If the multiplication is commutative, the semiring is called so. In
the sequel, we consider only commutative semirings.

A semiring S is called

- congruence-simple if S has just two congruence relations;
- ideal-simple if S is non-trivial and I = S whenever I is an ideal of
S containing at least two elements;

- a division semiring if S is non-trivial and contains an element w
such that S \ {w} ⊆ Sa for every a ∈ S \ {w};

- a semifield if S is non-trivial and contains a multiplicatively absorb-
ing element w such that S \ {w} is a subgroup of the multiplicative
semigroup of S;

- a parasemifield if the multiplicative semigroup of S is a non-trivial
group.

We denote by N the semiring of positive integers, by N0 the semiring
of non-negative integers, by Z the ring of integers, by Q the field of ratio-
nal numbers, by Q+ the parasemifield of positive rational numbers, by Q+

0

the semifield of non-negative rational numbers, and by R the field of real
numbers. Put R+ = {a ∈ R : a > 0} and R− = {a ∈ R : a < 0}.
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Notice that all semifields and parasemifields are ideal-simple division
semirings. On the other hand, zero multiplication rings of finite odd prime
order are both congruence- and ideal-simple, but they are not division semir-
ings. Observe that every division semiring has at most two ideals.

For a semiring S, let Ida(S) = {a ∈ S : a + a = a}. Clearly, Ida(S) is
either empty or an ideal of S. The semiring S is called

- additively idempotent if Ida(S) = S;
- almost additively idempotent if the set S \ Ida(S) has at most one
element.

1.1. Lemma. Let S be an almost additively idempotent semiring and
S \ Ida(S) = {w}. Put s = w + w. Then:

(i) s ∈ Ida(S).
(ii) wa = sa for every a ∈ Ida(S).
(iii) Either w2 = w and s2 = s or else w2 = s2.

Proof. It is easy. �

1.2. Lemma. Let P be a parasemifield. Put K = {a ∈ P : a+ 1P 6= 1P }
and L = {a ∈ P : a+ 1P = 1P }. Then:

(i) K ∪ L = P and K ∩ L = ∅.
(ii) K 6= ∅.
(iii) If a ∈ L and a 6= 1P , then a−1 ∈ K.
(iv) L+ L ⊆ L and LL ⊆ L.
(v) If L 6= ∅, then L is a sebsemiring of P .
(vi) K + L ⊆ K.
(vii) P is additively idempotent if and only if 1P ∈ L.
(viii) If P is additively idempotent, then K + P ⊆ K.
(ix) If P is additively cancellative, then L = ∅.

Proof. It is easy. �

1.3. Lemma. Let P be a parasemifield and e ∈ P . Put Ke = Ke and
Le = Le, where K and L are as in 1.2. Then:

(i) Ke = {a ∈ P : a+ e 6= e} and Le = {a ∈ P : a+ e = e}.
(ii) Ke ∪ Le = P and Ke ∩ Le = ∅.
(iii) Ke 6= ∅.
(iv) If a ∈ Le and a 6= e, then a−1e2 ∈ Ke.
(v) Le + Le ⊆ Le and LeLe ⊆ Lee = Le2.
(vi) Ke + Le ⊆ Ke.
(vii) P is additively idempotent if and only if e ∈ Le.
(viii) If P is additively idempotent, then Ke + P ⊆ Ke.
(ix) If P is additively cancellative, then Le = ∅.

Proof. It follows from 1.2. �
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Denote by P the variety of universal algebras with two binary operations
(addition and multiplication) and one unary operation x−1, determined by
the equations of commutative semirings and the equations of (multiplica-
tively denoted) commutative groups. Clearly, there is a one-to-one corre-
spondence between parasemifields and the non-trivial algebras from P. In
this paper we prefer to consider parasemifields as special semirings, rather
than elements of P. However, there could be a confusion if we need to speak
about generating subsets of parasemifields. We say that a parasemifield P
(or any semiring) is generated by a subset X as a semiring if P is the least
subsemiring of P containing X. We say that a parasemifield P is generated
by a subset X as a parasemifield if P is the least subparasemifield of P
containing X.

Similarly, we need to distinguish between subsets of a ring generating the
given ring as a subsemiring or as a subring.

1.4. Lemma. Let P be a parasemifield. Then P is not one-generated as
a semiring.

Proof. SinceP is a variety, there exists a one-generated free object F inP. It
is easy to see that F is isomorphic to the parasemifield Q+ (considered as an
element ofP). Also, it is easy to see thatQ+ is congruence-simple. From this
it follows that Q+ is, up to isomorphism, the only non-trivial one-generated
algebra in P. Of course, Q+ is one-generated as a parasemifield. On the
other hand, it is easy to see that it is not one-generated as a semiring. �

The following folklore type result is usually attributed to I. Kaplansky.

1.5. Lemma. Let A be an infinite field. Then A is not finitely generated
as a semiring.

2. Auxiliary results on commutative semigroups

In this section let S be a non-trivial commutative semigroup (denoted
multiplicatively), containing an element w such that T = S \ {w} ⊆ Sa for
every a ∈ T . (Clearly, T ⊆ SS.)

2.1. Lemma. If w = 1S ∈ TT , then S is a group.

Proof. We have 1S = ab for some a, b ∈ T . If c ∈ T \ {a}, then a = cd for
some c, d ∈ T and 1S = cdb. Thus every element of S has an inverse in S,
which means that S is a group. �

2.2. Lemma. If w = 1S /∈ TT , then T is a subgroup of S.

Proof. The result is clear for |T | = 1. If a, b are two distinct elements of T ,
then ac = b and bd = a for some c, d ∈ T ; we get acd = a and then obviuosly
cd = 1T ; now it is clear that T is a subgroup of S. �

2.3. Lemma. If w 6= 1S and wa = a for all a ∈ T , then w2 = 1T ∈ T and
T is a subgroup of S.
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Proof. Since w 6= 1S , we have w2 ∈ T and then w2 = 1T . Furthermore,
bc = wbc for all b, c ∈ T and it follows that bc ∈ T . Now it is easy to see
that T is a subgroup of S. �

2.4. Lemma. If wa0 6= a0 for at least one a0 ∈ T , then 1T ∈ T .

Proof. We have a0 = a0b0 for some b0 ∈ T . For every c ∈ T there is a d ∈ S
with c = a0d and then cb0 = c. Thus b0 = 1T ∈ T . �

2.5. Lemma. If wa0 6= a0 for at least one a0 ∈ T and w1T = a1 ∈ T ,
then a1 6= 1T , wa = a1a for every a ∈ T , w2 = a21, SS ⊆ T and T is a
subgroup of S.

Proof. We have wa = w1Ta = a1a for every a ∈ T . Since wa0 6= a0, we
have a1 6= 1T . If b, c ∈ T , then bc = bc1T implies bc ∈ T and it follows that
ST ⊆ T .

