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CHAPTER 1

GEOMETRIC LATTICES

1. Semimodular lattices

By a semimodular lattice we mean a lattice satisfying the upper covering
condition: for any elements a, b, c of the lattice, a ≺ b implies that either
a ∨ c ≺ b ∨ c or a ∨ c = b ∨ c.

1.1. Theorem. A lattice L is semimodular if and only if for any a, b ∈ L,
a ∧ b ≺ a implies b ≺ a ∨ b.

Proof. The direct implication is clear. For the converse, let a ≺ b.
If a ∨ c ≥ b then a ∨ c = b ∨ c. Otherwise, (a ∨ c) ∧ b = a and hence
a ∨ c ≺ (a ∨ c) ∨ b = b ∨ c. �

1.2. Example. The lattice L in Fig. 1 is an example of a semimodular
lattice that is not modular. The subset {0, a, c, e, 1} is a sublattice of L
isomorphic to the pentagon. Consequently, a sublattice of a semimodular
lattice need not be semimodular. Also, the dual of L is not semimodular.

0

a b

c d e

1

Fig. 1

1.3. Theorem. Any interval of a semimodular lattice is a semimodular
lattice.

Proof. It is evident. �

By the length of a finite chain a0 < a1 < · · · < an we mean the number n
(i.e., the cardinality of the chain decreased by 1). A lattice is said to be of
finite length n if it contains a subchain of length n and its every subchain
is (finite and) of length at most n.

1.4. Theorem. Let L be a lattice of finite length. Then L is semimodular
if and only if for any a, b ∈ L, if a ∧ b ≺ a and a ∧ b ≺ b then a ≺ a ∨ b and
b ≺ a ∨ b.
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2 1. GEOMETRIC LATTICES

Proof. The direct implication is clear. In order to prove the converse,
let a ∧ b ≺ a; by 1.1, it is sufficient to prove b ≺ a ∨ b. There exists a chain
a ∧ b = a0 ≺ a1 ≺ · · · ≺ ak = b. By induction on i it is easy to prove
ai ≺ a ∨ ai. In particular, b = ak ≺ a ∨ ak = a ∨ b. �

1.5. Theorem. Let L be a semimodular lattice of finite length. Then
any two maximal subchains of L are of the same length.

Proof. By induction on n, we are going to prove that if L contains
a maximal subchain of length n, then every maximal subchain of L is of
length n. For n ≤ 1, this is obvious. Let n ≥ 2. Let a0 ≺ a1 ≺ · · · ≺ an

be a maximal subchain and let b0 ≺ b1 ≺ · · · ≺ bm be another maximal
subchain. If a1 = b1, then a1 ≺ · · · ≺ an and b1 ≺ · · · ≺ bm are two maximal
subchains in the interval from a1 to an, so that they are of the same length
by induction and we get n = m. Let a1 6= b1. Clearly, the two elements a1

and b1 are incomparable. Since L is semimodular, we have a1 ≺ a1 ∨ b1 and
b1 ≺ a1 ∨ b1. There exists a maximal subchain C in the interval between
a1 ∨ b1 and an = bm. Since both a1 ≺ · · · ≺ an and {a1} ∪ C are maximal
subchains in the interval from a1 to an, by induction they are of the same
length and hence C is of length n− 2. Quite similarly, C is of length m− 2.
Hence n = m. �

For any element a of a lattice L with zero, the height of a (in L) is the
length of the longest finite subchain of the interval [0, a] (if such a longest
finite subchain exists; if not, the height is ∞). The mapping, assigning the
height of A to any element a of L, is called the height function on L. If L
is a lattice of finite length then every element of L is of finite height.

1.6. Theorem. Let L be a semimodular lattice of finite length and let h
be the height function on L. Then for any two elements a, b of L we have
h(a) + h(b) ≥ h(a ∧ b) + h(a ∨ b).

