DEFINABILITY FOR EQUATIONAL THEORIES OF COMMUTATIVE GROUPOIDS

\dagger Jaroslav Ježek, Praha

(Received September 22, 2010)

Abstract

We find several large classes of equations with the property that every automorphism of the lattice of equational theories of commutative groupoids fixes any equational theory generated by such equations, and every equational theory generated by finitely many such equations is a definable element of the lattice. We conjecture that the lattice has no non-identical automorphisms.

Keywords: simple algebra, idempotent, group
MSC 2010: 08B26

Introduction

The study of definability in lattices of equational theories was started in the papers [3], [4], [5] and [6] that all together represent a proof of the conjecture formulated in the paper [11]. In the four papers it is proved that for any signature σ (containing either at least one binary or at least two unary operation symbols), the following are true:
(1) the lattice L of equational theories of signature σ has no automorphisms other that the obvious, syntactically defined one;

While working on this paper the author was partially supported by the Grant Agency of the Czech Republic, grant \#201/02/0594 and by the institutional grant MSM113200007.

The editors learnt with great sadness that Professor Jaroslav Ježek, the author of the paper, passed away on February 13, 2011. They are indebted to Professors Andrzej Kisielewicz and Mariusz Grech for their assistance in preparing the final version of the paper for publication. Sole responsibility for any possible errors or typesetting inaccuracies in the paper is born by the editors.
(2) every finitely equational theory of signature σ is definable in L up to these automorphisms;
(3) the equational theory of any finite σ-algebra is definable in L up to these automorphisms;
(4) the set of finitely based equational theories, the set of one-based equational theories and the set of the equational theories corresponding to finitely generated varieties of signature σ are definable subsets of the lattice L.
The result does not imply that the same would be true for the lattice of equational theories corresponding to subvarieties of a given variety, but it suggests that the same technique could be used in the cases when the variety is defined by linear equations (equations containing the same variables on the left as on the right, and containing each variable only twice). The most significant varieties of this kind are those of semigroups, commutative semigroups and commutative groupoids.

An attempt to imitate the results of [3] through [6] to obtain the definability for equational theories of semigroups was done in the paper [8]. At first is seemed that everything would go through smoothly. We succeeded to translate (or modify) the papers [3], [4], [6] and also a half of the paper [5]. But then we got stuck; the paper brings only partial results. We still do not know if the lattice of equational theories of semigroups has only the two obvious automorphisms. (See [12] for some more recent development.)

A similar attempt was done for commutative semigroups in the paper [9]. Again, the author got stuck at a place corresponding to the middle of [5]. Proceeding further, the author succeeded however to prove that the desired aim cannot be achieved: there are non-obvious automorphisms of the lattice (and even uncountably many). The problems of definability in the lattice of equational theories of commutative semigroups have been solved completely in [1]. In particular, the group of automorphisms of the lattice has been described.

These two circumstances naturally turn the attention to the equational theories of commutative groupoids. It seemed at first that in this case everything would be easy, since commutative groupoids do not differ so much from general groupoids as semigroups do. The investigation was already started in the paper [7], which is a commutative modification of [4]. (We do not need to fully describe modular elements of the lattice, as in the paper [3], since in [8] we found a way how to avoid it, and the same can be applied to commutative groupoids.) Also, a half of [5] was translated all right. But then, again, one gets stuck.

After several vain attempts to overcome the difficulties, I gave up and the present paper is the summary of the partial results. We obtain definability for some broad classes of equational theories. After Section 1, where we establish the terminology and recall basic facts, each subsequent section demonstrates definability for a class
of theories. First, in Section 2, we deal with the so called ideal theories, defined by certain sets of terms, and then with theories based on various types of equations.

We did not succeed to prove that the lattice of equational theories of commutative groupoids has no non-identical automorphisms. We just conjecture it. (There are no other obvious automorphisms in the commutative case.) However, it is also possible that the situation will turn out to be similar to that of commutative semigroups, that there exist unknown automorphisms. We think that this is an interesting and challenging problem.

1. Preliminaries

This paper is a continuation of [7]. The terminology and notation introduced in that paper remain without change; for more general topics see [10]. Let us recall that X is a fixed infinite countable set, the elements of which are called variables, and F is the free commutative groupoid over X; the elements of F are called terms. The length of a term t is denoted by $\lambda(t)$, or also by $|t|$. The depth of a term t is denoted by $\delta(t)$. If b is a subterm of a term a, i.e., if $a=b c_{1} \ldots c_{n}$ for some terms c_{1}, \ldots, c_{n} $(n \geqslant 0)$, we write $b \subseteq a$. The set of variables occurring in a term a is denoted by $\mathbf{S}(a)$. The number of occurrences of a variable x in a term a is denoted by $\nu_{x}(a)$. A term a is linear if $\nu_{x}(a) \leqslant 1$ for all variables x. A term a is unary if $\operatorname{Card} \mathbf{S}(a)=1$. We write $b \sim \operatorname{lh}(a)$ if b is the linear hull of a and $b \sim \mathbf{u h}(a)$ if b is the unary hull of a. By a substitution we mean an endomorphism of F. By a substitution instance of a term a we mean any term $f(a)$ where f is a substitution. Given a variable x and a term a, we denote by σ_{a}^{x} the substitution f such that $f(x)=a$ and $f(y)=y$ for every variable $y \neq x$. For two terms a, b we write $a \leqslant b$ if a substitution instance of a is a subterm of b. We write $a<b$ if $a \leqslant b$ and $b \not \leq a$. We write $a \| b$ if neither $a \leqslant b$ nor $b \leqslant a$. We write $a \sim b$ (and say that the two terms are similar) if $a \leqslant b$ and $b \leqslant a$. The block a / \sim is called the pattern of a term a.

A term b is said to be a wonderful extension of a term a if $b=a x_{1} \ldots x_{n}$ for some $n \geqslant 0$ and some pairwise distinct variables x_{1}, \ldots, x_{n} not belonging to $\mathbf{S}(a)$.

For two terms a, b we write $a \sqsubseteq b$ if $\nu_{x}(a) \leqslant \nu_{x}(b)$ for all variables x. If $a \sqsubseteq b$ and $b \nsubseteq a$, we say that b is essentially longer than a. Observe that if b is essentially longer than a, then $f(b)$ is longer than $f(a)$ for any substitution f.

By an equation we mean an ordered pair of terms. By an (equational) theory we mean a congruence E of the groupoid F such that $(a, b) \in E$ implies $(f(a), f(b)) \in E$ for any substitution f. The set of all theories is a complete lattice under inclusion. This lattice will be denoted by L. The least element 0_{L} of L is the set of trivial equations (equations (a, a) for $a \in F$) and the greatest element 1_{L} of L is the set of all equations.

An equation (c, d) is said to be an immediate consequence of an equation (a, b) if there exists a substitution f such that d can be obtained from c by replacing one occurrence of $f(a)$ with $f(b)$. (I.e., if there are terms u_{1}, \ldots, u_{n} for some $n \geqslant 0$ such that $c=f(a) u_{1} \ldots u_{n}$ and $d=f(b) u_{1} \ldots u_{n}$.) An equation is said to be an immediate consequence of a set of equations E if it is an immediate consequence of at least one equation from E.

Let E be a set of equations. By an E-derivation of an equation (a, b) we mean a finite sequence u_{0}, \ldots, u_{n} (with $n \geqslant 0$) of elements of F such that $u_{0}=a, u_{n}=b$ and for any $i \in\{1, \ldots, n\}$, either $\left(u_{i-1}, u_{i}\right)$ or $\left(u_{i}, u_{i-1}\right)$ is an immediate consequence of E. An equation is said to be derivable from E if it has at least one E-derivation. It is easy to prove that the set of the equations that are derivable from E is just the least theory containing E. It will be denoted by $\mathbf{C n}(E)$ and called the theory generated by E, or the theory based on E, and its elements will be called consequences of E. For an equation (u, v) put $\mathbf{C n}(u, v)=\mathbf{C n}(\{(u, v)\})$; such theories are called one-based.

By a minimal E-derivation of an equation (a, b) we mean an E-derivation u_{0}, \ldots, u_{n} of (a, b) such that $n \leqslant m$ for any other E-derivation v_{0}, \ldots, v_{m} of that equation. Clearly, every equation from $\mathbf{C n}(E)$ has a minimal E-derivation.

By a full set we mean a set $J \subseteq F$ such that $a \in J$ and $a \leqslant b$ imply $b \in J$. If J is a full set, we define $I_{J}=0_{L} \cup J^{2}$. Clearly, this is a theory. Theories obtained from full sets in this way will be called ideal theories. The mapping $J \rightarrow I_{J}$ is an isomorphism of the distributive lattice of full sets onto the lattice of ideal theories, which is a complete sublattice of L.

For a term a put $I_{a}=I_{J}$ where $J=\{t: t \geqslant a\}$. The theories I_{a} (for $a \in F$) will be called principal ideal theories.

We denote by E_{s} the theory of semilattices. It consists of the equations (a, b) such that $\mathbf{S}(a)=\mathbf{S}(b)$.

A set E of equations is said to be good if there exists a first-order formula $\varphi\left(x_{1}, x_{2}\right)$ with two free variables x_{1}, x_{2} in the language of ordered sets such that for any pair T_{1}, T_{2} of theories, $\varphi\left(T_{1}, T_{2}\right)$ is satisfied in L if and only if $T_{1}=I_{H(a, b)}$ and $T_{2}=\mathbf{C n}(a, b)$ for some equation $(a, b) \in E$. (The code-terms $H(a, b)$ were introduced in [7].)

Proposition 1.1. Let E be a good set of equations. Then:
(1) The set of the theories based on an equation from E is definable.
(2) The set of the theories based on a finite set of equations from E is definable.
(3) For every $(a, b) \in E$, the theory $\mathbf{C n}(a, b)$ is a definable element of L.
(4) Every automorphism of L coincides with the identity on all the elements of L that are theories based on a subset of E.

Proof. This is easy. (The results of [7] can be used.)

Clearly, the union of a finite collection of good sets of equations is good. Every good set of equations is closed under similarity. (Two equations (a, b) and (c, d) are called similar if $\alpha(a)=c$ and $\alpha(b)=d$ for an automorphism α of F.)

Suppose that K_{1} is a good set of equations and K_{2} is another set of equations, perhaps larger than K_{1}, for which we prove that whenever $(a, b) \in K_{2}$ then $\mathbf{C n}(a, b)$ is the greatest (or perhaps the smallest, or the only) theory T satisfying, together with some more simple, first-order expressible conditions, the following condition: for any $(c, d) \in K_{1},(c, d) \in T$ if and only if (c, d) is a consequence of (a, b). Then, if K_{2} has been defined syntactically in a reasonable way, it follows from the results of [7] that K_{2} is also good. (By saying that K_{2} has been defined in a reasonable way we mean that the techniques explained in [7] can be used to show that the set of the code-terms $H(a, b)$ with $(a, b) \in K_{2}$ is definable in the ordered set of term patterns.)

We will prove in Section 3 that the set of strictly parallel equations is good and then continue to build larger good sets of equations in this way. We would get the complete decidability result if this process can lead in finitely many steps to obtain the set of all equations as a good set, similarly as it has been done in [5] for equational theories of universal algebras. In the present paper we will not get that far.

According to a folklore result (every non-regular equational theory is generated by its regular equations together with any one of its non-regular equations), it is sufficient to restrict ourselves to regular equations-equations (a, b) such that $\mathbf{S}(a)=$ $\mathbf{S}(b)$.

2. Definability of ideal theories

Theorem 2.1. Let J be a full set. Then I_{J} and $I_{J} \cap E_{s}$ are modular elements of L.

Proof. Let T be either I_{J} or $I_{J} \cap E_{s}$. Let A, B be two theories such that $A \subseteq B, B \subseteq A \vee T$ and $B \cap T \subseteq A$. In order to prove that T is modular, we need to show that $A=B$.

Consider first the case when either $T=I_{J}$ or $A \subseteq E_{s}$. Let $(a, b) \in B$. There exists an $(A \cup T)$-derivation a_{0}, \ldots, a_{n} of (a, b). We will prove $(a, b) \in A$ by induction on n. If $n=0$ then $(a, b)=(a, a) \in A$. Let $n>0$. If $\left(a, a_{1}\right) \in A$ then a_{1}, \ldots, a_{n} is a shorter $(A \cup T)$-derivation of $\left(a_{1}, b\right) \in B$, so $\left(a_{1}, b\right) \in A$ by induction and we get $(a, b) \in A$. If $\left(a_{n-1}, b\right) \in A$, we get $(a, b) \in A$ similarly. If $\left(a, a_{1}\right) \in T-A$ and $\left(a_{n-1}, b\right) \in T-A$ then both a and b belong to J. So, if $T=I_{J}$, we get $(a, b) \in B \cap T \subseteq A$; if $T=I_{J} \cap E_{s}$, then $B \subseteq A \vee T \subseteq E_{s}$, and again $(a, b) \in B \cap T \subseteq A$.

It remains to consider the case when $T=I_{J} \cap E_{s}$ and $A \nsubseteq E_{s}$.
Claim 1: If $(a, b) \in B$ where $a, b \in J$ and $\mathbf{S}(a) \subseteq \mathbf{S}(b)$, then $(a, b) \in A$.