For every a ∈ T there is a d ∈ S with ad = 1T . If d = w, then 1T = aw =
a1a and we see that every element of T is invertible. Thus T is a group.
Finally, a21 6= a1 and w21T = wa1 = a21. Thus w

2 = a21. �

2.6. Lemma. If wa0 6= a0 for at least one a0 ∈ T , w1T = w and 1T ∈ Sw,
then S is a group.

Proof. We have 1T = 1S and the rest is clear. �

2.7. Lemma. If wa0 6= a0 for at least one a0 ∈ T , w1T = w and 1T /∈ Sw,
then Sw = {w} and T is a subgroup of S.

Proof. We have 1T = 1S and T is the set of invertible elements of S. Then,
of course, T is a subgroup of S. Since w is not invertible, we have Sw =
{w}. �

2.8. Proposition. Let S be a non-trivial commutative semigroup and
w ∈ S be an element such that T = S \ {w} ⊆ Sa for every a ∈ T . Then
either S is a group, or else T is a subgroup of S and at least one of the
following three cases takes place:

(1) w = 1S;
(2) w1T = e ∈ T , w2 = e2 and wa = ea for all a ∈ T ;
(3) wS = {w}.

Proof. Combine the preceding seven lemmas. �

2.9. Remark. If S is either a group or the two-element semilattice, then
for an arbitrary element w ∈ S the pair S,w serves as an example for the
above investigated situation; in the semilattice case, with one choice of w
we get the case 2.8(1) and with the other one the case 2.8(3). If S is neither
a group nor the two-element semilattice, then the element w is unique and
only one of the three cases 2.8(1),(2),(3) can take place.
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3. Division semirings – classification

Let S be a division semiring and and let w ∈ S be such that T = S\{w} ⊆
Sa for every a ∈ T . If follows from 2.8 that the pair (S,w) belongs to exactly
one of the following four types:

(I) S is a parasemifield;
(II) T is a subgroup of S(·) and w = 1S ;
(III) T is a subgroup of S(·), w1T = e ∈ T , w2 = e2 and wa = ea for all

a ∈ T ;
(IV) T is a subgroup of S(·) and w is a multiplicatively absorbing element

of S.

We say that S is of type (X) if there exists an element w ∈ S such that the
pair (S,w) is of type (X). Clearly, the type of a division semiring is uniquely
determined, with just four exceptions: the two-element division semirings
Z2, Z5, Z6, Z8 (see 4.1) are of type (II) and of type (IV) at the same time.

If S is a parasemifield, then S is infinite and w can be any element of S.
If S is not a parasemifield, then the element w is uniquely determined by S
together with the specification of the type of S; and if |S| ≥ 3, it is uniquely
determined by S.

3.1. Example. Let S be a zero multiplication ring of finite prime
order. Then S is both congruence- and ideal-simple, but S is not a division
semiring.

3.2. Example. Let S = {n
√
2 − m : n,m ∈ N0, n + m ≥ 1}. Define

operations ⊕ and ⊙ on S by a ⊕ b = min(a, b) and a ⊙ b = a + b. Then
S = S(⊕,⊙) is an additively idempotent congruence-simple semiring that
is not ideal-simple and that is not a division semiring.

3.3. Example. The product S = Q+ ×Q+ is a parasemifield, and hence
S is an ideal-simple division semiring. Of course, S not congruence-simple.

3.4. Example. Let G be a commutative group (denoted multiplicatively),
o /∈ G and S = G ∪ {o}. Put x + y = o for all x, y ∈ S and extend the
multiplication of G by xo = ox = o for all x ∈ S. Then S becomes a division
semiring (moreover, a semifield) and o is the only additive idempotent of S.
If G is non-trivial, then S is not congruence-simple.

3.5. Example. Let m be a non-negative integer. Put S = Z∪ {w} where
w is an element not belonging to Z and define two binary commutative
operations ⊕ and ⊙ on S as follows: a⊙ b = a+ b for all a, b ∈ Z; w⊙x = x
for all x ∈ S; a⊕b = min(a, b) for all a, b ∈ Z; w⊕a = min(0, a) for all a ∈ Z

with a < m; w⊕a = w for all a ∈ Z with a ≥ m; finally, we define the element
w ⊕ w to be either 0 or w. We obtain two division semirings S = S(⊕,⊙)
(they differ only by the value of w⊕w). These division semirings are neither
congruence- nor ideal-simple; they are almost additively idempotent; only
that one with w ⊕ w = w is additively idempotent.
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4. A few constructions

4.1. Construction. The following eight semirings Z1, . . . , Z8 are (up to
isomorphism) all two-element semirings:

+ 0 1

0 0 0
1 0 0

· 0 1

0 0 0
1 0 0

+ 0 1

0 0 0
1 0 0

· 0 1

0 0 0
1 0 1

Z1 Z2

+ 0 1

0 0 0
1 0 1

· 0 1

0 0 0
1 0 0

+ 0 1

0 0 0
1 0 1

· 0 1

0 1 1
1 1 1

Z3 Z4

+ 0 1

0 0 0
1 0 1

· 0 1

0 0 1
1 1 1

+ 0 1

0 0 0
1 0 1

· 0 1

0 0 0
1 0 1

Z5 Z6

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 0

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

Z7 Z8

All of them are congruence- and ideal-simple division semirings.

4.2. Construction. Let P be a parasemifield and let A be a subset of P
such that A + P ⊆ A, B + B ⊆ B and 1P + b = 1P for all b ∈ B, where
B = P \A.
4.2.1. Lemma.

(i) If B 6= ∅, then B is a subsemiring of P .
(ii) If b ∈ B and b 6= 1P , then b−1 ∈ A.
(iii) A is non-empty.
(iv) If 1P ∈ B, then P is additively idempotent.

Proof. (i) Let b, c ∈ B. We have bc+ b+ c = b(c+ 1P ) + c = b+ c ∈ B and
hence bc /∈ A.

(ii) If b−1 ∈ B then b−1 = b−1(1P + b) = b−1 + 1P = 1P , so that b = 1P ,
a contradiction.

(iii) follows from (ii) and (iv) is evident. �
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Let w /∈ P and S = P ∪ {w}. Define addition and multiplication on S
(extending the operations on P ) by w = 1S (multiplicatively neutral in S),
w + a = a + w = 1P + a for every a ∈ A and w + b = b + w = w for every
b ∈ B. It remains to define the element w + w = 2w. We have two options.

(1) Assume that P is additively idempotent and put 2w = w. In this case,
S will be denoted by Z(P,A, 1). It is easy to check that S = Z(P,A, 1) is
an additively idempotent division semiring, (S,w) is of type (II), P is a
subparasemifield of S and P is an ideal of S.

(2) With P arbitrary, put 2w = 1P + 1P . In this case, S will be denoted
by Z(P,A, 2). It is easy to check that S = Z(P,A, 2) is a division semiring,
(S,w) is of type (II), P is a subparasemifield of S, P is an ideal of S and S
is not additively idempotent.

4.2.2. Lemma. Let S = Z(P,A, 1).

(i) S and P are the only ideals of S.
(ii) The semiring S is not ideal-simple.

Proof. It is obvious. �

4.2.3. Lemma. Let S = Z(P,A, 1).

(i) The equivalence ρ = idS ∪ {(w, 1P ), (1P , w)} is a congruence of the
semiring S and S/ρ ≃ P .

(ii) The semiring S is not congruence-simple.

Proof. It is easy. �

4.2.4. Lemma. Let S = Z(P,A, 1) and let r be a congruence of the
semiring S such that r ↾ P = idP . Then either r = idS or r = ρ (see 4.2.3).