Proof. Denote by k the length of the interval [b, a ∨ b]. There exist
elements a ∧ b = a0 ≺ a1 ≺ · · · ≺ ak = b. It is easy to see that for every
i < k, either a ∨ ai = a ∨ ai+1 or a ∨ ai ≺ a ∨ ai+1. Thus the length of
[a, a ∨ b] is at most k. We have h(b) = h(a ∧ b) + k and h(a ∨ b) ≤ h(a) + k.
From this the inequality follows. �

Let L be a lattice with the least element 0. A subset I of L−{0} is said
to be independent if for any two finite subsets X and Y of I,

∨

X ∧
∨

Y =
∨

(X ∪ Y ).

1.7. Theorem. Let L be a semimodular lattice and a1, . . . , an be n dif-
ferent atoms of L. The following three conditions are equivalent:

(1) the set {a1, . . . , an} is independent
(2) (a1 ∨ · · · ∨ ai) ∧ ai+1 = 0 for i = 1, . . . , n − 1
(3) the height of a1 ∨ · · · ∨ an is n
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Proof. Denote by h the height function on L. Obviously, (1) im-
plies (2). (2) implies (3): Let us prove by induction on i that h(a1∨· · ·∨ai) =
i. For i = 1 it is obvious (since a1 is an atom). If the statement is true for
an i < n then a1 ∨ · · · ∨ ai ≺ a1 ∨ · · · ∨ ai+1 and thus h(a1 ∨ · · · ∨ ai+1) =
h(a1 ∨ · · · ∨ ai) + 1 = i + 1.

(3) implies (1): It is easy to see that h(
∨

X) = |X| for any subset X
of {a1, . . . , an}. Let X and Y be two subsets of {a1, . . . , an}. By 1.6 we
have h(

∨

X) + h(
∨

Y ) ≥ h(
∨

X ∧
∨

Y ) + h(
∨

X ∨
∨

Y ), i.e., |X| + |Y | ≥
h(

∨

X∧
∨

Y )+ |X∪Y |. Thus h(
∨

X∧
∨

Y ) ≤ |X|+ |Y |−|X∪Y | = |X∩Y |.
On the other hand,

∨

X ∧
∨

Y ≥
∨

(X ∩ Y ) and thus h(
∨

X ∧
∨

Y ) ≥
h(

∨

(X ∩ Y )) = |X ∩Y |. Thus h(
∨

X ∧
∨

Y ) = h(
∨

(X ∩ Y )); since the two
elements are comparable, we get

∨

X ∧
∨

Y =
∨

(X ∩ Y ). �

Let L be a semimodular lattice and A be a set of atoms of L. A subset
U of A is said to span A if for every a ∈ A there exists a finite subset V of
U with a ≤

∨

V .

1.8. Theorem. Let L be a semimodular lattice, A be a set of atoms of
L and I, U be two subsets of A such that I is independent and U spans A.
Then there is an independent subset J such that I ⊆ J ⊆ U and A is spanned
by J .

Proof. Obviously, the union of a chain of independent subsets of U
is an independent subset of U . It follows by Zorn’s lemma that there is a
maximal independent subset J of U containing I. It is sufficient to show
that J spans U . Let a ∈ U − J . Then J ∪ {a} is not independent and thus
there exists a finite subset {a1, . . . , an} of J such that {a1, . . . , an, a} is not
independent. It follows from 1.7 that (a1 ∨ · · · ∨ an) ∧ a 6= 0; since a is an
atom, we get (a1 ∨ · · · ∨ an) ∧ a = a and thus a ≤ a1 ∨ · · · ∨ an. �

2. Geometries and geometric lattices

By a closure space we mean an ordered pair 〈A,G〉 such that A is a
set and G is a set of subsets of A, closed under arbitrary intersections (in
partricular, A ∈ G). The elements of A are called points of 〈A,G〉 and the
elements of G are called subspaces of 〈A,G〉. For a subset X of A, the least
subspace containing X (the intersection of all subspaces containing X) is
called the closure of X in〈A,G〉; if G is clear from the context, it is denoted
by X.