It is easy to see that since $A \nsubseteq E_{s}$, there exists a term $s=s(x, y)$ with $\mathbf{S}(s)=$ $\{x, y\}$ (for two distinct variables x, y) such that $(s(x, y), s(x, x)) \in A$. Choose a variable $x_{0} \in \mathbf{S}(a)$. Define two substitutions f, g by $f(z)=g(z)=z$ for $z \in \mathbf{S}(a)$ and $f(z)=s\left(x_{0}, z\right)$ and $g(z)=s\left(x_{0}, x_{0}\right)$ for the variables z not belonging to $\mathbf{S}(a)$. Since $(f(z), g(z)) \in A$ for all variables z, we have $(f(b), g(b)) \in A$. Now $(a, g(b)) \in$ $B \cap T \subseteq A,(g(b), f(b)) \in A,(f(b), b)) \in B \cap T \subseteq A$, so that $(a, b) \in A$.

Claim 2: If $(a, b) \in B$ and there is no term $c \in J$ with $(a, c) \in A$, then $(a, b) \in A$.
Let a_{0}, \ldots, a_{n} be an $(A \cup T)$-derivation of (a, b). By induction on $i=0, \ldots, n$ one can easily prove that $\left(a, a_{i}\right) \in A$.

Let $(a, b) \in B$. We need to prove that $(a, b) \in A$. By Claim 2 (and its symmetric version) we can assume that there exist terms $c, d \in J$ with $(a, c) \in A$ and $(b, d) \in A$. If $\mathbf{S}(c)=\mathbf{S}(d)$, then $(c, d) \in B \cap T \subseteq A$ and hence $(a, b) \in A$. So, without loss of generality we can suppose that $\mathbf{S}(c) \nsubseteq \mathbf{S}(d)$. Define a substitution f by $f(x)=c d$ for $x \in \mathbf{S}(c)-\mathbf{S}(d)$ and $f(x)=x$ for all the other variables x. We have $(c, d) \in B$, $(f(c), f(d)) \in B$ where $f(d)=d$, so $(c, f(c)) \in B$. But $c, f(c) \in J$ and $\mathbf{S}(c) \subseteq$ $\mathbf{S}(f(c))$, so $(c, f(c)) \in A$ by Claim 1. Also, $(f(c), d) \in B$ together with $f(c), d \in J$ and $\mathbf{S}(d) \subseteq \mathbf{S}(f(c))$ imply $(f(c), d) \in A$ by Claim 1 . Hence $(c, d) \in A$ and we get $(a, b) \in A$.

Theorem 2.2. Let T be a modular element of L. Denote by U the set of the terms a for which there exists a term b such that $(a, b) \in T$ and $b \neq p(a)$ for any permutation p of $\mathbf{S}(a)$. Then U is a full set and $(U \times U) \cap E_{s} \subseteq T$. If $T \neq 0_{L}$, then U is nonempty.

Proof. Claim 1: For every $a \in U$ there exists a term b such that $(a, b) \in T$, $b \not \leq a$ and $\mathbf{S}(a)=\mathbf{S}(b)$.

We have $(a, c) \in T$ for some c such that $c \neq p(a)$ for any permutation p of $\mathbf{S}(a)$. If there exists a variable $x \in \mathbf{S}(a)-\mathbf{S}(c)$, we can take $b=f(a)$ where f is the substitution with $f(x)=a a$ and $f(y)=y$ for all variables $y \neq x$. If $\mathbf{S}(a) \subseteq \mathbf{S}(c)$ and there exists a variable $x \in \mathbf{S}(c)-\mathbf{S}(a)$, take $b=f(c)$ where f is the substitution mapping the variables from $\mathbf{S}(a)$ onto themselves and mapping all other variables onto a. Now let $\mathbf{S}(a)=\mathbf{S}(c)$. If $c \not \leq a$, take $b=c$. If $c \leqslant a$, then $c<a$, $a=f(c) a_{1} \ldots a_{k}$ for a substitution f and some terms a_{1}, \ldots, a_{k}, and we can take $b=f(a) a_{1} \ldots a_{k}$.

Claim 2: For every $a \in U$ there exists a term b such that $(a, b) \in T, a \subset b$ and $\mathbf{S}(a)=\mathbf{S}(b)$.

By Claim 1 there exists a term c such that $(a, c) \in T, c \not \leq a$ and $\mathbf{S}(a)=\mathbf{S}(c)$. Denote by A the theory generated by $(c, c c)$ and by B the theory generated by ($a, a a$) and $(c, c c)$. We have $A \subseteq B$ and $(a, a a) \in(A \vee T) \cap B=A \vee(T \cap B)$. So, there exists
an $(A \cup(T \cap B))$-derivation of $(a, a a)$. In particular, there exists a term $b \neq a$ such that either $(a, b) \in A$ or $(a, b) \in T \cap B$. Since $c \not \leq a$, we cannot have $(a, b) \in A$. Hence $(a, b) \in T \cap B$ and there exists a B-derivation u_{0}, \ldots, u_{k} of (a, b). Easily by induction on $i=0, \ldots, k, a \subseteq u_{i}$. Hence $a \subset b$. Since $(a, b) \in B$, we have $\mathbf{S}(a)=\mathbf{S}(b)$.

Claim 3: If p, q, r, s are terms such that $p \not \leq r, q \not \leq r, p \not \leq s, q \not \leq s, r \| s$, $\mathbf{S}(r)=\mathbf{S}(s)$ and $T \cup\{(p, q)\} \models(r, s)$, then $(r, s) \in T$.

Denote by A the theory generated by (p, q) and by B the theory generated by (p, q) and (r, s). We have $A \subseteq B$ and $(r, s) \in(A \vee T) \cap B=A \vee(T \cap B)$. Let u_{0}, \ldots, u_{k} be a minimal $A \cup(T \cap B)$-derivation of (r, s). Let us prove by induction on i that u_{i} can be obtained by a permutation of variables from either r or s, and $\left(r, u_{i}\right) \in T \cap B$. This is clear for $i=0$. Let $i>0$ and let u_{i-1} be either $\alpha(r)$ or $\alpha(s)$ for a permutation α of $\mathbf{S}(r)$. Then $p \not \leq u_{i-1}, q \not \leq u_{i-1}$ and so (since $u_{i-1} \neq u_{i}$) $\left(u_{i-1}, u_{i}\right) \notin A$. Hence $\left(u_{i-1}, u_{i}\right) \in T \cap B$. Since $\left(r, u_{i-1}\right) \in T \cap B$ by induction, we get $\left(r, u_{i}\right) \in T \cap B$. There is a $\{(p, q),(r, s)\}$-derivation v_{0}, \ldots, v_{m} of $\left(u_{i-1}, u_{i}\right)$. Now v_{0} can be obtained by a permutation of variables from either r or s. Since $r \| s$, it is easy to prove by induction on j that also v_{j} can be obtained by a permutation of variables from either r or s. In particular, this is true for u_{i} and we are done with the induction. We get $(r, s) \in T \cap B \subseteq T$.

We say that a term a is well-behaved if $(a, d) \in T$ for every term d such that $a \subseteq d$ and $\mathbf{S}(a)=\mathbf{S}(d)$.

Claim 4: If $a \in U$ and if there exist a term b and an infinite sequence x_{1}, x_{2}, \ldots of variables from $\mathbf{S}(a)$ such that $(a, b) \in T, a \subset b, \mathbf{S}(a)=\mathbf{S}(b)$ and $b \not \leq a x_{1} \ldots x_{k}$ for all k, then a is well-behaved.

We have $b=a b_{1} \ldots b_{m}$ for some terms b_{1}, \ldots, b_{m}. Let d be a term such that $a \subset d$ and $\mathbf{S}(a)=\mathbf{S}(d)$. We have $d=a d_{1} \ldots d_{n}$ for some terms d_{1}, \ldots, d_{n}. Take k so large that $a x_{1} \ldots x_{k}$ is longer than $b b_{1} \ldots b_{m} d_{1} \ldots d_{n}$. One can easily check that the assumptions of Claim 3 are all satisfied if we put

$$
p=b x_{1} \ldots x_{k}, \quad q=b b_{1} \ldots b_{m}, \quad r=a x_{1} \ldots x_{k}, \quad s=b
$$

and that they are also satisfied if we put

$$
p=b x_{1} \ldots x_{k}, \quad q=b b_{1} \ldots b_{m} d_{1} \ldots d_{n}, \quad r=a x_{1} \ldots x_{k}, \quad s=b d_{1} \ldots d_{n}
$$

It follows from the first observation that $\left(a x_{1} \ldots x_{k}, b\right) \in T$, from which we get $\left(a x_{1} \ldots x_{k}, a\right) \in T$; and from the second observation that $\left(a x_{1} \ldots x_{k}, b d_{1} \ldots d_{n}\right) \in T$, whence $\left(a x_{1} \ldots x_{k}, d\right) \in T$. But then $(a, d) \in T$.

Claim 5: If $a \in U$ is not well-behaved, then every term b such that $(a, b) \in T$, $a \subset b$ and $\mathbf{S}(a)=\mathbf{S}(b)$ can be written as $b=a y_{1} \ldots y_{r}$ for a sequence y_{1}, \ldots, y_{r}
of variables such that $r \equiv 0 \bmod n$, where n is the cardinality of $\mathbf{S}(a)$, and $y_{i}=y_{j}$ implies $i \equiv j \bmod n$.

We have $b=a y_{1} \ldots y_{r}$ for some terms y_{1}, \ldots, y_{r}. Consider the infinite sequence x_{1}, x_{2}, \ldots, where $\left\{x_{1}, \ldots, x_{n}\right\}=\mathbf{S}(a)$ and $x_{i}=x_{i-n}$ for $i>n$. According to Claim 4, $b \leqslant a x_{1} \ldots x_{k}$ for some k. Clearly, this implies that y_{1}, \ldots, y_{r} are variables and $y_{i}=y_{j} \operatorname{implies} i \equiv j \bmod n$. We also have $\left(a, a z_{1} \ldots z_{2 r}\right) \in T$ where $z_{i}=z_{i+r}=y_{i}$ for $i=1, \ldots, r$, so we can similarly conclude that $z_{i}=z_{j} \operatorname{implies} i \equiv j \bmod n$. But this is possible only if $r \equiv 0 \bmod n$.

Claim 6: Every term $a \in U$ is well-behaved.
Suppose that a is not well-behaved. By Claim 2 there exists a term b such that $(a, b) \in T, a \subset b$ and $\mathbf{S}(a)=\mathbf{S}(b)$. By Claim 5, b can be written as $b=a y_{1} \ldots y_{r}$ where $\left\{y_{1}, \ldots, y_{r}\right\}=\mathbf{S}(a)$. Take a variable $x \in \mathbf{S}(a)$. By Claim 4 we have $b \leqslant$ $a x_{1} \ldots x_{k}$ for some k, where $x_{1}=\ldots=x_{k}=x$. Clearly, this is possible only if $\mathbf{S}(a)=\{x\}$. In particular, $y_{1}=\ldots y_{r}=x$. Take a variable $y \neq x$. We have $(a y, b y) \in$ T, so that $a y \in U$. Moreover, ay contains two variables and we have already proved that every such term, belonging to U, is well-behaved. Hence ($a y, a y \cdot x x$) $\in T$ and then $(a x, a x \cdot x x) \in T$. From this we get $\left(a,(a x \cdot x x) y_{2} \ldots y_{r}\right) \in T$, a contradiction by Claim 5 .

Claim 7: U is a full set.
Let $a \in U$ and $a \leqslant b$. We need to prove that $b \in U$. We have $f(a) \subseteq b$ for a substitution f. By Claim 2 there exists a term c with $(a, c) \in T, a \subset c$ and $\mathbf{S}(a)=\mathbf{S}(c)$. Denote by b^{\prime} the term obtained from b by replacing one occurrence of $f(a)$ with $f(c)$. Since $\left(b, b^{\prime}\right) \in T$ and b^{\prime} is longer than b, we get $b \in U$.

Claim 8: We have $(a, b) \in T$ for any two terms $a, b \in U$ with $\mathbf{S}(a)=\mathbf{S}(b)$.
Indeed, by Claim 6 we have $(a, a b) \in T$ and $(b, a b) \in T$.
Claim 9: If $T \neq 0_{L}$, then U is nonempty.
We have $(a, b) \in T$ for some $a \neq b$. We can suppose that $b=p(a)$ for a permutation p of $\mathbf{S}(a)$, since otherwise both a and b belong to U. Denote by x_{1}, \ldots, x_{n} the variables from $\mathbf{S}(a)$, so that $n>1$. We have $\left(a x_{1} \ldots x_{n}, b x_{1} \ldots x_{n}\right) \in T$, and clearly $b x_{1} \ldots x_{n} \neq p\left(a x_{1} \ldots x_{n}\right)$ for any permutation p of $\mathbf{S}(a)$.

Theorem 2.3. E_{s} is the only modular coatom T of L with the property that whenever $T=A \vee B$ for two modular elements A, B of L then either $T=A$ or $T=B$. Consequently, E_{s} is a definable element of L.

Proof. E_{s} is modular by Theorem 2.1; of course, it is a coatom of L. Let $E_{s}=A \vee B$ where A and B are both modular. Let x be a variable. Since $(x, x x) \in E_{s}$, there exists an $A \cup B$-derivation of ($x, x x$). Consequently, there exists a term $a \neq x$ such that (x, a) belongs to either A or B. Without loss of generality, $(x, a) \in A$. But then it follows from Theorem 2.2 that $A=E_{s}$.

Suppose that there exists a modular coatom $T \neq E_{s}$ of L with the same property. If $(x, a) \in T$ for some variable x and some $a \neq x$, then $T=E_{s}$ by Theorem 2.2, a contradiction. It follows that $T \subseteq I_{J}$ where J is the full set of the terms that are not variables. Since T is a coatom, we get $T=I_{J}$. But I_{J} is a nontrivial join of two modular elements, e.g., $I_{J}=\left(I_{J} \cap E_{s}\right) \vee I_{K}$ where K is the set of all terms of length at least 3 .