Proof. If r 6= idS , then (w, e) ∈ r for some e ∈ P . Now, (c, ce) = (cw, ce) ∈ r
for every c ∈ P , and hence c = ce and e = 1P . Thus r = ρ. �

4.2.5. Lemma. Let S = Z(P,A, 1) where B 6= ∅ and r be a congruence
of the semiring S such that P × P ⊆ r. Then r = S × S.

Proof. There are a ∈ A and b ∈ B with (a, b) ∈ r. Then (1P + a, w) =
(a+ w, b+ w) ∈ r and r = S × S. �

4.2.6. Lemma. Let S = Z(P,A, 1) where B = ∅.
(i) η = (P × P ) ∪ {(w,w)} is a congruence of S and S/η ≃ Z6.
(ii) If r is a congruence of S with P × P ⊆ r, then either r = η or

r = S × S.

Proof. It is easy. �

4.2.7. Proposition. Let S = Z(P,A, 1) and assume that the parasemifield
P is congruence-simple. Then the semiring S is subdirectly irreducible and:

(i) If B 6= ∅, then idS, ρ and S × S are the only congruences of S; we
have idS ⊆ ρ ⊆ S × S and S/ρ ≃ P .
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(ii) If B = ∅, then idS, ρ, η and S × S are the only congruences of S;
we have idS ⊆ ρ ⊆ η ⊆ S × S, S/ρ ≃ P and S/η ≃ Z6.

Proof. Combine the previous four lemmas. �

4.2.8. Proposition. Let S = Z(P,A, 1).

(i) The semiring S is finitely generated if and only if P is finitely gen-
erated (as a semiring).

(ii) S is not one-generated.

Proof. It is easy. �

4.2.9. Lemma. Let S = Z(P,A, 2).

(i) S and P are the only ideals of S.
(ii) The semiring S is not ideal-simple.

Proof. It is obvious. �

4.2.10. Lemma. Let S = Z(P,A, 2).

(i) The equivalence ρ = idS ∪ {(w, 1P ), (1P , w)} is a congruence of the
semiring S and S/ρ ≃ P .

(ii) The semiring S is not congruence-simple.

Proof. It is easy. �

4.2.11. Proposition. Let S = Z(P,A, 2) and assume that the parasemi-
field P is congruence-simple. Then the semiring S is subdirectly irreducible
and:

(i) If B 6= ∅, then idS, ρ and S × S are the only congruences of S; we
have idS ⊆ ρ ⊆ S × S and S/ρ ≃ P .

(ii) If B = ∅, then idS, ρ, η and S × S are the only congruences of S;
we have idS ⊆ ρ ⊆ η ⊆ S × S, S/ρ ≃ P and S/η ≃ Z2.

Proof. It is similar to the proof of 4.2.7. �

4.2.12. Proposition. Let S = Z(P,A, 2) and let R be the subsemiring of
S generated by the element w.

(i) If 1P ∈ A, then R = {w, 2P , 3P , 4P , . . . }.
(ii) If P is additively idempotent (e.g., 1P ∈ B), then R = {w, 1P }.
(iii) If P is not additively idempotent, then 1P /∈ R.

Proof. (i) and (ii) are easy. In order to prove (iii), it is sufficient to prove
that for any n ≥ 2, the element nP (the sum of n copies of 1P ) is different
from 1P . This is clear for n = 2. Let n ≥ 3 and suppose that nP = 1P .
Then nP +(n−2)P = 1P +(n−2)P , i.e., a+a = a where a = 1P +(n−2)P .
We see that P contains an additively idempotent element. But then all
elements of P are additively idempotent, a contradiction. �

4.2.13. Proposition. Let S = Z(P,A, 2).
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(i) The semiring S is finitely generated if and only if P is finitely gen-
erated (as a semiring).

(ii) S is not one-generated.

Proof. It is easy. �

4.2.14. Lemma. Let S = Z(P,A, 2). The semiring S is almost additively
idempotent if and only if P is additively idempotent.

Proof. It is obvious. �

4.3. Construction. Let P be a parasemifield, e ∈ P , and let A be a
subset of P such that A + P ⊆ A, B + B ⊆ B and e + b = e for all b ∈ B,
where B = P \A.
4.3.1. Lemma.

(i) BB ⊆ Be.
(ii) If b ∈ B and b 6= e, then b−1e2 ∈ A.
(iii) A is non-empty.
(iv) If e ∈ B, then P is additively idempotent.

Proof. (i) Let b, c ∈ B. We have bc = ae for some a ∈ P . Suppose that
a ∈ A. Then (b+ c)e = b(c+ e) + ce = ae+ be+ ce = (a+ b+ c)e, so that
b+ c = a+ b+ c ∈ A ∩B, a contradiction. Thus a ∈ B.

(ii) If b−1e2 ∈ B then b−1e2 = b−1e(e+ b) = b−1e2 + e = e, so that b = e.
(iii) follows from (ii) and (iv) is evident. �

Let w /∈ P and S = P ∪ {w}. Define addition and multiplication on S
(extending the operations on P ) by w2 = e2, wc = cw = ec for every c ∈ P ,
w + a = a + w = e + a for every a ∈ A and w + b = b + w = w for every
b ∈ B. It remains to define the element 2w. We have two options.

(1) Assume that P is additively idempotent and put 2w = w. In this case,
S will be denoted by Z(P,A, e, 1). It is easy to check that S = Z(P,A, e, 1)
is an additively idempotent division semiring, (S,w) is of type (III), P is a
subparasemifield of S and P is an ideal of S.

(2) With P arbitrary, put 2w = 2e. In this case, S will be denoted by
Z(P,A, e, 2). It is easy to check that S = Z(P,A, e, 2) is a division semiring,
(S,w) is of type (III), P is a subparasemifield of S, P is an ideal of S and
S is not additively idempotent.

4.3.2. Lemma. Let S = Z(P,A, e, 1).

(i) S and P are the only ideals of S.
(ii) The semiring S is not ideal-simple.

Proof. It is obvious. �

4.3.3. Lemma. Let S = Z(P,A, e, 1).

(i) The equivalence ρ = idS ∪ {(w, e), (e, w)} is a congruence of the
semiring S and S/ρ ≃ P .

(ii) The semiring S is not congruence-simple.
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Proof. It is easy. �

4.3.4. Proposition. Let S = Z(P,A, e, 1) and assume that the parasemi-
field P is congruence-simple. Then the semiring S is subdirectly irreducible
and:

(i) If B 6= ∅, then idS, ρ and S × S are the only congruences of S; we
have idS ⊆ ρ ⊆ S × S and S/ρ ≃ P .

(ii) If B = ∅, then idS, ρ, η = (P × P ) ∪ {(w,w)} and S × S are the
only congruences of S; we have idS ⊆ ρ ⊆ η ⊆ S × S, S/ρ ≃ P and
S/η ≃ Z3.

Proof. It is similar to that of 4.2.7 or 4.2.11. �

4.3.5. Lemma. Let S = Z(P,A, e, 1); denote by R the subsemiring of S
generated by the element w and by R1 the subsemiring of P generated by e.
Then R ⊆ R1 ∪ {w}.
Proof. It is easy. �

4.3.6. Proposition. Let S = Z(P,A, e, 1).

(i) The semiring S is finitely generated if and only if P is finitely gen-
erated (as a semiring).

(ii) S is not one-generated.

Proof. (i) is easy and (ii) follows from 1.4. �

4.3.7. Lemma. Let S = Z(P,A, e, 2).

(i) S and P are the only ideals of S.
(ii) The semiring S is not ideal-simple.