A closure space 〈A,G〉 is called algebraic if it satisfies the following
condition: whenever a ∈ X for a subset X of A then a ∈ Y for a finite
subset Y of X. It is easy to see that a lattice is algebraic if and only if it is
isomorphic to the lattice (with respect to inclusion) of all subspaces of an
algebraic closure space. (Recall that an element a of a complete lattice L is
said to be compact if whenever a ≤

∨

S for a subset S of L then a ≤
∨

S′

for a finite subset S′ of S; a complete lattice L is said to be algebraic if every
element of L is the join of a set of compact elements.)
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By a geometry we mean an algebraic closure space 〈A,G〉 such that
the empty set is a subspace, every one-element subset of A is a subspace,
and whenever a ∈ X ∪ {b} (where X ⊆ A and a, b ∈ A) but a /∈ X then

b ∈ X ∪ {a}.
By a geometric lattice we mean a lattice that is isomorphic to the lattice

of all subspaces of some geometry.

2.1. Theorem. The following are equivalent for a lattice L:

(1) L is geometric
(2) L is algebraic, semimodular, and the compact elements of L are

exactly the finite joins of atoms of L
(3) L is complete, semimodular, atomistic (i.e., every element of L is

the join of a set of atoms) and all atoms of L are compact.

Proof. (1) implies (2): Let L be the lattice of subspaces of a geometry
〈A,G〉. Then L is algebraic and thus compact elements of L are exactly
the subspaces X with X finite; since atoms of L are just the one-element
subspaces, it follows that compact elements are exactly the finite joins of
atoms. It remains to prove that L is semimodular.

Let us first prove that if X is a subspace and a is a point not belonging
to X then X ≺ X ∪ {a}. Let Y be a subspace such that X ⊂ Y ⊆ X ∪ {a}.

There exists an element b ∈ Y − X. Since b ∈ X ∪ {a}, we have a ∈

X ∪ {b} ⊆ Y and hence Y = X ∪ {a}.
Let X,Y be two subspaces such that X ≺ Y and let Z be a subspace.

Take a point a ∈ Y − X, so that Y = X ∪ {a}. We have X ∨ Z = X ∪ Z

and Y ∨ Z = Y ∪ Z = X ∪ Z ∪ {a}. If a ∈ X ∪ Z then X ∨ Z = Y ∨ Z.
Otherwise, X ∨ Z ≺ Y ∨ Z according to the above proved claim.

(2) implies (3): This is obvious.
(3) implies (1): Clearly, L is algebraic. Denote by A the set of all atoms

of L and by G the set of the subsets X of A such that X = {a ∈ A :
a ≤

∨

X}. Clearly, 〈A,G〉 is an algebraic closure space and every at most

one-element subset of A is a subspace. Let a point a ∈ X ∪ {b} but a /∈ X.
So, a ≤

∨

(X ∪ {b}) and a �
∨

X. Since b is an atom, by semimodularity
∨

X ≺
∨

X ∨ b =
∨

(X ∪ {b}). We have
∨

X <
∨

(X ∪ {a}) ≤
∨

(X ∪ {b})
and thus

∨

(X ∪ {a}) =
∨

(X ∪ {b}), so that b ≤
∨

(X ∪ {a}) and thus

b ∈ X ∪ {a}. We have proved that 〈A,G〉 is a geometry.
Since every element of L is a join of atoms, for two subspaces X,Y we

have X ⊆ Y if and only if
∨

X ≤
∨

Y . It follows that X 7→
∨

X is an
isomorphism of the lattice of subspaces of 〈A,G〉 onto the lattice L. �

Let L be a geometric lattice. Atoms of L are called points of L. Elements
of height 2 are called lines of L, and elements of height 3 are called planes
of L. Of course, any line contains (i.e., is above) at least two points and is
the join of its any two distinct points.