Theorem 2.4. A theory T is an intersection of a principal ideal theory with E_{s} if and only if it satisfies the following three conditions:
(1) T is modular and $0_{L} \subset T \subseteq E_{s}$;
(2) for every modular theory S such that $0_{L} \subset S \subset T$ there exists a theory $U \subseteq T$ for which there is no smallest theory $V \subseteq T$ with the property $U \subseteq(U \cap S) \vee V$;
(3) whenever $T=M_{1} \vee M_{2}$ where M_{1} and M_{2} are both modular theories then either $T=M_{1}$ or $T=M_{2}$.

Consequently, the set of the theories $I_{a} \cap E_{s}$, where a is a term, is definable.
Proof. Let $T=I_{a} \cap E_{s}$. By Theorem 2.1, T is modular; the rest of (1) is clear.
Let $0_{L} \subset S \subset T$ where S is modular. Denote by J the set of the terms t for which there exists a term t^{\prime} such that $\left(t, t^{\prime}\right) \in S$ and $t^{\prime} \neq p(t)$ for any permutation p of $\mathbf{S}(t)$. By Theorem 2.2, J is a nonempty full set and $I_{J} \cap E_{s} \subseteq S$. Since $S \subset T$, we have $J \subset I_{a}$ and $a \notin J$. Put $U=\mathbf{C n}(a, a a)$, so that $U \subseteq T$, and suppose that there is a smallest theory $V \subseteq T$ with $U \subseteq(U \cap S) \vee V$; we need to obtain a contradiction from this assumption. Denote by W the set of the terms $w \in J$ such that $\mathbf{S}(w)=$ $\{x\}$, where x is a fixed variable. Clearly, W is nonempty. For $w \in W$ we have $w x \in J,(w(a), w(a) a) \in U \cap S,(a, w(a)) \in T$ and hence $U \subseteq(U \cap S) \vee \mathbf{C n}(a, w(a))$; consequently, $V \subseteq \mathbf{C n}(a, w(a))$. For every $w \in W,(a, w(a))$ is contained in the theory consisting of the equations (u, v) such that for every variable $y, \nu_{y}(u)-\nu_{y}(v)$ is divisible by $\lambda(w)-1$. Consequently, whenever $(u, v) \in V$ then for every variable y, $\nu_{y}(u)-\nu_{y}(v)$ is divisible by $\lambda(w)-1$. But obviously, for every $w \in W$ there exists a term $w^{\prime} \in W$ with $\lambda\left(w^{\prime}\right)=\lambda(w)+1$. It follows that $(u, v) \in V$ is possible only if $\nu_{y}(u)=\nu_{y}(v)$ for all variables y. Since $(a, a a) \in(U \cap S) \vee V$, there is an $(U \cap S) \cup V$ derivation u_{0}, \ldots, u_{n} of $(a, a a)$. Let us prove by induction on i that $\lambda\left(u_{i}\right)=\lambda(a)$ and $\mathbf{S}\left(u_{i}\right)=\mathbf{S}(a)$. This is clear for $u_{i}=u_{0}=a$; let it be true for some u_{i} with $i<n$. If $\left(u_{i}, u_{i+1}\right) \in V$, then the conclusion for u_{i+1} follows from the above observation. If $\left(u_{i}, u_{i+1}\right) \in U \cap S$, then it follows from $a \notin J$ that $u_{i+1}=p\left(u_{i}\right)$ for a permutation p of $\mathbf{S}\left(u_{i}\right)$, so that $\lambda\left(u_{i+1}\right)=\lambda\left(u_{i}\right)$ and $\mathbf{S}\left(u_{i+1}\right)=\mathbf{S}\left(u_{i}\right)$. The induction has been finished. In particular, $\lambda(a a)=\lambda(a)$, a contradiction.

Let $T=M_{1} \vee M_{2}$ where M_{1} and M_{2} are modular. Since $(a, a a) \in T$, there exists a term b such that $(a, b) \in M_{i}$ for an $i \in\{1,2\}$ and $b \neq p(a)$ for any permutation p of $\mathbf{S}(a)$. Then it follows from Theorem 2.2 that $T=M_{i}$.

Now we are going to prove the converse implication. Let T be a theory satisfying the three conditions. Denote by J the set of the terms t for which there exists a term t^{\prime} such that $\left(t, t^{\prime}\right) \in T$ and $t^{\prime} \neq p(t)$ for any permutation p of $\mathbf{S}(t)$. By Theorem 2.2, J is a nonempty full set and $I_{J} \cap E_{s} \subseteq T$. Suppose that $T \neq I_{J} \cap E_{s}$. Put $S=I_{J} \cap E_{s}$, so that S is modular by Theorem 2.1 and $0_{L} \subset S \subset T$. Let U be a theory contained in T. For every term $a \in J$ we have $a / S=a / T=\{b \in F: \mathbf{S}(a)=\mathbf{S}(b)\}$. For every term $a \notin J$ we have $a / S=\{a\}$, and a / T may contain only the terms $p(a)$ where p is a permutation of $\mathbf{S}(a)$ (so that a / T is finite). From this it follows easily that for any theory V contained in $T, U \subseteq(U \cap S) \vee V$ if and only if $U \cap((F-J) \times(F-J)) \subseteq V$. So, there is a smallest theory among such theories V. This contradiction with (2) proves that $T=I_{J} \cap E_{s}$.

Since J is nonempty, there exists a minimal term a in J. Denote by Q the set of the minimal terms of J that are not similar to a and denote by K the full set generated by Q. Clearly, $T=\left(I_{a} \cap E_{s}\right) \vee\left(I_{K} \cap E_{s}\right)$. By (3), either $T=I_{a} \cap E_{s}$ or $T=I_{K} \cap E_{s}$. But then, $T=I_{a} \cap E_{s}$.

Theorem 2.5. A theory T is an ideal theory if and only if either $T=0_{L}$ or else T is modular, $T \nsubseteq E_{s}$, and there does not exist a modular theory $S \subset T$ such that $S \nsubseteq E_{s}$ and $U \subseteq S$ for any theory $U \subseteq T$ that is an intersection of a principal ideal theory with E_{s}. Consequently, the set of ideal theories is definable. Also, the set of principal ideal theories is definable.

Proof. This follows easily from the previous theorems.

Theorem 2.6. Every principal ideal theory is definable.
Proof. For two terms a, b we have $I_{a} \subseteq I_{b}$ if and only if $a \geqslant b$, so that the ordered set P of principal ideal theories is antiisomorphic to the ordered set of term patterns. By Theorem 2.5, P is a definable subset of the lattice L. According to Theorem 8.1 of [7], every term pattern is a definable element of the ordered set of term patterns. Consequently, every principal ideal theory is a definable element of L.

For every term a denote by $M(a)$ the set of all equations (u, v) such that either $u=v$ or $u>a$ and $v>a$ or $u \sim v \sim a$ and $\mathbf{S}(u)=\mathbf{S}(v)$. It is easy to check that $M(a)$ is a theory. We have $M(a)=M(b)$ if and only if $I(a)=I(b)$ if and only if $a \sim b$.

Proposition 2.7. For a term $a, M(a)$ is the largest modular element T of L such that $T \subset I_{a}$ and $T \nsubseteq E_{s}$.

Consequently, the binary relation R, where $\left(T_{1}, T_{2}\right) \in R$ if and only if $T_{1}=I_{a}$ and $T_{2}=M(a)$ for a term a, is definable.

Proof. First we are going to show that $M(a)$ is modular. Let A, B be two theories such that $A \subseteq B, B \subseteq A \vee M(a)$ and $B \cap M(a) \subseteq A$. We need to show that $A=B$. Suppose, on the contrary, that there is an equation $(b, c) \in B-A$ and take one for which the length n of a minimal $(A \cup M(a))$-derivation b_{0}, \ldots, b_{n} of (b, c) is the smallest possible. We have $(b, c) \notin M(a)$, since otherwise we would have $(b, c) \in B \cap M(a) \subseteq A$. In particular, $a \neq b$ and $n>0$. If $\left(b, b_{1}\right) \in A$ then b_{1}, \ldots, b_{n} is a shorter $(A \cup M(a))$-derivation of the equation $\left(b_{1}, c\right) \in B$, so that $\left(b_{1}, c\right) \in A$ and thus $(b, c) \in A$, a contradiction. We get $\left(b, b_{1}\right) \in M(a)-$ A. Similarly, $\left(b_{n-1}, c\right) \in M(a)-A$. Since $(b, c) \notin M(a)$, we have $b \sim b_{1} \sim a$, $\mathbf{S}(b)=\mathbf{S}\left(b_{1}\right)$ and $b_{n-1}, c>a$ (or vice versa, but the other symmetric case would be handled similarly). Then $n \geqslant 3$. There is a permutation p of $\mathbf{S}(b)$ with $b_{1}=p(b)$. Since $\left(b_{1}, b_{2}\right) \in A$, we have $\left(p^{-1}\left(b_{1}\right), p^{-1}\left(b_{2}\right)\right) \in A$, i.e., $\left(b, p^{-1}\left(b_{2}\right)\right) \in A$. Now, clearly $b, p^{-1}\left(b_{2}\right), p^{-1}\left(b_{3}\right), \ldots, p^{-1}\left(b_{n-1}\right), c$ is a shorter $(A \cup M(a))$-derivation of (b, c), a contradiction.

Clearly, $M(a) \subset I_{a}$ and $M(a) \nsubseteq E_{s}$. Conversely, if T is a modular element of L such that $T \subset I_{a}$ and $T \nsubseteq E_{s}$, then it follows easily from Theorem 2.2 that $T \subseteq M(a)$.

For a term a we denote by I_{a}^{*} the largest ideal theory properly contained in I_{a}, i.e., the ideal theory I_{J} where J is the full set generated by all the covers of a. We have $(u, v) \in I_{a}^{*}$ if and only if either $u=v$ or $u, v>a$.

3. Parallel equations

By a parallel equation we mean a regular equation (a, b) such that a, b are two incomparable terms.

For every term a we denote by G_{a} the set of the permutations p of $\mathbf{S}(a)$ such that $p(a)=a$. Clearly, G_{a} is a subgroup of the symmetric group on $\mathbf{S}(a)$. (See [2] for an exact description of G_{a}).

The following two facts can be found in [1] and [2].
Fact 3.1. Let a be a term and p be a permutation of $\mathbf{S}(a)$. Then $G_{p(a)}=p G_{a} p^{-1}$.
Fact 3.2. Let (a, b) be a parallel equation and p be a permutation of $\mathbf{S}(a)$. Then $(a, p(b)) \in \mathbf{C n}(a, b)$ if and only if $p \in G_{a} \vee G_{b}$ (the join in the lattice of subgroups of the symmetric group on $\mathbf{S}(a)$).

An equation (a, b) is said to be mini-parallel if it is parallel and for any permutation p of $\mathbf{S}(a)$, if $(a, p(b))$ is a consequence of (a, b) then $(a, p(b))$ is equivalent with (a, b).

Lemma 3.3. A parallel equation (a, b) is mini-parallel if and only if

$$
G_{a} \vee G_{p(b)}=G_{a} \vee G_{b}
$$

for every $p \in G_{b}$.
Proof. This follows from Fact 3.2.

Lemma 3.4. Every parallel equation (a, b) has a mini-parallel consequence $(a, p(b))$ for some permutation p of $\mathbf{S}(a)$.

Proof. This is evident.
Example 3.5. The equation $(x y z z,(x x \cdot z z) y)$ is parallel but not mini-parallel; $(x y z z,(x x \cdot y y) z)$ is its mini-parallel consequence.

Lemma 3.6. Let (a, b) be a parallel equation and T be a theory; put $S=\mathbf{S}(a)=$ $\mathbf{S}(b)$. Then $T=\mathbf{C n}(a, p(b))$ for some permutation p of S such that $(a, p(b))$ is mini-parallel if and only if the following are satisfied:
(1) $T \subseteq E_{s}$;
(2) $T \nsubseteq M(a) \vee M(b)$;
(3) $I_{a} \vee I_{b}$ is the ideal theory generated by T;
(4) whenever U is a theory such that $U \subset T$ then $U \subseteq M(a) \vee M(b)$.

Proof. Clearly, $(u, v) \in M(a) \vee M(b)$ if and only if either $u=v$ or $u \sim v \sim a$ and $\mathbf{S}(u)=\mathbf{S}(v)$ or $u \sim v \sim b$ and $\mathbf{S}(u)=\mathbf{S}(v)$ or each of the terms u, v is (strictly) larger than at least one of the terms a, b. Let $T=\mathbf{C n}(a, p(b))$ where $(a, p(b))$ is miniparallel. The first three conditions are obviously satisfied. Let $U \subset T$ and suppose that $U \nsubseteq M(a) \vee M(b)$. Since $U \subseteq I_{a} \vee I_{b}$ and $U \nsubseteq M(a) \vee M(b)$, either $\left(a, a^{\prime}\right) \in U$ for some $a^{\prime} \nsim a$ or $\left(b, b^{\prime}\right) \in U$ for some $b^{\prime} \nsim b$. But $U \subseteq \mathbf{C n}(a, p(b))$, so in each case we get $(a, q p(b)) \in U$ for some permutation q. Since $(a, p(b))$ is mini-parallel, $(a, q p(b))$ is equivalent with $(a, p(b))$. But then $T=U$, a contradiction.