Proof. It is obvious. �

4.3.8. Lemma. Let S = Z(P,A, e, 2).

(i) The equivalence ρ = idS ∪ {(w, e), (e, w)} is a congruence of the
semiring S and S/ρ ≃ P .

(ii) The semiring S is not congruence-simple.

Proof. It is easy. �

4.3.9. Proposition. Let S = Z(P,A, e, 2) and assume that the parasemi-
field P is congruence-simple. Then the semiring S is subdirectly irreducible
and:

(i) If B 6= ∅, then idS, ρ and S × S are the only congruences of S; we
have idS ⊆ ρ ⊆ S × S and S/ρ ≃ P .

(ii) If B = ∅, then idS, ρ, η = (P × P ) ∪ {(w,w)} and S × S are the
only congruences of S; we have idS ⊆ ρ ⊆ η ⊆ S × S, S/ρ ≃ P and
S/η ≃ Z1.

Proof. It is similar to that of 4.3.4. �
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4.3.10. Lemma. Let S = Z(P,A, e, 2); denote by R the subsemiring of S
generated by the element w and by R1 the subsemiring of P generated by e.
Then R ⊆ R1 ∪ {w}.
Proof. It is easy. �

4.3.11. Proposition. Let S = Z(P,A, e, 2).

(i) The semiring S is finitely generated if and only if P is finitely gen-
erated (as a semiring).

(ii) S is not one-generated.

Proof. (i) is easy and (ii) follows from 1.4. �

4.3.12. Lemma. Let S = Z(P,A, e, 2). The semiring S is almost
additively idempotent if and only if P is additively idempotent.

Proof. It is obvious. �

4.4. Construction. Let P be a parasemifield, 0 /∈ P , and put S = P∪{0}.
Define addition and multiplication on S (extending the operations on P ) by
v0 = 0v = 0 and v + 0 = 0 + v = v for all v ∈ S (so that 0 is additively
neutral and multiplicatively absorbing in S). We denote S constructed in
this way by Z(P, 0). One can easily check that S = Z(P, 0) is an ideal-simple
division semiring, (S, 0) is of type (IV) and P is a subparasemifield of S. Of
course, S is a semifield and 1P = 1S .

4.4.1. Lemma. Let S = Z(P, 0).

(i) If r is a congruence of P , then r ∪ {(0, 0)} is a congruence of S.
(ii) η = (P × P ) ∪ {(0, 0)} is a congruence of S and S/η ≃ Z5.

Proof. It is obvious. �

4.4.2. Lemma. Z(P, 0) is not congruence-simple.

Proof. It follows from 4.4.1. �

4.4.3. Proposition. Let S = Z(P, 0) and assume that P is congruence-
simple. Then S is subdirectly irreducible and idS, η, S × S are the only
congruences of S.

Proof. It is easy. �

4.4.4. Lemma. Z(P, 0) is additively idempotent if and only P is additively
idempotent.

Proof. It is obvious. �

4.4.5. Proposition. Let S = Z(P, 0).

(i) S is finitely generated if and only if P is finitely generated.
(ii) S is neither one- nor two-generated.

Proof. (i) is easy and (ii) follows from 1.4. �
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4.5. Construction. Let G be a commutative group (denoted multiplica-
tively), o /∈ G and S = G ∪ {o}. Define addition and multiplication on S
(extending the multiplication on G) by xo = ox = x and x + y = o for all
x, y ∈ S. We denote S constructed in this way by U(G). One can easily
check that S = U(G) is a division semiring and (S, o) is of type (IV); if
|G| = 1 then S ≃ Z2. Of course, S is a semifield.

4.5.1. Lemma. Let S = U(G).

(i) η = (G×G) ∪ {(o, o)} is a congruence of S and S/η ≃ Z2.
(ii) If |G| ≥ 2, then S is not congruence-simple.

Proof. It is easy. �

4.5.2. Proposition. Let S = U(G) where G is a finite group of prime
order. Then idS, η and S × S are the only congruences of S.

Proof. It is easy. �

4.5.3. Proposition. Let S = U(G).

(i) S is finitely generated if and only if the group G is finitely generated.
(ii) S is one-generated if and only if G is a finite cyclic group.

Proof. It is easy. �

4.5.4. Lemma. let S = U(G).

(i) S is not additively idempotent.
(ii) S is almost additively idempotent if and only if |G| = 1. (Then

S ≃ Z2.)

Proof. It is obvious. �

4.6. Construction. Let G be a commutative group (denoted multiplica-
tively), o /∈ G and S = G ∪ {o}. Define addition and multiplication on S
(extending the multiplication on G) by xo = ox = o, x+y = o and x+x = x
for all x, y ∈ S with x 6= y. We denote S constructed in this way by V (G).
One can easily check that S = V (G) is an additively idempotent division
semiring and (S, o) is of type (IV); if |G| = 1 then S ≃ Z6. Of course, S is
a semifield.

4.6.1. Proposition. V (G) is congruence-simple.

Proof. It is easy. �

4.6.2. Proposition. Let S = V (G).

(i) S is finitely generated if and only if the group G is finitely generated.
(ii) S is one-generated if and only if G is a non-trivial finite cyclic group.

Proof. It is easy. �
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4.7. Construction. Let P be a parasemifield, o /∈ P , and put S = P∪{o}.
Define addition and multiplication on S (extending the operations on P ) by
vo = ov = v + o = o + v = o for all v ∈ S (so that o is a bi-absorbing
element). We denote S constructed in this way by U(P ). One can easily
check that S = U(P ) is a division semiring, (S, o) is of type (IV) and S is a
semifield.

4.7.1. Lemma. Let S = U(P ).

(i) If r is a congruence of P , then r ∪ {(o, o)} is a congruence of S.
(ii) η = (P × P ) ∪ {(o, o)} is a congruence of S and S/η ≃ Z6.

Proof. It is easy. �

4.7.2. Lemma. U(P ) is not congruence-simple.

Proof. It follows from 4.7.1. �

4.7.3. Proposition. Let S = U(P ) and assume that P is congruence-
simple. Then S is subdirectly irreducible and idS, η, S × S are the only
congruences of S.

Proof. It is easy. �

4.7.4. Lemma. U(P ) is additively idempotent if and only P is additively
idempotent.

Proof. It is obvious. �

4.7.5. Proposition. Let S = U(P ).

(i) S is finitely generated if and only if P is finitely generated.
(ii) S is neither one- nor two-generated.

Proof. (i) is easy and (ii) follows from 1.4. �

4.8. Construction. Let P be a parasemifield and let T (·) be a com-
mutative group such that P (·) is a proper subgroup of T (·). Let o /∈ T
and S = T ∪ {o}. Define addition and multiplication on S (extending the
operations on P and the multiplication on T ) by

vo = ov = v + o = o+ v = o for every v ∈ S,
a+ b = o for all a, b ∈ T such that a−1b /∈ P ,
a+ b = (1T + a−1b)a ∈ T for all a, b ∈ T such that a−1b ∈ P .

Observe that if a−1b ∈ P then b−1a ∈ P , (1T + a−1b)b−1a = b−1a+ 1T and
a+ b = (1T + a−1b)a = (1T + b−1a)b. It is easy to check that S is a divisible
semiring. It will be denoted by V (P, T (·)). Clearly, (S, o) is of type (IV),
S is a semifield and P is a subparasemifield of S.

