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Abstract. All ordinal numbers α with the following property are found:
there exists a loop such that its subloops form a chain of ordinal type α.

By a uniserial loop (or any algebraic structure) we will mean a loop Q
such that the lattice of subloops of Q is a chain.

The chain of subloops of a uniserial loop Q will be denoted byCs(Q). The
very first question that we can ask about uniserial loops is which chains are
representable, i.e., (a definition local to this paper) isomorphic toCs(Q) for a
(uniserial) loop Q. This question will be answered in this paper completely
only for those chains that are well ordered, i.e., isomorphic to an ordinal
number. (An ordinal number is identified with the set of all smaller ordinal
numbers, and is considered as a chain with respect to the usual ordering of
ordinal numbers.)

The basic notions concerning loops can be found in the book [1].

Observation 1. There are many finite and also infinite loops without non-
trivial proper subloops. These loops are trivially uniserial. Thus the one-
element chain and the two-element chain are both representable.

Observation 2. Let Q be a uniserial loop. The chain Cs(Q) is an alge-
braic lattice, i.e., a complete lattice every element of which is the join of a
set of compact elements. Consequently, Cs(Q) has the following property:
whenever a, b are two elements such that a < b then there exist elements c, d
with a ≤ c < d ≤ b, such that c is covered by d. Also, the chain has both
the least and the greatest elements; thus if it is isomorphic to an ordinal
number α, then α is not a limit ordinal number.

Observation 3. As it is easy to see, every finitely generated subloop of a
uniserial loop is one-generated. Thus a uniserial loop is finitely generated if
and only if it is one-generated (then it is countable).

Observation 4. Let Q be a uniserial loop. It follows from the last two
observations that every proper subloop P of Q is countable (i.e., |P | ≤ ℵ0).
Consequently, |Q| ≤ ℵ1 and |Cs(Q)| ≤ 2ℵ1 .

Observation 5. It is rather easy to see that the union of a chain of uniserial
loops is a uniserial loop.
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Theorem 1. Let P = {a0, a1, a2, . . . } be an infinite countable loop with the

unit element a0. Then there exists a countable loop Q with the following

properties:

(1) P is a proper subloop of Q;

(2) Q is generated by any element of Q \ P ;

(3) Q is uniserial, provided that P is uniserial;

(4) ab = ba for all a, b ∈ Q such that {a, b} 6⊆ P ;

(5) Q is commutative, provided that P is commutative.

Proof. Take an infinite countable set R = {b0, b1, b2, . . . } disjoint with P
and define multiplication on Q = P ∪R (extending the multiplication of P )
by means of induction and the following rules:

(a) bibi = bi+1 for all i;
(b) for i 6= j let bibj = ak, where k is the least number such that ak /∈

{b0bj , . . . , bi−1bj} ∪ {bib0, . . . , bibj−1};
(c) aibj = bjai = bk, where k is the least number such that bk /∈

{bj+1}∪{a0bj , . . . , ai−1bj}∪{aib0, . . . , aibj−1}∪{bja0, . . . , bjai−1}∪
{b0ai, . . . , bj−1ai}.

Now, it is rather easy to check that Q enjoys the five properties. �

Theorem 2. The following conditions are equivalent for an ordinal num-

ber α:

(i) There exists a uniserial loop Q with Cs((Q) ≃ α.
(ii) There exists a commutative uniserial loop Q with Cs((Q) ≃ α.
(iii) 1 ≤ α ≤ ℵ1 + 1, where ℵ1 + 1 is the ordinal successor of the least

uncountable ordinal, and α is not a limit ordinal number.

Proof. (i) implies (iii): Since Cs(Q) has the largest element, α is not a limit
ordinal number. Suppose that α > ℵ1 + 1. Denote by R the subloop of Q
corresponding to ℵ1 and by S the subloop corresponding to ℵ1 + 1. Then
S is one-generated and thus countable. Consequently, R is also countable.
Now, R is the union of the uncountable chain of its proper subloops. For
every proper subloop P of R denote by P ′ the unique cover of P in the well
ordered chain of proper subloops of R, and select an element f(P ) in P ′ \P .
Clearly, f is an injective mapping of the uncountable set of proper subloops
of R into the countable set R, a contradiction.

(iii) implies (ii): For every countable ordinal number γ define a countable
commutative uniserial loop Qγ as follows. Let Q0 be an arbitrary infinite
commutative loop with no non-trivial proper subloops. If γ = β + 1, let
Qγ be obtained from Qβ in the way described by Theorem 1. If γ is a
limit ordinal number, let Qγ be the union of the chain of the loops Qβ with
β < γ. Finally, let Q be the union of the chain of the loops Qγ where γ
runs over all countable ordinal numbers. Clearly, Q is a uniserial loop with
Cs(Q) ≃ ℵ1 + 1 and every positive, countable non-limit ordinal number is
isomorphic to the chain of subloops of some proper subloop of Q.

(ii) implies (i): This is evident. �
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Remark 1. One can easily see that the three equivalent conditions of Theo-
rem 2 are also equivalent to the following condition: There exists an algebra
A with finitely many operations such that the lattice of subalgebras of A is
a chain isomorphic to α.

Remark 2. A mono-associative (alias power-associative) uniserial loop is
an abelian group. Uniserial abelian groups are just cyclic and quasicyclic
p-groups. It follows that we can hardly find ‘new’ uniserial loops in ‘nice’
equational classes.

Remark 3. Define a new binary operation, say ◦, on the set (and field) Q
of rational numbers by means of the following rules:

(a) a ◦ a = a− 1 for every a ∈ Q;
(b) if a, b ∈ Q are such that m = |a − b| is a non-zero integer, then

a ◦ b = max(a, b)− 1
m
;

(c) if a, b ∈ Q are such that a 6= b and q = |a− b| is not an integer, then
a ◦ b = min(a, b)− q.

In this way, we obtain a commutative groupoid Q(◦) and every order ideal
of Q (i.e., a nonempty subset of Q containing with each number all smaller
ones) is a subgroupoid of Q(◦). The converse is true as well. Indeed, let
G be a subgroupoid od Q(◦), a ∈ G, b ∈ Q and b < a. We have to show
that b ∈ G. Anyway, b = a − m

n
for some positive integers m,n, where

n ≥ 2, and we get a − n ∈ G by (a) and induction. Then, of course,
a− 1

n
= a ◦ (a− n) ∈ G by (b). Furthermore, (a− k

n
) ◦ (a− k+1

n
) = a− k+2

n

by (c) for every non-negative integer k. Now, using induction again, we get
a − k

n
∈ G. In particular, b = a − m

n
∈ G. We have proved that G is an

order ideal of Q.
Thus the lattice of subgroupoids of Q(◦) is the chain of order ideals that

is isomorphic to the chain of real numbers (with the greatest element added)
in which every rational number is doubled. It is not clear whether such a
chain (of course, with the smallest element) is realisable by a uniserial loop.

References

[1] J. D. H. Smith, An introduction to quasigroups and their representations, CRC Press
2007.
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Sokolovská 83, 18600 Praha 8, Czech Republic

E-mail address: jezek@karlin.mff.cuni.cz
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Sokolovská 83, 18600 Praha 8, Czech Republic

E-mail address: kepka@karlin.mff.cuni.cz