Conversely, let the four conditions be satisfied. By (2) and (3), either (a, a^{\prime}) $\in T$ for some $a^{\prime} \nsim a$ or $\left(b, b^{\prime}\right) \in T$ for some $b^{\prime} \nsim b$. If $\left(a, a^{\prime}\right) \in T$ then $a^{\prime} \sim b$, since otherwise we would have either $a^{\prime}>a$ or $a^{\prime}>b, \mathbf{C n}\left(a, a^{\prime}\right) \nsubseteq M(a) \vee M(b)$ and hence $T=$ $\operatorname{Cn}\left(a, a^{\prime}\right)$ by (4), a contradiction with (3). So, if ($\left.a, a^{\prime}\right) \in T$ then $a^{\prime} \sim b$. Similarly, if $\left(b, b^{\prime}\right) \in T$ then $b^{\prime} \sim a$. In each case we get $(a, p(b)) \in T$ for a permutation p
of $\mathbf{S}(a)$. Since $\mathbf{C n}(a, p(b)) \nsubseteq M(a) \vee M(b)$, by (4) we get $T=\mathbf{C n}(a, p(b))$. If q is a permutation such that $(a, q p(b))$ is a consequence of $(a, p(b))$, then it follows from (4) that $T=\mathbf{C n}(a, q p(b))$. Consequently, $(a, p(b))$ is a mini-parallel equation.

Let a be a term. By an a-permutational theory we mean a theory that has a base consisting of equations $(a, p(a))$, for some permutations p of $\mathbf{S}(a)$.

Proposition 3.7. Let a be a term. A theory T is a-permutational if and only if either $T=0_{L}$ or the following conditions are satisfied:
(1) I_{a} is the ideal theory generated by T;
(2) $T \subseteq M(a)$;
(3) whenever U is a theory such that $U \subseteq M(a)$ and $U \vee I_{a}^{*}=T \vee I_{a}^{*}$ then $T \subseteq U$. Consequently, the binary relation R where $\left(T_{1}, T_{2}\right) \in R$ if and only if $T_{1}=I_{a}$ and T_{2} is an a-permutational theory for some term a, is definable.

Proof. Let T be a-permutational and $T \neq 0_{L}$. Clearly, the conditions (1) and (2) are satisfied. Let $U \subseteq M(a)$ and $U \vee I_{a}^{*}=T \vee I_{a}^{*}$. We have $(u, v) \in U \vee I_{a}^{*}$ if and only if either $(u, v) \in I_{a}^{*}$ or $(u, v) \in U, u \sim v \sim a$ and $\mathbf{S}(u)=\mathbf{S}(v)$. We have $(u, v) \in T \vee I_{a}^{*}$ if and only if either $(u, v) \in I_{a}^{*}$ or $(u, v) \in T, u \sim v \sim a$ and $\mathbf{S}(u)=\mathbf{S}(v)$. Since $U \vee I_{a}^{*}=T \vee I_{a}^{*}$, it follows that for every permutation p of $\mathbf{S}(a)$, $(a, p(a)) \in U$ if and only if $(a, p(a)) \in U$. But T is generated by such equations, so $T \subseteq U$.

Conversely, let (1), (2) and (3) be satisfied. Denote by G the set of the permutations p of $\mathbf{S}(a)$ such that $(a, p(a)) \in T$. Then G is a group and $G_{a} \subseteq G$; it follows from (1) and (2) that $G_{a} \subset G$. Denote by U the theory based on the equations ($a, p(a)$) with $p \in G$, so that U is a-permutational and $U \subseteq T$. Clearly, $U \subseteq M(a)$ and $U \vee I_{a}^{*}=T \vee I_{a}^{*}$. By (3), $T=U$.

Lemma 3.8. Let a, b be two terms, f be a substitution and $x_{1}, \ldots, x_{n}(n \geqslant 0)$ be variables such that
(1) $f(a)=b x_{1} \ldots x_{n}$;
(2) if $1 \leqslant i \leqslant n$ and $i \leqslant \lambda(a)$ then $x_{i} \notin \mathbf{S}(b)$;
(3) if $1 \leqslant i+1 \leqslant i+k \leqslant n$ and $k \leqslant \lambda(a)$ then x_{i+1}, \ldots, x_{i+k} are pairwise distinct.

Then either a is a slim linear term or $a=a_{1} y_{1} \ldots y_{n}$ for a term a_{1} and pairwise distinct variables y_{1}, \ldots, y_{n} not belonging to $\mathbf{S}\left(a_{1}\right)$. If $a=b$ and $n \geqslant 1$, then a is a slim linear term.

Proof. The first statement will be proved by induction on n. For $n=0$ it is clear. Let $n \geqslant 1$ and suppose a is not a slim linear term. Then $a=c d$ for two terms c, d with $f(c)=b x_{1} \ldots x_{n-1}$ and $f(d)=x_{n}$. Of course, d is a variable. By
the induction assumption applied to the terms c, b and the variables x_{1}, \ldots, x_{n-1}, there are only two cases to be considered.

Case 1: c is a slim linear term. Then $a=y_{1} \ldots y_{m} d$ where y_{1}, \ldots, y_{m} are pairwise distinct variables and $d=y_{i}$ for some i. It follows that x_{n} has at least two occurrences in $b x_{1} \ldots x_{n}$, so that $n>\lambda(a)=m+1$; we have $f(d)=x_{n}$, $f\left(y_{m}\right)=x_{n-1}, \ldots, f\left(y_{3}\right)=x_{n-m+2}$ and $\left\{f\left(y_{1}\right), f\left(y_{2}\right)\right\}=\left\{b x_{1} \ldots x_{n-m}, x_{n-m+1}\right\}$. But $b x_{1} \ldots x_{n-m}, x_{n-m+1}, \ldots, x_{n}$ are pairwise different, so y_{1}, \ldots, y_{m}, d are pairwise distinct, a contradiction. This case is not possible.

Case 2: $c=c_{1} y_{1} \ldots y_{n-1}$ where y_{1}, \ldots, y_{n-1} are pairwise distinct variables not belonging to $\mathbf{S}\left(c_{1}\right)$. Then $a=c_{1} y_{1} \ldots y_{n-1} d, f\left(c_{1}\right)=b, f\left(y_{i}\right)=x_{i}$ and $f(d)=x_{n}$. Since $\lambda(a)>n, x_{n} \notin \mathbf{S}\left(b x_{1} \ldots x_{n-1}\right)$ and so $d \notin \mathbf{S}\left(c_{1} y_{1} \ldots y_{n-1}\right)$. We can put $a_{1}=c_{1}$ and $y_{n}=d$.

In order to prove the second statement, let $f(a)=a x_{1} \ldots x_{n}$ and suppose that a is not slim and linear. By the first statement, $a=a_{1} y_{1} \ldots y_{n}$ where y_{1}, \ldots, y_{n} are pairwise distinct variables not belonging to $\mathbf{S}\left(a_{1}\right)$. Since $f\left(a_{1} y_{1} \ldots y_{n}\right)=$ $a_{1} y_{1} \ldots y_{n} x_{1} \ldots x_{n}$, we have $f\left(a_{1}\right)=a_{1} y_{1} \ldots y_{n}$ and hence a_{1} is a slim linear term (it is obvious in this case, or we could also proceed by induction on the length of a). But then a is a slim linear term.

An equation (a, b) is said to be strictly parallel if the following conditions are satisfied:
(1) (a, b) is parallel and neither a nor b is a slim linear term;
(2) $G_{a}=G_{b}=\operatorname{id}_{\mathbf{S}(a)}$;
(3) whenever a is a wonderful extension of a term a_{1} then b is not a substitution instance of a_{1};
(4) whenever b is a wonderful extension of a term b_{1} then a is not a substitution instance of b_{1}.

It follows from Lemma 3.3 that every strictly parallel equation is mini-parallel.

Proposition 3.9. Let (a, b) be a strictly parallel equation and let T be a theory. Then $T=\mathbf{C n}(a, b)$ if and only if the following two conditions are satisfied:
(1) $T=\mathbf{C n}(a, p(b))$ for a permutation p of $\mathbf{S}(a)$ such that ($a, p(b))$ is mini-parallel;
(2) whenever (c, d) is a parallel consequence of (a, b) then $(c, q(d)) \in T$ for a permutation q of $\mathbf{S}(c)$ such that $(c, q(d))$ is mini-parallel.

Proof. The direct implication is obvious. Let (1) and (2) be satisfied. By (1), $T=\mathbf{C n}(a, p(b))$ for some permutation p and we only need to prove that p is the identity. Take a number m such that $m \geqslant \lambda(a)$ and $m \geqslant \lambda(b)$. Take a sequence x_{1}, \ldots, x_{n} of variables such that $\mathbf{S}(a) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$, whenever $1 \leqslant i+1 \leqslant i+k \leqslant$
n and $k \leqslant m$ then x_{i+1}, \ldots, x_{i+k} are pairwise distinct and whenever $x_{i} \in \mathbf{S}(a)$ then $i>m$ and $x_{i-1}, \ldots, x_{i-m} \notin \mathbf{S}(a)$. Clearly, $\left(a x_{1} \ldots x_{n}, b x_{1} \ldots x_{n}\right)$ is a parallel consequence of (a, b). So, by (2), there is a permutation q of $\mathbf{S}\left(a x_{1} \ldots x_{n}\right)$ such that $\left(a x_{1} \ldots x_{n}, q\left(b x_{1} \ldots x_{n}\right)\right)$ is a consequence of $(a, p(b))$.

Let c be a term such that $\left(a x_{1} \ldots x_{n}, c\right)$ is an immediate consequence of either $(a, p(b))$ or $(p(b), a)$. It follows from Lemma 3.8 that $p(b) \not \leq a x_{1} \ldots x_{n}$, so $\left(a x_{1} \ldots x_{n}, c\right)$ can be only an immediate consequence of $(a, p(b))$. There exists a substitution f such that $f(a) \subseteq a x_{1} \ldots x_{n}$ and c can be obtained from $a x_{1} \ldots x_{n}$ by replacing an occurrence of $f(a)$ with $f p(b)$. It follows from Lemma 3.8 that $f(a)=a$, hence $c=f p(b) x_{1} \ldots x_{n}$. Since G_{a} contains only the identity, f is the identity and $c=p(b) x_{1} \ldots x_{n}$.

We can show quite similarly that if c is a term such that $\left(p(b) x_{1} \ldots x_{n}, c\right)$ is an immediate consequence of either $(a, p(b))$ or $(p(b), a)$ then $c=a x_{1} \ldots x_{n}$. Since there exists an $(a, p(b))$-derivation of $\left(a x_{1} \ldots x_{n}, q\left(b x_{1} \ldots x_{n}\right)\right)$, it follows that only two terms can be members of this derivation, namely, the terms $a x_{1} \ldots x_{n}$ and $p(b) x_{1} \ldots x_{n}$. In particular, we get $q\left(b x_{1} \ldots x_{n}\right)=p(b) x_{1} \ldots x_{n}$. Then $q(b)=p(b)$ and $q\left(x_{i}\right)=x_{i}$ for all i. Since $\mathbf{S}(b) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$, it follows that q is the identity and $p(b)=b$.

Theorem 3.10. The set of strictly parallel equations is good.
Proof. The two conditions in Proposition 3.9 can be more formally expressed to obtain the desired first-order formula; the pieces of the form ' $T=\mathbf{C n}(u, g(v))$ for a permutation g such that $(u, g(v))$ is mini-parallel' should be reformulated using Lemma 3.6.

4. Nice equations

A term a is said to be strongly nice if it is a product of two terms, none of which is a variable; it is said to be weakly nice if it is a product of a variable with a term containing this variable; it is said to be nice if it is either strongly or weakly nice. An equation (a, b) is said to be nice if it is regular and both a and b are nice.

Theorem 4.1. Let (a, b) be a nice equation. Then $\mathbf{C n}(a, b)$ is the greatest theory T such that $T \subseteq E_{s}$ and any strictly parallel equation belongs to T if and only if it is a consequence of (a, b). Consequently, the set of nice equations is good.

Proof. Let T be a such a theory; we need to prove that $T \subseteq \mathbf{C n}(a, b)$. Let $(c, d) \in T$ and $c \neq d$. Put $m=\max (\lambda(c), \lambda(d))$. Clearly, there exists a sequence x_{1}, \ldots, x_{n} of variables such that $n>2 m, \mathbf{S}(c) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}, x_{1}, \ldots, x_{m} \notin \mathbf{S}(c)$, x_{1}, \ldots, x_{n-1} are pairwise distinct and $x_{n}=x_{n-m}$.

Suppose that $c x_{1} \ldots x_{n} \leqslant d x_{1} \ldots x_{n}$. Since $n>m$, we have $f\left(c x_{1} \ldots x_{n}\right)=$ $d x_{1} \ldots x_{i}$ for some substitution f and some i; clearly, $i>n-m$. Since $n>2 m$, we have $i-m>1$ and $f\left(x_{n}\right)=x_{i}, f\left(x_{n-1}\right)=x_{i-1}, \ldots, f\left(x_{n-m}\right)=x_{i-m}$. If $i \neq n$, we get a contradiction from $x_{n}=x_{n-m}$ and $x_{i} \neq x_{i-m}$. So, $i=n$ and $f\left(c x_{1} \ldots x_{n}\right)=d x_{1} \ldots x_{n}$. Consequently, one of the following two cases takes place.

Case 1: $f(c)=d$ and $f\left(x_{i}\right)=x_{i}$ for all i. Since $\mathbf{S}(c) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$, we get $f(c)=c$, so that $c=d$, a contradiction.

Case 2: $f(c)=x_{1}, f\left(x_{1}\right)=d$ and $f\left(x_{i}\right)=x_{i}$ for all $i \geqslant 2$. Then c is a variable, $c=x_{j}$ for some j and clearly $j \neq 1$, so that $f(c)=c$ and again $c=d$, a contradiction.