4.8.1. Lemma. Let S = V (P, T (·)). Define a relation σ on S by
(x, y) ∈ σ if and only if either x = y or else x, y ∈ T and x−1y ∈ P . Then
σ is a congruence of the semiring S and S/σ ≃ V (T (·)/P ).

Proof. It is easy. �
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4.8.2. Lemma. The semiring V (P, T (·)) is not congruence-simple.

Proof. Use 4.8.1. �

4.8.3. Remark. Let S = V (P, T (·)).
(i) For every congruence α of the parasemifield P we can construct a

congruence β = β(α) such that α = β ∩ (P × P ) as follows. Put R = {a ∈
P : (a, 1S) ∈ α}, so that R is a subgroup of P (·). Now, put β = α1∪{(o, o)}
where α1 = {(a, b) : a, b ∈ T, a−1b ∈ R}. Clearly, β is a congruence of the
multiplicative semigroup S(·). If (a, b) ∈ β where a, b ∈ T and c ∈ T is an
element such that a−1c /∈ P , then b−1c /∈ P , since a−1b ∈ P , and we have
(a + c, b + c) = (o, o) ∈ β. If b−1c /∈ P , the proof is by symmetry. Finally,
if a−1c ∈ P and b−1c ∈ P then (c−1a, c−1b) ∈ α, (1S + c−1a, 1S + c−1b) ∈ α
and (a + c, b + c) = ((1S + c−1a)c, (1S + c−1b)c) ∈ β. It follows that β is a
congruence of the semiring S. Clearly, α = β ∩ (P × P ).

(ii) Let us prove that every congruence β of S other than S × S can be
obtained as β(α) for some congruence α of P . Clearly, β = β1∪{(o, o)} where
β1 = β ∩ (T × T ) is a congruence of the group T (·). Put α = β ∩ (P × P ).
Clearly, α is a congruence of the parasemifield P . Put R = {a ∈ T : (a, 1S) ∈
β}. Then R is a subgroup pf T (·) and, if a ∈ R \ P , then a + 1S = o from
which we get (o, 1S+1S) ∈ β, a contradiction. Thus R ⊆ P and consequently
β = β(α).

(iii) It follows that the congruence lattice of S is isomorphic to the con-
gruence lattice of P with a new top element added. In particular, S is
subdirectly irreducible if and only if P is. If P is congruence-simple, then
idS , σ (see 4.8.1) and S × S are the only congruences of the semiring S.

4.8.4. Lemma. The semiring V (P, T (·)) is additively idempotent if and
only if P is additively idempotent.

Proof. It is easy. �

4.8.5. Lemma. Let S = V (P, T (·)) and let M be a generating subset of
the semiring S. Then the set N = M ∩ T is non-empty and generates S, as
well.

Proof. N is non-empty, since S 6= {o}. Denote by S1 the subsemiring of S
generated by N . If o /∈ S1, then S1 = T and o = 1S + a ∈ S1 for some
a ∈ T \ P , a contradiction. Thus o ∈ S1 and S1 = S. �

4.8.6. Lemma. Let S = V (P, T (·)) and let N ⊆ T be a generating subset
of S. Then the factor-group T (·)/P is generated by the set {aP : a ∈ N} of
cosets as a semigroup.

Proof. Let b ∈ T . Then b = b1 + · · · + bn for some elements b1, . . . , bn
(n ≥ 1) belonging to the subsemigroup A of T (·) generated by N . For
every i = 1, . . . , n we have bi = b1ci for some ci ∈ P , and so b = b1c where
c = c1 + · · ·+ cn ∈ P . Then bP = b1P and the rest is clear. �
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4.8.7. Lemma. Let S = V (P, T (·)) and let N be a subset of T such that
the factor-group T (·)/P is generated by {aP : a ∈ N} as a semigroup. If A
is the subsemigroup of T (·) generated by N , then T = AP .

Proof. It is easy. �

4.8.8. Lemma. Let S = V (P, T (·)) and let N ⊆ T be a generating subset
of S. Denote by A the subsemigroup of T (·) generated by N . Then:

(i) B = AA−1 is a subgroup of T (·) and B is generated by N ∪N−1 as
a semigroup.

(ii) P is generated by the subgroup C = B ∩ P of B as a semiring.

Proof. (i) is obvious.
(ii) Let a ∈ P . We have a = a1 + · · · + an for some n ≥ 1 and elements

ai ∈ A. For every i we have ai = bia1 for some bi ∈ C, so that a = ba1
where b = b1 + · · ·+ bn. Of course, a, b ∈ P , and so a1 = ab−1 ∈ A∩P = C.
Consequently, the elements ai = bia1 belong to C. �

4.8.9. Proposition. S = V (P, T (·)) is a finitely generated semiring if and
only if P is a finitely generated semiring and T (·)/P is a finitely generated
group.

Proof. The direct implication follows from 4.8.5, 4.8.6 and 4.8.8, taking into
account the following two well-known facts: any subgroup of a finitely gen-
erated commutative group is finitely generated; if a commutative group is
finitely generated, then it is finitely generated as a semigroup. The converse
follows from 4.8.7. �

4.8.10. Proposition. V (P, T (·)) is not a one-generated semiring.

Proof. Put S = V (P, T (·)) and suppose that S is generated by a single
element s. Clearly, s ∈ T and s /∈ P . According to 4.8.6, the factor-group
T (·)/P is a (non-trivial) finite cyclic group, and so T (·)/P ≃ Zm(+) for
some m ≥ 2. It follows that am ∈ P for every a ∈ T .

Take a ∈ P . We have a = l1s
k1 + · · · + lns

kn for some n ≥ 1, li ≥ 1,
1 ≤ k1 < k2 < · · · < kn. Since sk1 + ski 6= o, ski−k1 ∈ P and m divides
ki − k1. Furthermore, as−k1 = l11S + l2s

k2−k1 + · · ·+ lns
kn−k1 ∈ P , sk1 ∈ P

andm divides k1. Consequently, m divides all the numbers k1, . . . , kn and we
conclude that the semiring P is generated by the element sm, a contradiction
with 1.4. �

4.9. Construction. Let A be a subsemigroup of the additive group R(+)
of real numbers such that A ∩R+ 6= ∅ 6= A ∩R−. Define operations ⊕ and
⊙ on A by a⊕ b = min(a, b) and a⊙ b = a+ b. It is easy to check that with
respect to these operations, the set A becomes an additively idempotent
semiring. This semiring will be denoted by W (A). According to Lemma
5.1.1 of [1], W (A) is congruence-simple.

4.9.1. Lemma. The following conditions are equivalent:
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(i) W (A) is ideal-simple;
(ii) W (A) is a division semiring;
(iii) W (A) is a parasemifield;
(iv) A is a subgroup of R(+).

Proof. It is easy. �

4.9.2. Lemma.

(i) W (A) is a finitely generated semiring if and only if A is a finitely
generated semigroup.

(ii) W (A) is not one-generated.

Proof. It is easy. �

5. Division semirings of type (II)

In this section let S be a division semiring that is of type (II) with respect
to an element w. That is, w = 1S ∈ S and T = S \ {1S} is a subgroup of
the multiplicative semigroup S(·).
5.1. Lemma. If |T | = 1, then S is isomorphic to one of the semirings
Z2, Z5, Z6, Z8.