We have proved $c x_{1} \ldots x_{n} \not \leq d x_{1} \ldots x_{n}$. Quite similarly, $d x_{1} \ldots x_{n} \not \leq c x_{1} \ldots x_{n}$. So, $\left(c x_{1} \ldots x_{n}, d x_{1} \ldots x_{n}\right)$ is a parallel equation. Obviously, it is strictly parallel. Since it belongs to T, it is a consequence of (a, b) and there is an (a, b)-derivation u_{0}, \ldots, u_{k} of this equation.

Let us prove by induction on i that $u_{i}=v_{i} x_{1} \ldots x_{n}$ for some term v_{i} such that $\left(c, v_{i}\right)$ is a consequence of (a, b). For $i=0$ it is clear. Let $i \geqslant 1$. Without loss of generality, $\left(u_{i-1}, u_{i}\right)$ is an immediate consequence of (a, b). There is a substitution f such that $f(a) \subseteq u_{i-1}=v_{i-1} x_{1} \ldots x_{n}$ and u_{i} results from u_{i-1} by replacing $f(a)$ with $f(b)$. If $f(a) \subseteq v_{i-1}$, then $u_{i}=v_{i} x_{1} \ldots x_{n}$ where v_{i} results from v_{i-1} by replacing $f(a)$ with $f(b)$, so that $\left(v_{i-1}, v_{i}\right)$ is a consequence of (a, b) and then it follows from the induction assumption that $\left(c, v_{i}\right)$ is a consequence of (a, b). The other case is $f(a)=v_{i-1} x_{1} \ldots x_{r}$ for some $r \geqslant 1$. If $r \leqslant m$ then $x_{r} \notin \mathbf{S}\left(v_{i-1} x_{1} \ldots x_{r-1}\right)$, so that a cannot be nice, a contradiction. Hence $r>m$. Then x_{r-m+1}, \ldots, x_{r} are pairwise distinct variables; since $\lambda(a) \leqslant m$ and $f(a)=e x_{r-m+1} \ldots x_{r}$ for some term e, we get that a is a slim linear term; but then a is not nice, a contradiction.

In particular, $d x_{1} \ldots x_{n}=v_{n} x_{1} \ldots x_{n}$ where $\left(c, v_{n}\right)$ is a consequence of (a, b). But then (c, d) is a consequence of (a, b). We have proved $T \subseteq \mathbf{C n}(a, b)$.

5. Modest equations

An equation (a, b) is said to be modest if it is regular, a, b are of length $\geqslant 3$ and there exists a variable x such that $a=a_{1} x$ and $b=b_{1} x$ for some terms a_{1}, b_{1} with $x \notin \mathbf{S}\left(a_{1}\right)$ and $x \notin \mathbf{S}\left(b_{1}\right)$.

Denote by E_{M} the set of the equations (a, b) such that either $a=b$ or (a, b) is either nice or modest.
(The reason why we forbid terms of length less than 3 in the definition of a modest equation is that if we discarded it, then E_{M} would not be transitive: we would have $(x x y, x y) \in E_{M}$ and $(x y, y y x) \in E_{M}$ but $\left.(x x y, y y x) \notin E_{M}.\right)$

Proposition 5.1. E_{M} is a theory. It is the greatest theory T such that $T \subseteq E_{s}$, $T \subseteq I_{x y z} \vee I_{x x}$ and whenever (u, v) is either strictly parallel or nice then $(u, v) \in T$ if and only if $(u, v) \in E_{M}$. Consequently, E_{M} is a definable element of L.

Proof. One can easily check that E_{M} is a theory. Let T be a theory with the above mentioned properties; we must prove $T \subseteq E_{M}$. Suppose, on the contrary, that there exists an equation $(c, d) \in T-E_{M}$. Without loss of generality, $c=c_{1} x$ where $x \in X-\mathbf{S}\left(c_{1}\right)$, while d is not of such a form (with the same x).

We can suppose that c_{1} and d are both nice. Indeed, if this was not the case, then instead of (c, d) we could take the equation $(f(c), f(d))$ where f is the substitution with $f(x)=x$ and $f(y)=y y$ for all variables $y \neq x$; we have $(f(c), f(d)) \in T-E_{M}$, and the terms $f\left(c_{1}\right)$ and $f(d)$ are both nice.

Put $\mathbf{S}\left(c_{1}\right)=\left\{x_{1}, \ldots, x_{n}\right\}$. The equations $\left(c_{1}, x_{1} x_{1} \cdot x_{1} x_{1} x_{2} \ldots x_{n}\right)$ and ($d, x_{1} x_{1} x$. $x_{1} x_{1} x_{1} x_{2} \ldots x_{n}$) are both nice, belong to E_{M} and hence belong to T. Then also $\left(c,\left(x_{1} x_{1} \cdot x_{1} x_{1} x_{2} \ldots x_{n}\right) x\right)$ belongs to T and we get $\left(\left(x_{1} x_{1} \cdot x_{1} x_{1} x_{2} \ldots x_{n}\right) x, x_{1} x_{1} x\right.$. $\left.x_{1} x_{1} x_{1} x_{2} \ldots x_{n}\right) \in T$, since $(c, d) \in T$. Clearly, this equation is strictly parallel and so it follows that it belongs to E_{M}; but it does not belong to E_{M} and we get a contradiction.

Theorem 5.2. Let (a, b) be a modest equation. Then $\mathbf{C n}(a, b)$ is the greatest theory T such that $T \subseteq E_{M}$ and any nice equation belongs to T if and only if it is a consequence of (a, b). Consequently, the set of modest equations is good.

Proof. Let $(a, b)=\left(a_{1} x_{0}, b_{1} x_{0}\right)$. Let T be such a theory; we need to prove $T \subseteq \mathbf{C n}(a, b)$. Let $(c, d) \in T$ and $c \neq d$; we are going to prove that $(c, d) \in \mathbf{C n}(a, b)$. If (c, d) is nice, it is clear. Suppose (c, d) is not nice. Since $(c, d) \in E_{M}$, it follows that (c, d) is modest. We have $c=c_{1} x$ and $d=d_{1} x$ for two terms c_{1}, d_{1} and a variable $x \notin \mathbf{S}\left(c_{1}\right)=\mathbf{S}\left(d_{1}\right)$. Take a variable $y \in \mathbf{S}\left(c_{1}\right)$. The equation $\left(c_{1} y, d_{1} y\right)$ is nice and belongs to T, so it is a consequence of (a, b). There is an (a, b)-derivation w_{0}, \ldots, w_{n} of ($c_{1} y, d_{1} y$).

Let us prove by induction on i that $w_{i}=s_{i} y$ for a term s_{i} such that $\left(c_{1} x, s_{i} x\right) \in$ $\mathbf{C n}(a, b)$. For $i=0$ it is clear. Let $i \geqslant 1$. The equation $\left(w_{i-1}, w_{i}\right)$ is an immediate consequence of either (a, b) or (b, a); without loss of generality, it is sufficient to consider the case when it is an immediate consequence of (a, b). There is a substitution f such that $f(a) \subseteq w_{i-1}=s_{i-1} y$ and w_{i} results from w_{i-1} by replacing $f(a)$ with $f(b)$. If $f(a) \subseteq s_{i-1}$, then everything is clear. The other case is $f(a)=s_{i-1} y$. Then $f\left(a_{1}\right)=s_{i-1}, f\left(x_{0}\right)=y$ and $w_{i}=f\left(b_{1}\right) y$. Put $s_{i}=f\left(b_{1}\right)$, so that $w_{i}=s_{i} y$. Denote by g the substitution with $g\left(x_{0}\right)=x$ and $g(z)=f(z)$ for all variables $z \neq x_{0}$. Since g coincides with f on $\mathbf{S}\left(a_{1}\right)=\mathbf{S}\left(b_{1}\right)$, we have $f\left(a_{1}\right)=g\left(b_{1}\right)$. Then $g(a)=g\left(a_{1}\right) x=$
$f\left(a_{1}\right) x=s_{i-1} x$ and $g(b)=g\left(b_{1}\right) x=f\left(b_{1}\right) x=s_{i} x$. Since $(g(a), g(b)) \in \mathbf{C n}(a, b)$, we get $\left(s_{i-1} x, s_{i} x\right) \in \mathbf{C n}(a, b)$ and hence $\left(c_{1} x, s_{i} x\right) \in \mathbf{C n}(a, b)$.

In particular, for $i=n$ we get $\left(c_{1} x, d_{1} x\right) \in \mathbf{C n}(a, b)$, i.e., $(c, d) \in \mathbf{C n}(a, b)$.

6. UnARY EQUATIONS

An equation (a, b) is said to be unary if $\mathbf{S}(a)=\mathbf{S}(b)=\{x\}$ for a variable x.

Theorem 6.1. Let (a, x) be a unary equation such that x is a variable and $a \neq x$. Then $\mathbf{C n}(a, x)$ is the greatest theory T such that $T \subseteq E_{s}$ and any nice equation belongs to T if and only if it is a consequence of (a, x). Consequently, the set of unary equations is good.

Proof. Let T be such a theory; we need to prove that $T \subseteq C$ where $C=$ $\mathbf{C n}(a, x)$. Let $(c, d) \in T$ and $c \neq d$. For every variable $y \in \mathbf{S}(c)$ take four distinct variables $y_{1}, y_{2}, y_{3}, y_{4}$ in such a way that if $y \neq z$ then the sets $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ and $\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ are disjoint. Denote by f the substitution with $f(y)=y_{1} y_{2} \cdot y_{3} y_{4}$ for all $y \in \mathbf{S}(c)$. Since $(f(c), f(d)) \in T$ is a nice equation, we have $(f(c), f(d)) \in C$. Clearly, there exists a substitution g such that $g f(y)=\sigma_{y}^{x} \sigma_{a}^{x}(a)$ for all $y \in \mathbf{S}(c)$. We have $\left(\sigma_{y}^{x} \sigma_{a}^{x}(a), y\right) \in C$ and thus $(g f(y), y) \in C$ for all $y \in \mathbf{S}(c)$. Hence $(g f(c), c) \in C$ and $(g f(d), d) \in C$; since $(f(c), f(d)) \in C$, we have $(g f(c), g f(d)) \in C$ and we get $(c, d) \in C$.

It follows that the set of the unary equations (a, b) such that either $a \in X$ or $b \in X$ is good. The other nontrivial unary equations are all nice, so the whole set is good.

7. $x y$-EQUATIONS

Throughout this section let x and y be two distinct variables. By an $x y$-equation we mean a regular equation with the left side equal to $x y$. The aim of this section is to prove that the set of $x y$-equations is good.

By a 1 -special equation we mean an equation $(x y, a)$ where a is a term such that $\mathbf{S}(a)=\{x, y\}, a \neq x y$ and neither $x x$ nor $y y$ is a subterm of a.

Theorem 7.1. Let $(x y, a)$ be a 1-special equation. Then $\mathbf{C n}(x y, a)$ is the greatest theory T such that $T \subseteq E_{s}$ and every equation that is either modest or unary belongs to T if and only if it is a consequence of $(x y, a)$. Consequently, the set of 1-special equations is good.

Proof. Let T be such a theory and $(c, d) \in T$; we need to prove that (c, d) is a consequence of $(x y, a)$. This is clear if (c, d) is either modest or unary. Consider the remaining case only. Since (c, d) is not unary, c, d are of length at least 2. Take a variable z not belonging to $\mathbf{S}(c)=\mathbf{S}(d)$. The equation $(c z, d z)$ is modest and belongs to T, so it is a consequence of $(x y, a)$. There exists an $(x y, a)$-derivation u_{0}, \ldots, u_{k} of $(c z, d z)$.

Let us prove by induction on i that whenever u_{i} can be written as $u_{i}=v v_{1} \ldots v_{m}$ where $z \notin \mathbf{S}(v)$ and $z \in \mathbf{S}\left(v_{1}\right)$ (less formally, whenever v is a maximal no z containing occurrence of a subterm in $\left.u_{i}\right)$ then (c, v) is a consequence of $(x y, a)$. For $i=0$ it is clear, since $u_{0}=c z$. Let $i>0$. Then u_{i} is obtained from u_{i-1} by replacing one occurrence of a subterm $p q$ (for some terms p, q) with the term $r=\sigma_{p, q}^{x, y}(a)$, or vice versa. If a maximal no z containing occurrence of v in u_{i} is disjoint with $p q$ (with r, respectively), then it is also a maximal no z containing occurrence of v in u_{i-1} and so (c, v) is a consequence of $(x y, a)$ by induction. If it contains $p q$ (or r, respectively) then the same replacement in v transforms v into a maximal no z containing occurrence of a subterm in u_{i-1} and we can again apply induction. The only remaining possibility is that v is a proper subterm of $p q$ (or of r, respectively). But then, in both cases, v is a subterm of either p or q (here we are using the fact that ($x y, a$) is 1 -special) and the induction can be applied again.

Since d is a maximal no z containing occurrence of a subterm in u_{k}, it follows that (c, d) is a consequence of $(x y, a)$.

Let K be a set of equations. By a K-related pair we mean a pair of regular theories T_{1}, T_{2} such that $(x, t) \in T_{i}$ implies $t=x$, there are two terms a_{1}, a_{2} of length $\geqslant 3$ with $\left(x y, a_{i}\right) \in T_{i}$ for $i=1,2$, and whenever $(u, v) \in K$ then $(u, v) \in T_{1}$ if and only if $(u, v) \in T_{2}$.