Proof. See 4.1. �

5.2. Lemma. If |T | ≥ 2, then T is a subparasemifield of S.

Proof. T (·) is a non-trivial group. If a, b ∈ T are such that a+ b = 1S , then
1S = a + b = a1T + b1T = (a + b)1T = 1S1T = 1T , a contradiction. Thus
T + T ⊆ T and T is a parasemifield. �

5.3. Lemma. If a ∈ T is such that 1S + a ∈ T , then 1S + a = 1T + a.

Proof. 1S + a = (1S + a)1T = 1S1T + a1T = 1T + a. �

5.4. Lemma. If a ∈ T is such that 1S + a = 1S, then 1T + a = 1T .

Proof. We have 1T = 1T 1S = 1T (1S + a) = 1T 1S + 1Ta = 1T + a. �

5.5. Lemma.

(i) If 1S + 1S = 1S, then S is additively idempotent.
(ii) If 1S + 1S ∈ T , then 1S + 1S = 1T + 1T .

Proof. (i) is obvious. If 1S + 1S = a ∈ T , then ab = b + b for every b ∈ T .
In particular, a = a1T = 1T + 1T . �

Put A = {a ∈ T : 1S + a = 1T + a} and B = {b ∈ T : 1S + b = 1S}.
5.6. Lemma.

(i) A ∪B = T and A ∩B = ∅.
(ii) A+ T ⊆ A.
(iii) B +B ⊆ B.
(iv) 1T + b = 1T for every b ∈ B.
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Proof. Use 5.3 and 5.4. �

5.7. Proposition. Precisely one of the following four cases takes place:

(1) S is isomorphic to either Z5 or Z6 and is additively idempotent;
(2) S is isomorphic to either Z2 or Z8 and S is not additively idempotent

(but is almost additively idempotent);
(3) T is a subparasemifield of S, S ≃ Z(T,A, 1) and S is additively

idempotent;
(4) T is a subparasemifield of S, S ≃ Z(T,A, 2) and S is not additively

idempotent; it is almost additively idempotent if and only it T is
idempotent.

Proof. Combine 5.5, 5.6 and 4.2. �

5.8. Corollary. The following conditions are equivalent:

(i) S is congruence-simple;
(ii) S is ideal-simple;
(iii) |S| = 2.

5.9. Corollary. S is a one-generated semiring if and only if it is isomor-
phic to either Z2 or Z8.

6. Division semirings of type (III)

In this section let S be a division semiring that is of type (III) with
respect to an element w. That is, w ∈ S, T = S \ {w} is a subgroup of the
multiplicative semigroup S(·), w1T = e ∈ T , w2 = e2 and wa = ea for every
a ∈ T .

6.1. Lemma. If |T | = 1, then S is isomorphic to one of the semirings
Z1, Z3, Z4, Z7.

Proof. See 4.1. �

6.2. Lemma. If |T | ≥ 2, then T is a subparasemifield of S.

Proof. It remains to show that T+T ⊆ T . If a, b ∈ T are such that a+b = w,
then w = a+ b = a1T + b1T = (a+ b)1T = w1T = e, a contradiction. �

6.3. Lemma. If a ∈ T is such that w + a ∈ T , then w + a = e+ a.

Proof. w + a = (w + a)1T = w1T + a1T = e+ a. �

6.4. Lemma. If b ∈ T is such that w + b = w, then e+ b = e.

Proof. We have e = w1T = (w + b)1T = w1T + b1T = e+ b. �

6.5. Lemma. If w + w ∈ T , then w + w = e+ e.

Proof. We have w + w = (w + w)1T = w1T + w1T = e+ e. �

6.6. Lemma. If w + w = w, then S is additively idempotent.
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Proof. We have e = w1T = (w+w)1T = w1T +w1T = e+ e. Consequently,
a = a+ a for all a ∈ T . �

Put A = {a ∈ T : w + a = e+ a} and B = {b ∈ T : w + b = w}.
6.7. Lemma.

(i) A ∪B = T and A ∩B = ∅.
(ii) A+ T ⊆ A.
(iii) B +B ⊆ B.
(iv) e+ b = e for every b ∈ B.

Proof. Use 6.3 and 6.4. �

6.8. Proposition. Precisely one of the following four cases takes place:

(1) S is isomorphic to either Z3 or Z4 and is additively idempotent;
(2) S is isomorphic to either Z1 or Z7 and S is not additively idempotent

(but is almost additively idempotent);
(3) T is a subparasemifield of S, S ≃ Z(T,A, e, 1) and S is additively

idempotent;
(4) T is a subparasemifield of S, S ≃ Z(T,A, e, 2) and S is not additively

idempotent; it is almost additively idempotent if and only it T is
idempotent.

Proof. Combine 6.4, 6.5, 6.7 and 4.3. �

6.9. Corollary. The following conditions are equivalent:

(i) S is congruence-simple;
(ii) S is ideal-simple;
(iii) |S| = 2.

6.10. Corollary. S is a one-generated semiring if and only if it is
isomorphic to one of Z1, Z3, Z4, Z7.

7. Division semirings of type (IV)

In this section let S be a division semiring that is of type (IV) with
respect to an element w. That is, w is a multiplicatively absorbing element
and T = S \ {w} is a subgroup of the multiplicative semigroup S(·). Thus
S is a semifield and S is ideal-simple.

7.1. Lemma. If |T | = 1, then S is isomorphic to one of Z2, Z5, Z6, Z8.

Proof. See 4.1. �

7.2. Lemma. 1T = 1S is multiplicatively neutral in S.

Proof. It is obvious. �

7.3. Lemma. Either w = oS is additively absorbing in S or w = 0S is
additively neutral in S.
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Proof. We have w + w = (1S + 1S)w = w. If 1S + w = w, then w =
aw = a(1S + w) = a1S + aw = a + w for every a ∈ T , and so w = oS .
On the other hand, if 1S + w 6= w, then 1S = (1S + w)−1(1S + w) =
(1S + w)−1 + w. From this, a = a(1S + w)−1 + aw = a(1S + w)−1 + w and
a+w = a(1S +w)−1 +w+w = a(1S +w)−1 +w = a for every a ∈ T . Thus
w = 0S . �

7.4. Lemma. If w = 0S, then either S is a field, or S ≃ Z5, or T is a
subparasefimield of S and S ≃ Z(T, 0).

Proof. If |S| = 2, then S is isomorphic either to Z5 or to the two-element
field Z8. Let |S| ≥ 3. Consider first the case when a + b = 0S for some
a, b ∈ T . Then c + ca−1b = ca−1(a + b) = ca−10S = 0S for every c ∈ T
and it follows that S(+) is a group. Then, obviously, S is a field. The
remaining case is when T + T ⊆ T . Then, clearly, T is a subparasemifield
and S ≃ Z(T, 0). �

In the next seven lemmas assume that |T | ≥ 2 and w = oS = o is bi-
absorbing.

7.5. Lemma. If T + a = {o} for at least one a ∈ T , then S + S = {o}
and S ≃ U(T (·)).
Proof. We have T +ab = (T +a)b = {o} for every b ∈ T . Thus T +T = {o}
and S + S = {o}. The rest is clear. �

Now, assume that T + a 6= {o} for every a ∈ T . Put Ax = {y ∈ S :
x+ y = o} for every x ∈ S.