Lemma 7.2. Let $T_{1} \neq T_{2}$ be a K-related pair where K is the set of the equations that are either strictly parallel or nice or modest or unary or 1-special. For $i=1,2$ denote by H_{i} the set of the terms t of length $\geqslant 3$ such that $(x y, t) \in T_{i}$.
(1) Let $i \in\{1,2\}$. Then H_{i} contains a strongly nice term.
(2) Let $i \in\{1,2\}$. For every term $t \notin X$ there exists a strongly nice term t^{\prime} with $\left(t, t^{\prime}\right) \in T_{i}$.
(3) $T_{1} \nsubseteq T_{2}$ and $T_{2} \nsubseteq T_{1}$.
(4) $H_{1} \nsubseteq H_{2}$ and $H_{2} \nsubseteq H_{1}$.
(5) Let $i \in\{1,2\}$. There exists a term $a \in H_{i}$ such that either $x x \subseteq a$ or $y y \subseteq a$.
(6) Let $i \in\{1,2\}$. There exists a term $a \in H_{i}$ such that both $x x \subseteq a$ and $y y \subseteq a$.
(7) Let $i \in\{1,2\}$. For every term $t \notin X$ there exists a strongly nice term t^{\prime} such that $\left(t, t^{\prime}\right) \in T_{i}$ and $x x \subseteq t^{\prime}$ for all $x \in \mathbf{S}(t)$.
(8) Let $i \in\{1,2\}$. Let $t \notin X$ be a term and x_{1}, \ldots, x_{n} be all (pairwise distinct) variables occurring in t. Then there exists a strongly nice term t^{\prime} such that $\left(t, t^{\prime}\right) \in T_{i}, x_{i} x_{i} \subseteq t^{\prime}$ for all i and $\nu_{x_{1}}\left(t^{\prime}\right)<\nu_{x_{2}}\left(t^{\prime}\right)<\ldots<\nu_{x_{n}}\left(t^{\prime}\right)$.
(9) Let $i \in\{1,2\}$. There exists a positive integer c such that for every term $t \notin X$ there is a positive integer N with the property that for every $k \geqslant 0$ there exists a term t^{\prime} as in (8) of length $N+k c$.
(10) Let u, v be two terms of length $\geqslant 3$. Then $(u, v) \in T_{1}$ if and only if $(u, v) \in T_{2}$.
(11) $H_{1} \cap H_{2}=\emptyset$.
(12) Let $i \in\{1,2\}$ and $a \in H_{i}$. Then either $x x \subseteq a$ or $y y \subseteq a$.

Proof. (1) There is a term a_{i} of length $\geqslant 3$ such that $\left(x y, a_{i}\right) \in T_{i}$. If a_{i} is not already strongly nice, then (without loss of generality) $a_{i}=b_{i} x$ for a term $b_{i} \notin X$. We have $\left(x y, \sigma_{b_{i}, x}^{x, y}\left(a_{i}\right)\right) \in T_{i}$ and the right-hand side of this equation is a strongly nice term.
(2) Let $t=u v$. By (1) there is a strongly nice term $b_{i} \in H_{i}$. We have $\left(t, \sigma_{u, v}^{x, y}(b)\right) \in$ T_{i} where the right-hand side is a strongly nice term.
(3) Suppose, for example, that $T_{1} \subset T_{2}$. Take an equation $(u, v) \in T_{2}-T_{1}$, so that $u, v \notin X$. By (2) there are nice terms u^{\prime}, v^{\prime} with $\left(u, u^{\prime}\right) \in T_{1}$ and $\left(v, v^{\prime}\right) \in T_{1}$. Then $\left(u, u^{\prime}\right) \in T_{2}$ and $\left(v, v^{\prime}\right) \in T_{2}$. Since $(u, v) \in T_{2}$, we get $\left(u^{\prime}, v^{\prime}\right) \in T_{2}$. But (u^{\prime}, v^{\prime}) is nice, so $\left(u^{\prime}, v^{\prime}\right) \in T_{1}$. But then $(u, v) \in T_{1}$, a contradiction.
(4) Suppose, for example, that $H_{1} \subseteq H_{2}$. Take a strongly nice term $a \in H_{1}$. If $\left(u_{1} u_{2}, v_{1} v_{2}\right)$ is an arbitrary nontrivial equation from T_{1}, then $\left(u_{1} u_{2}, \sigma_{u_{1}, u_{2}}^{x, y}(a)\right)$ and ($v_{1} v_{2}, \sigma_{v_{1}, v_{2}}^{x, y}(a)$) both belong to $T_{1} \cap T_{2}$ and so the equation $\left(\sigma_{u_{1}, u_{2}}^{x, y}(a), \sigma_{v_{1}, v_{2}}^{x, y}(a)\right)$ belongs to T_{1}; but it is a nice equation, so it also belongs to T_{2} and we get $\left(u_{1} u_{2}, v_{1} v_{2}\right) \in$ T_{2}. Now $T_{1} \subseteq T_{2}$ is a contradiction with (3).
(5) If, for example, no term from H_{1} contains either $x x$ or $y y$ as a subterm, then ($x y, u$) is a 1 -special equation for all $u \in H_{1}$, so that all such equations belong to T_{2} and $H_{1} \subseteq H_{2}$, a contradiction with (4).
(6) If $a \in H_{i}$ where (for example) $x x \subseteq a$ and $y y \nsubseteq a$, then a contains a subterm $y v$ for some term v; the term obtained from a by replacing $y v$ with $\sigma_{y, v}^{x, y}(a)$ belongs to H_{i} and contains both $x x$ and $y y$.
(7) Let a be as in (6) and t^{\prime} be as in (2). Let $x \in \mathbf{S}(t)$. We have $x v \subseteq t^{\prime}$ for some term v. The term obtained from t^{\prime} by replacing $x v$ with $\sigma_{x, v}^{x, y}(a)$ is strongly nice, T_{i}-related with t^{\prime} and contains $x x$; it also contains $y y$ for any other variable y whenever t^{\prime} did, so that we can make this replacement for all variables in $\mathbf{S}(t)$ one by one.
(8) Let t^{\prime} be as in (7). Take a term $a \in H_{i}$ and replace an occurrence of $x_{2} x_{2}$ in t^{\prime}, perhaps repeatedly, with $\sigma_{x_{2}, x_{2}}^{x, y}(a)$ until t^{\prime} is transformed into a term with more occurrences of x_{2} than of x_{1}. Then do the same with the variables x_{3}, \ldots, x_{n}.
(9) Take a term $a \in H_{i}$ and put $c=\lambda(a)-2$. For a term t, take a term t^{\prime} as in (8) and put $N=\lambda\left(t^{\prime}\right)$. If we replace a subterm $x_{n} x_{n}$ of t^{\prime} (where x_{n} is the variable with the largest number of occurrences) with $\sigma_{x_{n}, x_{n}}^{x, y}(a)$, we obtain a term of length $N+c$ with the same properties of t^{\prime} as in (8). We can do this k-times to obtain a term of length $N+k c$.
(10) Let $(u, v) \in T_{1}$; we are going to prove that $(u, v) \in T_{2}$.

By (2), there is a nice term w such that $(u, w) \in T_{1}$. We shall first prove that $(u, w) \in T_{1} \cap T_{2}$. This is clear if u is nice. Otherwise, $u=u_{1} z$ for a variable z not occurring in u_{1}. It follows easily from (9) that there are (perhaps very long) strongly nice terms u_{1}^{\prime} and $w^{\prime}=w_{1}^{\prime} w_{2}^{\prime}$, both with the properties of t^{\prime} in (8), such that $\lambda\left(u_{1}^{\prime}\right)+1<\lambda\left(w^{\prime}\right), \lambda\left(u_{1}^{\prime}\right)>\lambda\left(w_{1}^{\prime}\right)$ and $\lambda\left(u_{1}^{\prime}\right)>\lambda\left(w_{2}^{\prime}\right)$. The equation $\left(u, u_{1}^{\prime} z\right)$ is modest and belongs to T_{1}, so $\left(u, u_{1}^{\prime} z\right) \in T_{2}$. The equation $\left(w, w^{\prime}\right)$ is nice and belongs to T_{1}, so $\left(w, w^{\prime}\right) \in T_{2}$. The equation $\left(u_{1}^{\prime} z, w^{\prime}\right)$ is strictly parallel and belongs to T_{1}, so $\left(u_{1}^{\prime} z, w^{\prime}\right) \in T_{2}$. We have obtained $(u, w) \in T_{1} \cap T_{2}$.

Similarly, there exists a nice term \bar{w} such that $(v, \bar{w}) \in T_{1} \cap T_{2}$. Since $(u, v) \in T_{1}$, we have $(w, \bar{w}) \in T_{1}$. But (w, \bar{w}) is nice, so $(w, \bar{w}) \in T_{2}$. But then $(u, v) \in T_{2}$.
(11) If there is a term in $H_{1} \cap H_{2}$, then it follows from (10) that for any equation (u, v) we have $(u, v) \in T_{1}$ if and only if $(u, v) \in T_{2}$, so that $T_{1}=T_{2}$, a contradiction.
(12) If $a \in H_{i}$ and neither $x x \subseteq a$ nor $y y \subseteq a$, then $(x y, a)$ is a 1 -special equation, $(x y, a) \in T_{1} \cap T_{2}$ and $a \in H_{1} \cap H_{2}$, a contradiction with (11).

By a 2 -special term we mean a term $t_{1} t_{2}$ where $\mathbf{S}\left(t_{1}\right)=\{x\}$ and $\mathbf{S}\left(t_{2}\right)=\{y\}$. By a 2 -special equation we mean an equation $(x y, t)$ where t is a 2 -special term of length $\geqslant 3$.

Lemma 7.3. Let $(x y, w)$ be a consequence of a 2 -special equation $(x y, t)$. Then w is 2-special.

Proof. One can easily see that if (r, s) is an immediate consequence of a 2 special equation then r is 2 -special if and only if s is 2 -special.

Theorem 7.4. Let $(x y, a)$ be a 2-special equation. Then $C=\mathbf{C n}(x y, a)$ is the only theory T such that $T \subseteq E_{s}$, the ideal theory generated by T equals $I_{x y}$, and every equation that is either strictly parallel or nice or modest or unary or 1-special belongs to T if and only if it is a consequence of $(x y, a)$. Consequently, the set of 2 -special equations is good.

Proof. Let T be a theory with these properties. We have $a=u(x) v(y)$ for two unary terms u and v. Since $I_{x y}$ is the ideal theory generated by T, there exists a term b of length $\geqslant 3$ such that $(x y, b) \in T$. We have $\mathbf{S}(b)=\{x, y\}$ and so we
can write $b=b(x, y)$. Clearly, $\left(x y, u^{\prime} v^{\prime}\right)$ for two some terms u^{\prime}, v^{\prime} not belonging to X. Since $(x y, b(x, y)) \in T$, we have $\left(u^{\prime} v^{\prime}, b\left(u^{\prime}, v^{\prime}\right)\right) \in T$. This equation is nice, so $\left(u^{\prime} v^{\prime}, b\left(u^{\prime}, v^{\prime}\right)\right) \in C$. Then $\left(x y, b\left(u^{\prime}, v^{\prime}\right)\right) \in C$. By Lemma $7.3, b\left(u^{\prime}, v^{\prime}\right)$ is a 2 -special term. From this it follows that b is a 2 -special term.

Let (U, V) be an arbitrary immediate consequence of $(x y, a)$, so that $U=$ $p q w_{1} \ldots w_{n}$ and $V=u(p) v(q) w_{1} \ldots w_{n}$ for some terms $p, q, w_{1}, \ldots, w_{n}(n \geqslant 0)$. We are going to prove that all 2 -special subterms of U are C-equivalent with $x y$ if and only if all 2 -special subterms of V are C-equivalent with $x y$.

Let all 2 -special subterms of U be C-equivalent with $x y$ and let t be a 2 -special subterm of V. If either $t \subseteq p$ or $t \subseteq q$ or $t \subseteq w_{i}$ for some i then t is a 2 -special subterm of U, so that $(x y, t) \in C$. If $t \subseteq u(p)$ then (since t is a 2 -special term) $t \subseteq p$. Similarly, if $t \subseteq v(q)$, then $t \subseteq q$. The only remaining case is $t=u(p) v(q) w_{1} \ldots w_{i}$ for some $i \geqslant 0$. Then t is C-equivalent with $p q w_{1} \ldots w_{i}$; this is a 2 -special subterm of U and so it is C-equivalent with $x y$.

The converse implication can be proved similarly.
Take a variable $z \notin\{x, y\}$. The equation $(x y z, b z)$ is modest and belongs to T, so it belongs to C and there exists an $(x y, a)$-derivation of $(x y z, b z)$. The left-hand side of this equation contains a single 2 -special subterm, namely, the term $x y$. It follows from what we have just proved that also every 2 -special subterm of $b z$ is C-equivalent with $x y$. But b is a 2 -special subterm of $b z$, so $(x y, b) \in C$. Hence $(x y, b) \in C \cap T$. Now it follows from Lemma 7.2 (11) that $T=C$.

By a 3 -special equation we mean an equation $(x y, a)$ such that $\mathbf{S}(a)=\{x, y\}$ and $x y \subseteq a$.

Lemma 7.5. Let $(x y, a)$ be a 3 -special equation and $C=\mathbf{C n}(x y, a)$. Let z be a variable different from both x and y; let $A_{0}, A_{1}, \ldots, A_{n}$ be an ($x y$,a)-derivation where $A_{0}=x y z$; let u be a term such that $\mathbf{S}(u)=\{x, y\}$ and $z u \subseteq A_{n}$. Then there exists a unary term w such that $(u, w(x y)) \in C$.

Proof. We proceed by induction on n. For $n=0$ everything is clear. Let $n>0, z u \subseteq A_{n}$ and $\mathbf{S}(u)=\{x, y\}$. If $z u \subseteq A_{n-1}$, we are done by induction. So, let $z u \nsubseteq A_{n-1}$. There are two cases.

Case 1: $A_{n-1}=a(r, s) p_{1} \ldots p_{k}$ and $A_{n}=r s p_{1} \ldots p_{k}$ for some terms $r, s, p_{1}, \ldots, p_{k}$ $(k \geqslant 0)$. Then $z u \nsubseteq p_{i}$ for all $i, z u \nsubseteq r s$ (since $\left.r s \subseteq a(r, s) \subseteq A_{n-1}\right)$ and thus $z u=$ $r s p_{1} \ldots p_{j}$ for some $j>0$. Since z is a variable, $z=p_{j}$ and $u=r s p_{1} \ldots p_{j-1}$. For $u^{\prime}=$ $a(r, s) p_{1} \ldots p_{j-1}$ we have $\left(u, u^{\prime}\right) \in C, \mathbf{S}\left(u^{\prime}\right)=\{x, y\}, z u^{\prime}=a(r, s) p_{1} \ldots p_{j} \subseteq A_{n-1}$ and so, by induction, $\left(u^{\prime}, w(x y)\right) \in C$ for a unary term w. But then $(u, w(x, y)) \in C$.

Case 2: $A_{n-1}=r s p_{1} \ldots p_{k}$ and $A_{n}=a(r, s) p_{1} \ldots p_{k}$ for some terms r, s, p_{1}, \ldots, p_{k}. If $z u=a(r, s) p_{1} \ldots p_{j}$ for some $j>0$, then we can proceed similarly as in

Case 1. Of course, $z u \nsubseteq p_{j}$ for all j. So, the only remaining case is $z u \subseteq a(r, s)$. We have $z u \nsubseteq r$ and $z u \nsubseteq s$, so that $z u=b(r, s)$ for a non-variable subterm b of a. Since z is a variable not contained in u, this is possible only if either $z=r$ and $u=c(s)$ or else $z=s$ and $u=c(r)$ for a unary term c. By symmetry, it is sufficient to consider the case $z=r, u=c(s)$. We have $r s \subseteq A_{n-1}$ where $r=z$ and $\mathbf{S}(s)=\{x, y\}$, so by induction $(s, w(x y)) \in C$ for a unary term w. But then $(c(s), c(w(x y))) \in C$, i.e., $(u, c(w)(x y)) \in C$ where $c(w)$ is a unary term.

Theorem 7.6. Let $(x y, a)$ be a 3 -special equation. Then $C=\mathbf{C n}(x y, a)$ is the only theory T such that $T \subseteq E_{s}$, the ideal theory generated by T equals $I_{x y}$, and every equation that is either strictly parallel or nice or modest or unary or 1-special or 2-special belongs to T if and only if it is a consequence of $(x y, a)$. Consequently, the set of 3 -special equations is good.

Proof. Let T be a theory with these properties. Since $I_{x y}$ is the ideal theory generated by T, there exists a term t of length $\geqslant 3$ such that $(x y, t) \in T$; we have $\mathbf{S}(t)=\{x, y\}$. Take a variable $z \notin\{x, y\}$. The equation $(x y z, t z)$ is modest and belongs to T, so it belongs to C. By Lemma 7.5 , there is a unary term w such that $(t, w(x y)) \in C$.

Suppose $T \neq C$, so that by Lemma $7.2(11)$ there is no term b except $x y$ with $(x y, b) \in C \cap T$. In particular, $(x y, t) \notin C$ and thus w is not a variable. Also, t is not 2-special; since $\mathbf{S}(t)=\{x, y\}$, it follows that t is nice. Since w is not a variable, $w(x y)$ is also nice and thus $(t, w(x y))$ is a nice equation; since it belongs to C, we get $(t, w(x y)) \in T$. Hence $(x y, w(x y)) \in T$. But this is a 1 -special equation, so $(x y, w(x y)) \in T \cap C$, a contradiction.

By a 4 -special term we mean a term a such that $\mathbf{S}(a)=\{x, y\}, a$ is strongly nice and the following two conditions are satisfied:
(1) whenever $u \notin X$ is a proper subterm of a then $f(u) \neq g(a)$ for all substitutions f, g;
(2) whenever $f(a)=g(a)$ for two substitutions f, g then $f(x y)=g(x y)$.

By a 4 -special equation we mean an equation $(x y, a)$ such that a is a 4 -special term.

Theorem 7.7. Let $(x y, a)$ be a 4 -special equation. Then $C=\mathbf{C n}(x y, a)$ is the only theory T such that $T \subseteq E_{s}$, the ideal theory generated by T equals $I_{x y}$, and every equation that is either strictly parallel or nice or modest or unary or 1-special belongs to T if and only if it is a consequence of $(x y, a)$. Consequently, the set of 4 -special equations is good.

Proof. Let T be a theory with these properties; we need to prove that $T=C$.

Let $a=a_{1} a_{2}$ and write a as $a=a(x, y)$. Denote by A the set of the terms t such that $a \not \leq t$. For $u, v \in A$ define a term $u \circ v \in A$ by induction on the length of $u v$ as follows:

$$
u \circ v= \begin{cases}u v & \text { if } u v \in A \\ p \circ q & \text { if } u v=a(p, q) \text { for two terms } p \text { and } q .\end{cases}
$$

It follows from (2) that \circ is a correctly defined commutative binary operation on A.
Let h be a homomorphism of the groupoid T of all terms into the groupoid (A, \circ); put $p=h(x)$ and $q=h(y)$. Let us prove by induction on the length of u that if u is a proper subterm of a then $h(u)=u(p, q)$. This is clear if $u \in\{x, y\}$. Now let $u=u_{1} u_{2}$. Then $h(u)=h\left(u_{1}\right) \circ h\left(u_{2}\right)=u_{1}(p, q) \circ u_{2}(p, q)$ by the induction assumption. It follows from (1) that $u(p, q) \in A$, so that $h(u)=u_{1}(p, q) \circ u_{2}(p, q)=$ $u_{1}(p, q) u_{2}(p, q)=u(p, q)$ as desired.

In particular, we have $h(a)=h\left(a_{1}\right) \circ h\left(a_{2}\right)=a_{1}(p, q) \circ a_{2}(p, q)=p \circ q=h(x y)$. This means that the groupoid (A, \circ) satisfies the equation $(x y, a)$.

Denote by H the extension of the identity on X to a homomorphism of the groupoid T of all terms onto the groupoid (A, \circ). Clearly, $H(u)=u$ for all $u \in A$. Let us prove by induction on the length of a term t that $(t, H(t)) \in C$. This is clear if $t \in X$. Now let $t=t_{1} t_{2}$. We have $H(t)=h\left(t_{1}\right) \circ h\left(t_{2}\right)$ where, by the induction assumption, $\left(t_{1}, h\left(t_{1}\right)\right) \in C$ and $\left(t_{2}, h\left(t_{2}\right)\right) \in C$. If $H\left(t_{1}\right) \circ h\left(t_{2}\right)=H\left(t_{1}\right) H\left(t_{2}\right)$, we get $\left(H(t), t_{1} t_{2}\right) \in C$ as desired. In the opposite case we have $H\left(t_{1}\right) H\left(t_{2}\right)=a(p, q)$ for some $p, q \in A$, and $H(t)=p \circ q$. Since (clearly) $p q$ is shorter than t, by the induction assumption we have $(p q, p \circ q) \in C$. Of course, $(p q, a(p, q)) \in C$; since $a(p, q)=H\left(t_{1}\right) H\left(t_{2}\right)$ and $\left(H\left(t_{i}\right), t_{i}\right) \in C$, we get $(H(t), t) \in C$.

From this it follows that for any terms t and $u,(t, u) \in C$ if and only if $H(t)=$ $H(u)$.

Since $I_{x y}$ is the ideal theory generated by T, there exists a term b of length $\geqslant 3$ such that $(x y, b) \in T$. Take a variable $z \notin\{x, y\}$. The modest equation $(x y z, t z)$ belongs to T, so that it also belongs to C. Consequently, $H(x y z)=H(t z)$. But $H(x y z)=x y z$ and (since a is strictly nice) $H(t z)=H(t) z$. We get $x y z=H(t) z$, so that $x y=H(t)$ and $(x y, t) \in C \cap T$. By Lemma 7.2 we get $T=C$.

By a 5 -special equation we mean an equation $(x y, a)$ such that $(x y, a)$ is not 2 -special, $\mathbf{S}(a)=\{x, y\}$ and $x y \nsubseteq a$.

Lemma 7.8. Let $(x y, a)$ be a 5 -special equation. Let t be a term such that $\mathbf{S}(t)=\{x, y\}$ and $x y \nsubseteq t$. Then $(t, u v) \in \mathbf{C n}(x y, a)$ for two terms u, v such that $\mathbf{S}(u)=\mathbf{S}(v)=\{x, y\}$ and $x y \nsubseteq u v$.

Proof. Since a is not 2-special, without loss of generality $a=a_{1} a_{2}$ where $\mathbf{S}\left(a_{2}\right)=\{x, y\}$ and $x \in \mathbf{S}\left(a_{1}\right)$. Let $t=t_{1} t_{2}$. We can assume that at least one of
the terms t_{1}, t_{2} contains both x and y, because otherwise t could be replaced with $a\left(t_{1}, t_{2}\right)$. Without loss of generality, $\mathbf{S}\left(t_{2}\right)=\{x, y\}$. Then we can take $u v=a\left(t_{2}, t_{1}\right)$.

Lemma 7.9. Let $(x y, a)$ be a 5 -special equation. Let t be a term such that $\mathbf{S}(t)=\{x, y\}$ and $x y \nsubseteq t$. Then $\left(t, t^{\prime}\right) \in \mathbf{C n}(x y, a)$ for a term t^{\prime} such that $x y \nsubseteq t^{\prime}$ and t^{\prime} has a subterm $u v$ with $\mathbf{S}(u)=\{x\}, \mathbf{S}(v)=\{y\}, u \neq x$ and $v \neq y$.

Proof. Let w be a minimal subterm of t with $\mathbf{S}(w)=\{x, y\}$. Then $w=w_{1} w_{2}$ where $\mathbf{S}\left(w_{1}\right)=\{x\}$ and $\mathbf{S}\left(w_{2}\right)=\{y\}$. Also, let b be a minimal subterm of a with $\mathbf{S}(b)=\{x, y\}$. Then $b=b_{1} b_{2}$ where $\mathbf{S}\left(b_{1}\right)=\{x\}$ and $\mathbf{S}\left(b_{2}\right)=\{y\}$. Without loss of generality, $b_{2} \neq y$. If $w_{1}=x$ then $w_{2} \neq y$ and we can replace the subterm w of t with the subterm $a\left(w_{2}, w_{1}\right) \supseteq b_{1}\left(w_{2}\right) b_{2}\left(w_{1}\right)$. If $w_{2}=y$ then $w_{1} \neq x$ and we can replace the subterm w of t with the subterm $a\left(w_{1}, w_{2}\right) \supseteq b_{1}\left(w_{1}\right) b_{2}\left(w_{2}\right)$.

In the following we are going to prove that every 5 -special equation has at least one 4 -special consequence. Let $(x y, a)$ be a 5 -special equation. It follows from Lemma 7.8 and Lemma 7.9 that we can assume that $a=a_{1} a_{2} \cdot a_{3} a_{4}$ where
(1) for $j=1,2,3,4, a_{j}$ contains a subterm $U_{j} V_{j}$ with $\mathbf{S}\left(U_{j}\right)=\{x\}, \mathbf{S}\left(V_{j}\right)=\{y\}$, $U_{j} \neq x, V_{j} \neq y ;$
(2) a_{2} is essentially longer than $a_{1} a_{3} a_{4}$.

Denote by \equiv the theory based on $(x y, a)$.
Denote by α the term $a(x, x)$ and write it as $\alpha=x x \alpha_{1} \ldots \alpha_{k}(k \geqslant 1)$. Of course, $\alpha \equiv x x$. Put $\alpha^{0}=x x$ and $\alpha^{i+1}=\alpha^{i} \alpha_{1} \ldots \alpha_{k}$, so that $\alpha^{i} \equiv x x$ for all $i \geqslant 0$. Denote by $\beta, \beta_{1}, \ldots, \beta_{k}, \beta^{i}$ the terms $\alpha, \alpha_{1}, \alpha_{k}, \alpha^{i}$ with x replaced by y. Hence $\beta^{i} \equiv y y$ for all $i \geqslant 0$.

Put $N=|a|=|\alpha|=|\beta|$.
For $j=1, \ldots, 4$ and any $i \geqslant 0$ denote by U_{j}^{i} the term obtained from U_{j} by replacing one occurrence of $x x$ with α^{i}, denote by V_{j}^{i} the term obtained from V_{j} by replacing one occurrence of $y y$ with β^{i}, and denote by a_{j}^{i} the term obtained from a_{j} by replacing one occurrence of $U_{j} V_{j}$ with $U_{j}^{i} V_{j}^{i}$.

Let us take a positive integer m such that a_{2}^{m} is essentially longer than a. Put $M=\left|a_{1} a_{2}^{m} \cdot a_{3} a_{4}\right|$.

Lemma 7.10. For any $i, j \geqslant 0$, every unary subterm of $a_{1}^{i} a_{2}^{m} \cdot a_{3}^{j} a_{4}$ that is not a variable is a product of two terms, at least one of which is of length $<N$.

Proof. This is obvious.
Lemma 7.11. Let i, j be such that $U_{3}^{j} V_{3}^{j}$ is essentially longer than $a_{1}^{i} a_{2}^{m}$ and a_{1}^{i} is essentially longer than a_{2}^{m}. Then there are no terms p, q with $a_{1}^{i} a_{2}^{m}(p, q) \subseteq a_{3}^{j} a_{4}(p, q)$.