7.6. Lemma.

(i) o ∈ Ax and S +Ax ⊆ Ax.
(ii) Ax ⊆ Ax+y for all x, y ∈ S.
(iii) Ao = S.
(iv) Aa 6= S for every a ∈ T .
(v) aAb = bAa for all a, b ∈ T .
(vi) Ab = a−1bAa for all a, b ∈ T .
(vii) Aa = aA1S for every a ∈ T .

Proof. It is easy. �

7.7. Lemma.

(i) P + P ⊆ P and PP ⊆ P (i.e., P is a subsemiring of S).
(ii) P (·) is a subgroup of S(·).
(iii) If a, b ∈ T , then a+ b 6= o if and only if a−1b ∈ P .

Proof. (i) If a, b ∈ P , then 1S + a 6= o and 1S + b 6= o. Consequently,
1S + a+ b+ ab = (1S + a)(1S + b) 6= o. But then 1S + a+ b 6= o, 1S + ab 6= o
and it follows that a+ b ∈ P and ab ∈ P .

(ii) If 1S + a 6= o, then a−1 + 1S 6= o.
(iii) We have a+ b 6= o if and only if 1S + a−1b 6= o. �



20 J. JEŽEK AND T. KEPKA

7.8. Remark. We have A1S = T \ P and P is a subgroup of T (·). Now
it is easy to see that 1S /∈ A1S and P = {a ∈ T : Aa = aA1S = A1S .

7.9. Lemma. Let a, b ∈ T be such that a+ b 6= o (equivalently, a−1b ∈ P ).
Then 1S+a−1b ∈ P , 1S+b−1a ∈ P and a+b = a(1S+a−1b) = b(1S+b−1a).

Proof. It is easy (use 7.7). �

7.10. Lemma. If |P | = 1, then P = {1S} and S ≃ V (T (·)).

Proof. Combine 7.7 and 7.9. �

7.11. Lemma. If P = T , then S ≃ U(P ).

Proof. It is easy. �

7.12. Proposition. Let S be a division semiring of type (IV) with respect
to w and T = S \ {w}. Then one of the following cases takes place:

(1) S is a field or S is isomorphic to one of Z2, Z5, Z6;
(2) T is a subparasemifield of S and S ≃ Z(T, 0) (then S is additively

idempotent if and only if T is);
(3) |T | ≥ 2 and S ≃ U(T (·)) (then S is not additively idempotent);
(4) |T | ≥ 2, w = oS is bi-absorbing, 1S + a = oS for every a ∈ T \ {1S}

and S ≃ V (T (·)) (then S is additively idempotent);
(5) w = oS is bi-absorbing, T is a subparasemifield of S and S ≃ U(T )

(then S is additively idempotent if and only if T is);
(6) w = oS is bi-absorbing, P = {a ∈ T : 1S + a 6= oS} is a sub-

parasemifield of S, P 6= T , and S ≃ V (P, T (·)) (then S is additively
idempotent if and only if P is).

Proof. Combine 7.1, 7.3, 7.4, 7.5, 7.10 and 7.11. �

7.13. Corollary. S is congruence-simple if and only if either S is a field
or |S| = 2 or S ≃ V (G(·)) for a commutative group G(·).
7.14. Corollary. S is one-generated if and only if one of the following
three cases takes place:

(1) |S| = 2;
(2) S is a finite field;
(3) S ≃ V (G(·)) for a non-trivial finite cyclic group G(·);
(4) S ≃ U(G(·)) for a non-trivial finite cyclic group G(·).

Proof. Easy, using 1.5. �
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8. Summary

8.1. Theorem. Division semirings are commutative semirings of (exactly)
one of the following twelve types:

(1) The two-element semirings Z1, . . . , Z7 (see 4.1);
(2) Fields;
(3) Parasemifields;
(4) The semifields U(G), where G is a non-trivial commutative group

(see 4.5);
(5) The semifields V (G), where G is a non-trivial commutative group

(see 4.6);
(6) The semifields U(P ), where P is a parasemifield (see 4.7);
(7) The semifields Z(P, 0), where P is a parasemifield (see 4.4);
(8) The semifields V (P, T (·)), where P is a parasemifield and the mul-

tiplicative group P (·) is a proper subgroup of a commutative group
T (·) (see 4.8);

(9) The semirings Z(P,A, 1), where P is an additively idempotent para-
semifield and A is a non-empty subset of P such that A + P ⊆ A,
(P \A) + (P \A) ⊆ P \A and 1P + x = 1P for every x ∈ P \A (see
4.2);

(10) The semirings Z(P,A, 2), where P is a parasemifield and A is as in
(9) (see 4.2);

(11) The semirings Z(P,A, e, 1), where P is an additively idempotent
parasemifield, e ∈ P and A is a non-empty subset of P such that
A + P ⊆ A, (P \ A) + (P \ A) ⊆ P \ A and e + x = e for every
x ∈ P \A (see 4.3);

(12) The semirings Z(P,A, e, 2), where P is a parasemifield, e ∈ P and
A is as in (11) (see 4.3);

Proof. Combine 5.7, 6.8, 7.12. �

8.2. Remark. The semirings Z3, Z4, Z5, Z6, V (G), Z(P,A, 1) and
Z(P,A, e, 1) are additively idempotent. The semirings U(P ), Z(P, 0) and
V (P, T (·)) are additively idempotent if and only if the parasemifield P is.
The semirings Z(P,A, 2) and Z(P,A, e, 2) are almost additively idempotent
if and only if P is additively idempotent. The semirings U(P ) contain just
one additively idempotent element.

8.3. Remark. The semirings Z1, . . . , Z7 are finite, and hence finitely
generated. A field is a finitely generated semiring if and only if it is finite.
The semirings U(G) and V (G) are finitely generated if and only if the group
G is finitely generated. The semirings U(P ), Z(P, 0), Z(P,A, 1), Z(P,A, 2),
Z(P,A, e, 1), Z(P,A, e, 2) are finitely generated if and only if the parasemi-
field P is finitely generated. The semirings V (P, T (·)) are finitely generated
if and only if P is finitely generated and the factor-group T (·)/P is finitely
generated.
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8.4. Remark. Taking into account 8.2 and 8.3, we conclude that the
following two statements are equivalent:

(A) A parasemifield is additively idempotent, provided that it is a finitely
generated semiring.

(B) A finitely generated division semiring is either almost additively
idempotent or it is a finite field or a copy of the semifield U(G)
for a non-trivial finitely generated commutative group G.

8.5. Theorem. One-generated division semirings are just (copies of ) the
two-element semirings Z1, Z2, Z3, Z4, Z7, finite fields and the semifields
U(G) and V (G), where G is a non-trivial finite cyclic group. In particular,
all such semirings are finite.

Proof. Combine 4.1, 4.2.8, 4.2.13, 4.3.6, 4.3.11, 4.4.5, 4.5.3, 4.6.2, 4.7.5, 4.8.9
and 4.8.10. �

8.6. Remark. Division semirings containing an additively neutral element
are just the following ones:

(1) The two-element semirings Z3, . . . , Z7;
(2) Fields;
(3) The semifields Z(P, 0).

8.7. Remark. Division semirings containing a multiplicatively neutral
element are just the following ones:

(1) The two-element semirings Z2, Z5, Z6;
(2) Fields;
(3) The semifields U(G);
(4) The semifields V (G);
(5) The semifields U(P );
(6) The semifields Z(P, 0);
(7) The semifields V (P, T (·));
(8) The semirings Z(P,A, 1);
(9) The semirings Z(P,A, 2).

8.8. Remark. Division semirings containing an additively absorbing
element are just the following ones:

(1) The two-element semirings Z1, . . . , Z6;
(2) The semifields U(G);
(3) The semifields V (G);
(4) The semifields U(P );
(5) The semifields V (P, T (·)).

8.9. Remark. Division semirings containing a multiplicatively absorbing
element are just the following ones:

(1) The two-element semirings Z1, . . . , Z7;
(2) Fields;
(3) The semifields U(G);
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(4) The semifields V (G);
(5) The semifields U(P );
(6) The semifields Z(P, 0);
(7) The semifields V (P, T (·)).

Notice that (except for Z1, Z3, Z4 and Z7) all these semirings have a mul-
tiplicatively neutral element. Furthermore, except for Z7, fields and the
semifields Z(P, 0), the other semirings have an additively absorbing element.

8.10. Remark. All division semirings have at most two ideals. The
ideal-simple ones among them are just the following semirings:

(1) The two-element semirings Z1, . . . , Z7;
(2) Fields;
(3) Parasemifields (these are ideal-free);
(4) The semifields 8.1(4),. . . ,(8).

8.11. Remark. Congruence-simple division semirings are just the follow-
ing ones:

(1) The two-element semirings Z1, . . . , Z7;
(2) Fields;
(3) Congruence-simple parasemifields (see 8.19);
(4) The semifields V (G), where G is a non-trivial commutative group.

8.12. Remark. Finite division semirings are just the following ones:

(1) The two-element semirings Z1, . . . , Z7;
(2) Finite fields;
(3) The semifields U(G), where G is a non-trivial finite commutative

group;
(4) The semifields V (G), where G is a non-trivial finite commutative

group.

Notice that every finite division semiring is ideal-simple.

8.13. Remark. Let S be a non-trivial semiring that is a division semiring
with respect to two different elements of S. According to 2.9, S is either a
parasemifield or a two-element semiring isomorphic to one of the semirings
Z2, Z5, Z6, Z8.

8.14. Theorem. Ideal-simple commutative semirings are just the semir-
ings of one of the following five types:

(1) The two-element semirings Z2, . . . , Z6;
(2) Fields;
(3) Zero multiplication rings of finite prime order;
(4) Parasemifields (these are ideal-free);
(5) Proper semifields (i.e., semifields that are not fields).

Proof. Let S be an ideal-simple commutative semiring with at least three
elements. If S is a ring, then either (2) or (3) takes place. Let S be neither a
ring nor a parasemifield. The multiplicative semigroup S(·) is not a group,
and hence it is not a division semigroup. Consequently, the set A = {a ∈
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S : Sa 6= S} is non-empty. Since S is ideal-simple, there exists an element
w ∈ S such that Sa = {w} for every a ∈ A. Of course, w is additively
idempotent and multiplicatively absorbing and we see that A is an ideal
of S. If A = {w}, then Sx = S for every x ∈ S \ {w}, S is a division ring
and it follows from 8.1 and 8.9 that S is a proper semifield. Now, assume
that A = S, i.e., SS = {w}. The set B = S + w is an ideal of S.

Let B = S. For every a ∈ S there exists an element b ∈ S with a = b+w;
we have a+w = b+w+w = b+w = a. Thus w = 0S is an additively neutral
element. The set C = {c ∈ S : w ∈ S + c} is an ideal of S. If C = S, then
S(+) is a group and S is a ring, a contradiction. Thus C = {w}, so that
T +T ⊆ T , where T = S \{w}. If R is a proper subsemigroup of T (+), then
R∪{w} is an ideal of S, a contradiction. Consequently, T (+) has no proper
subsemigroups, and hence |T | = 1 and |S| = 2, again a contradiction.

Next, let B = {w}. Then w is a bi-absorbing element in S. Let, for
a moment, d ∈ S be such that S + d = S. Then d 6= w, d = d + e for
some e ∈ S and e = d + f for some f ∈ S. Clearly, e 6= w 6= f and
e + e = d + f + e = d + f = e. Now, {w, e} is an ideal of S, {w, e} = S
and |S| = 2, a contradiction. It means that S + d 6= S for every d ∈ S. But
S + d is an ideal of S, S + d = {w} and S + S = {w}.

We have SS = {w} = S + S. Every subset of S containing the element
w is an ideal, and therefore |S| = 2, the final contradiction. �

8.15. Theorem. Semifields are just the semirings of one of the following
seven types:

(1) The two-element semirings Z2, Z5, Z6;
(2) Fields;
(3) The semifields U(G), where G is a non-trivial commutative group;
(4) The semifields V (G), where G is a non-trivial commutative group;
(5) The semifields U(P ), where P is a parasemifield;
(6) The semifields Z(P, 0), where P is a parasemifield;
(7) The semifields V (P, T (·)), where P is a parasemifield and the mul-

tiplicative group P (·) is a proper subgroup of a commutative group
T (·).

Proof. Every semifield is a division semiring and thus the classitication fol-
lows from 8.1. �

8.16. Remark. The (ideal-simple) semirings Z3, Z4, Z5, Z6, V (G)
are additively idempotent. The semifields U(P ), Z(P, 0) and V (P, T (·))
are additively idempotent if and only if the parasemifield P is additively
idempotent.

8.17. Remark. The following two statements are equivalent:

(A) A parasemifield is additively idempotent, provided that it is a finitely
generated semiring.
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(B′) A finitely generated ideal-simple commutative semiring is either ad-
ditively idempotent or it is finite or it is a copy of the semifield U(G)
for an infinite, finitely generated commutative group G.

8.18. Remark. One-generated ideal-simple commutative semirings are
just (copies of) the two-element semirings Z1, Z2, Z3, Z4, finite fields, zero
multiplication rings of finite prime order and the semifields U(G) and V (G),
where G is a non-trivial finite cyclic group. All these semirings are finite.

8.19. Theorem. Congruence-simple commutative semirings are just the
semirings of one of the following six types:

(1) The two-element semirings Z1 . . . , Z6;
(2) Fields;
(3) Zero multiplication rings of finite prime order;
(4) The semifields V (G), where G is a non-trivial commutative group;
(5) The semirings W (A), where A is a subsemigroup of R(+) with A ∩

R+ 6= ∅ 6= A ∩R+;
(6) Subsemirings S of the parasemifield R+ of positive real numbers such

that
(6a) for all a, b ∈ S there exist c ∈ S and a positive integer n with

b+ c = na;
(6b) for all a, b, c, d ∈ S with a 6= b there exist e, f ∈ S with ae +

bf + c = af + be+ d;
(6c) for all a, b ∈ S there exist c, d ∈ S such that bc+ d = a.

Proof. This is Theorem 10.1 of [1]. �

8.20. Remark.

(i) Every finitely generated congruence-simple commutative semiring is
either finite or additively idempotent.

(ii) One-generated congruence-simple commutative semirings are just
(copies of) the two-element semirings Z1, Z2, Z3, Z4, finite fields,
zero multiplication rings of finite prime order and the semifields
V (G), whereG is a non-trivial finite cyclic group. All these semirings
are finite.
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