Proof. Suppose $a_{1}^{i} a_{2}^{m}(p, q) \subseteq a_{3}^{j} a_{4}(p, q)$. Clearly, $a_{1}^{i} a_{2}^{m}(p, q)$ is a subterm of either $U_{3}^{j}(p)$ or $V_{3}^{j}(q)$; without loss of generality, it is sufficient to consider the case $a_{1}^{i} a_{2}^{m}(p, q) \subseteq U_{3}^{j}(p)$. Since $a_{1}^{i}(p, q)$ is longer than $a_{2}^{m}(p, q)$, it follows from Lemma 7.10 that $a_{2}^{m}(p, q)=w(p)$ for a subterm w of U_{3}^{j} and $|w|<N$. Now

$$
N|p| \leqslant \nu_{x}\left(a_{2}^{m}\right)|p|<\left|a_{2}^{m}(p, q)\right|=|w(p)|<N|p|,
$$

a contradiction.
Lemma 7.12. Let $i \geqslant M^{2}$ and u be a unary term of length >1 such that whenever $w_{1} w_{2} \subseteq u$ then either $\left|w_{1}\right|<N$ or $\left|w_{2}\right|<N$. Then there are no terms p, q, r with either $a_{1}^{i} a_{2}^{m}(p, q)=u(r)$ or $a_{3}^{i} a_{4}(p, q)=u(r)$.

Proof. Suppose $a_{1}^{i} a_{2}^{m}(p, q)=u(r)$. We can write u as $u=u_{1} u_{2}$ where $a_{1}^{i}(p, q)=u_{1}(r)$ and $a_{2}^{m}(p, q)=u_{2}(r)$. Since $a_{1}^{i}(p, q)$ is longer than $a_{2}^{m}(p, q), u_{1}$ is longer than u_{2} and hence $\left|u_{2}\right|<N$ by Lemma 7.10.

We have $\left|U_{1}^{i}(p) V_{1}^{i}(q)\right|>i|p|+i|q| \geqslant M^{2}(|p|+|q|)$. On the other hand, the length of the rest of $a_{1}^{i} a_{2}^{m}(p, q)$ is less than $M(|p|+|q|)$. Hence the length of $U_{1}^{i}(p) V_{1}^{i}(q)$ makes more than two-thirds (in particular, more than a half) of the length of $a_{1}^{i} a_{2}^{m}(p, q)$. From this it follows that $U_{1}^{i}(p) V_{1}^{i}(p)$ is not a subterm of r, so that $U_{1}^{i}(p)=w_{1}(r)$ and $V_{1}^{i}(q)=w_{2}(r)$ for a subterm $w_{1} w_{2}$ of u.

Suppose $w_{1}, w_{2} \notin X$. We can write w_{1} as $w_{1}=w_{11} w_{12}$ and U_{1}^{i} as $U_{1}^{i}=P Q$ where $P(p)=w_{11}(r)$ and $Q(p)=w_{12}(r)$. Without loss of generality, P is longer than Q; but then $|P|>i \geqslant M^{2}$ and $|Q|<N$. So, $|P|>N|Q|,|P(p)|>N|Q(p)|,\left|w_{11}(r)\right|>$ $N\left|w_{12}(r)\right|$, and hence $\left|w_{1}\right|>N$. Similarly, $\left|w_{2}\right|>N$. This is a contradiction, since $w_{1} w_{2} \subseteq u$.

So, without loss of generality, $w_{1}=x$ and $U_{1}^{i}(p)=r$. Since the length of $U_{1}^{i}(p) V_{1}^{i}(q)$ makes more than two-thirds of the length of $a_{1}^{i} a_{2}^{m}(p, q)$, we cannot have $V_{1}^{i}(q)=r$; hence $w_{2} \notin X$. We can write $w_{2}=w_{21} w_{22}$ and $V_{1}^{i}=R S$ where $|R|>i \geqslant M^{2}$ and $|S|<N$. Without loss of generality, $w_{22}(r)=S(q)$. Then $\left|w_{22}\right|<\left|w_{21}\right|$, so $\left|w_{22}\right|<N$. From this it follows that either $|r|=c|q|$ or $|q|=c|r|$ for some positive integer $c<N$. On the other hand, $|r|=d|p|$ for some $d>M^{2}$, since $U_{1}^{i}(p)=r$ implies that $|r|$ is a multiple of $|p|$ and we have $\left|U_{1}^{i}\right|>i \geqslant M^{2}$.

Put $e=\nu_{x}\left(a_{2}^{m}\right)$ and $f=\nu_{y}\left(a_{2}^{m}\right)$, so that $1 \leqslant e, f \leqslant N$. Then $\left|u_{2}\right||r|=\left|u_{2}(r)\right|=$ $\left|a_{2}^{m}(p, q)\right|=e|p|+f|q|$.

If $|r|=c|q|$ then $c\left|u_{2}\right||q|=e|p|+f|q|$ means that $e|p|$ is divisible by $|q|$, so that $|q| \leqslant e|p|,|r|=c|q| \leqslant c e|p|<M^{2}|p|$ (since $c, e<N$), a contradiction, since $|r|=d|p|$ where $d>M^{2}$.

If $|q|=c|r|$ then $\left|u_{2}\right||r|=e|p|+f c|r|$, so that $e|p|$ is divisible by $|r|$ and hence $|r| \leqslant e|p|$ where $e<N$, a contradiction, since $|r|=d|p|$ where $d>M^{2}$.

This proves that we cannot have $a_{1}^{i} a_{2}^{m}(p, q)=u(r)$. Quite similarly, we cannot have $a_{3}^{i} a_{4}(p, q)=u(r)$.

Lemma 7.13. There exist positive integers i, j with these properties:
(1) $i>M^{2}$;
(2) $\nu_{x}\left(U_{1}^{i} V_{1}^{i}\right)>M^{3}$ and $\nu_{y}\left(U_{1}^{i} V_{1}^{i}\right)>M^{3}$;
(3) a_{1}^{i} is essentially longer than a_{2}^{m};
(4) $U_{3}^{j} V_{3}^{j}$ is essentially longer than $a_{1}^{i} a_{2}^{m}$;
(5) $M \nu_{x}\left(a_{1}^{i} a_{2}\right)<\nu_{x}\left(a_{3}^{j} a_{4}\right)<M^{2} \nu_{x}\left(a_{1}^{i} a_{2}^{m}\right)$ and $M \nu_{y}\left(a_{1}^{i} a_{2}\right)<\nu_{y}\left(a_{3}^{j} a_{4}\right)<M^{2} \nu_{y}\left(a_{1}^{i} a_{2}^{m}\right)$.

Proof. One can take i so large that (1), (2) and (3) are satisfied and, moreover, such that (4) and (5) are satisfied if we take $j=M i+M^{2}$. (In order to check this, it is useful to realize that if t is any of the terms $a_{1}^{k}, a_{1}^{k} a_{2}^{m}, U_{1}^{k}, U_{3}^{k}, a_{3}^{k} a_{4}$ for some k, then $\nu_{x}(t)=(N-2) k+d$ and $\nu_{y}(t)=(N-2) k+d^{\prime}$ for some $0 \leqslant d, d^{\prime}<M$.)

Lemma 7.14. Let $A=a_{1}^{i} a_{2}^{m} \cdot a_{3}^{j} a_{4}$ where i, j satisfy the five conditions of Lemma 7.13, and let $u \notin X$ be a proper subterm of A. Then there are no terms p, q, r, s with $A(p, q)=u(r, s)$.

Proof. Suppose $A(p, q)=u(r, s)$. We can write u as $u=u_{1} u_{2}$ where $a_{1}^{i} a_{2}^{m}(p, q)=u_{1}(r, s)$ and $a_{3}^{j} a_{4}(p, q)=u_{2}(r, s)$.

Suppose that u_{1} is unary. Then, by Lemma $7.12, u_{1} \in X$. If also u_{2} is unary then similarly $u_{2} \in X$, but clearly $u_{1} \neq u_{2}$, so that $x y$ is a subterm of A, a contradiction. So, $u_{1} \in X$ and $\mathbf{S}\left(u_{2}\right)=\{x, y\}$. Then $a_{1}^{i} a_{2}^{m}(p, q) \subseteq a_{3}^{j} a_{4}(p, q)$, a contradiction with Lemma 7.11.

This proves $\mathbf{S}\left(u_{1}\right)=\{x, y\}$. Similarly, $\mathbf{S}\left(u_{2}\right)=\{x, y\}$ (in this case, instead of an application of Lemma 7.11 we can use the fact that $a_{3}^{j} a_{4}(p, q)$ is longer than $\left.a_{1}^{i} a_{2}^{m}(p, q)\right)$.

If $\left|u_{2}\right| \leqslant M$ then $\left|a_{3}^{j} a_{4}(p, q)\right|=\left|u_{2}(r, s)\right|<M(|r|+|s|)<M\left|u_{1}(r, s)\right|=$ $M\left|a_{1}^{i} a_{2}^{m}(p, q)\right|$, contradicting Lemma $7.13(5)$. Hence $\left|u_{2}\right|>M$. Since u_{2} contains both x and y, this is possible only if either $U_{1}^{i} V_{1}^{i}$ or $U_{3}^{j} V_{3}^{j}$ is a subterm of u_{2}. Also, since $u_{1} u_{2} \subset A$, we have $\left|u_{1}\right|<M$ by Lemma 7.10. Since $\nu_{x}\left(u_{2}\right) \geqslant$ $\nu_{x}\left(U_{1}^{i} V_{1}^{i}\right)>M^{3}>M^{2} \nu_{x}\left(u_{1}\right)$ (and similarly for y), we have $\left|u_{2}(r, s)\right|>M^{2}\left|u_{1}(r, s)\right|$, i.e., $\left|a_{3}^{j} a_{4}(p, q)\right|>M^{2}\left|a_{1}^{i} a_{2}^{m}(p, q)\right|$. On the other hand, it follows from Lemma 7.13 (5) that $\left|a_{3}^{j} a_{4}(p, q)\right|<M^{2}\left|a_{1}^{i} a_{2}^{m}(p, q)\right|$ and we have obtained the desired contradiction.

Lemma 7.15. Let $A=a_{1}^{i} a_{2}^{m} \cdot a_{3}^{j} a_{4}$ be as in Lemma 7.14 and let p, q, r, s be terms such that $A(p, q)=A(r, s)$. Then $p q=r s$.

Proof. Clearly, $U_{1}^{i}(p) V_{1}^{i}(q)=U_{1}^{i}(r) V_{1}^{i}(s)$. If $U_{1}^{i}(p)=U_{1}^{i}(r)$ and $V_{1}^{i}(q)=V_{1}^{i}(s)$, then $p=r$ and $q=s$. The other case is $U_{1}^{i}(p)=V_{1}^{i}(s)$ and $V_{1}^{i}(q)=U_{1}^{i}(r)$.

Suppose $p \neq s$. Then these two terms must be of different lengths, and it is possible to consider, without loss of generality, only the case $|p|>|s|$. Clearly, $|p| \geqslant 2|s|$. We have $\left|U_{1}^{i}\right|=2+i(N-2)+c$ and $\left|V_{1}^{i}\right|=2+i(N-2)+d$ for some $0 \leqslant c, d<N$, so that

$$
(2+i(N-2)+c)|p|=\left|U_{1}^{i}(p)\right|=\left|V_{1}^{i}(s)\right|=(2+i(N-2)+d)|s|
$$

from which we get

$$
2(2+i(N-2)+c)|s| \leqslant(2+i(N-2)+d)|s|
$$

and consequently $i<N$. This contradiction proves $p=s$, and $q=r$ can be proved similarly.

Theorem 7.16. The set of $x y$-equations is good.
Proof. It follows from the previous lemmas that the set of 5 -special equations is good. The set of $x y$-equations is the union of the five sets of equations considered and proved to be good in this section.

References

[1] M. Grech: Irreducible varieties of commutative semigroups. J. Algebra 261 (2003), 207-228.
[2] M. Grech: Automorphism of the lattice of equational theories of commutative semigroups. Trans. Am. Math. Soc. 361 (2009), 3435-3462.
[3] J. Ježek: The lattice of equational theories. Part I: Modular elements. Czech. Math. J. 31 (1981), 127-152.
zbl
[4] J. Ježek: The lattice of equational theories. Part II: The lattice of full sets of terms. Czech. Math. J. 31 (1981), 573-603.

Zbl
[5] J. Ježek: The lattice of equational theories. Part III: Definability and automorphisms. Czech. Math. J. 32 (1982), 129-164.
zbl
[6] J. Ježek: The lattice of equational theories. Part IV: Equational theories of finite algebras. Czech. Math. J. 36 (1986), 331-341.
[7] J. Ježek: The ordering of commutative terms. Czech. Math. J. 56 (2006), 133-154.
[8] J. Ježek, R. McKenzie: Definability in the lattice of equational theories of semigroups. Semigroup Forum 46 (1993), 199-245.
[9] A. Kisielewicz: Definability in the lattice of equational theories of commutative semigroups. Trans. Am. Math. Soc. 356 (2004), 3483-3504.
[10] R. N. McKenzie, G.F. McNulty, W.F. Taylor: Algebras, Lattices, Varieties. Volume I. Wadsworth \& Brooks/Cole, Monterey, 1987.
[11] A. Tarski: Equational logic and equational theories of algebras. Proc. Logic Colloq., Hannover 1966. Contrib. Math. Logic (1968), 275-288.
[12] B. M. Vernikov: Proofs of definability of some varieties and sets of varieties of semigroups. Preprint.

Author's address: J aroslav Ježek, Charles University in Prague, Faculty of Mathematics and Physics, Sokolovská 83, 18675 Praha 8, Czech Republic.