A geometric lattice is said to be finite dimensional if it is of finite length;
in that case, the length of the lattice decreased by 1 is called its dimension.
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A small, finite geometry can be often most conveniently described by
drawing its picture where points are represented by small circles and lines are
represented by straight lines or smooth curves without cusps. For example,
the geometry pictured in Fig. 2 has seven points and three lines, each having
exactly three points; the geometry pictured in Fig. 3 has six points and seven
lines, four of them having three points and three of them having two points.

Fig. 2 Fig. 3

2.2. Theorem. The lattice of all equivalences on any given set X is
geometric.

Proof. Denote the lattice by L. The atoms of L are exactly the equiva-
lences with precisely one non-singleton block, where this block has precisely
two elements. Clearly, the atoms are compact and every equivalence is the
join of a set of atoms. For two equivalences r and s we have r ≺ s if
and only if one block of s is the union of two different blocks of r and all
the other blocks of s are blocks of r. From this it easily follows that L is
semimodular. �

It is well known that the lattice of all equivalences on any given set is
simple and every lattice can be embedded into one such lattice.

2.3. Theorem. Any interval of a geometric lattice is a geometric lattice.

Proof. Let [a, b] be an interval of a geometric lattice L, so that [a, b] is
an algebraic lattice. It is easy to see that an element of [a, b] is an atom of
[a, b] if and only if it can be expressed as a ∨ c for an atom c of L such that
c � a and c ≤ b. The rest is easy. �

2.4. Lemma. Let a, b, c be three atoms of a geometric lattice L. If a ≤ b∨c
and a 6= b then c ≤ a ∨ b.

Proof. It is easy. �

2.5. Theorem. Let L be a geometric lattice. Then every element of L
is the join of an independent set of atoms of L. The set F of elements of L
of finite height is an ideal of L; F is a semimodular lattice, every element of
F is the join of a finite number of atoms, and L is isomorphic to the ideal
lattice of F .

Proof. The first statement follows easily from 1.8. Denote by h the
height function on L. If a ∈ F , b ∈ L and b ≤ a then h(b) ≤ h(a), so that
b ∈ F . If a, b ∈ F then h(a ∨ b) ≤ h(a) + h(b) − h(a ∧ b) by 1.6, so that
a ∨ b ∈ F . We have proved that F is an ideal. The rest is easy. �
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2.6. Theorem. Every geometric lattice is relatively complemented.

Proof. By 2.3, it is sufficient to prove that every geometric lattice L
is complemented. Let a ∈ L. By 2.5, a is the join of an independent set I
of atoms of L. Denote by K the set of all atoms not less or equal a. There
exists a maximal independent set of atoms J with I ⊆ J ⊆ I ∪ K, and
by 1.8 we have

∨

J = 1 (the largest element of L). Put b =
∨

(J − I), so
that a∨b = 1. Suppose a∧b 6= 0. Then there exists an atom c ≤ a∧b. Since c
is a compact element, it follows from c ≤

∨

I that c ≤
∨

I ′ for a finite subset
I ′ of I, and it follows from c ≤

∨

(J − I) that c ≤
∨

J ′ for a finite subset J ′

of J − I. Since J is independent, c ≤
∨

I ′ ∧
∨

J ′ =
∨

(I ′ ∩ J ′) =
∨

∅ = 0, a
contradiction. Thus a ∧ b = 0 and b is a complement of a in L. �

Two elements of a bounded lattice (i.e., lattice with 0 and 1) are called
perspective if they have a common complement.

2.7. Lemma. Let L be a geometric lattice and a, b be two elements of L.
If there exists an element x such that a ∧ x = b ∧ x = 0 and a ∨ x = b ∨ y
then a, b are perspective. If a, b are two perspective elements of finite height
then there exists an element x′ of finite height such that a ∧ x′ = b ∧ x′ = 0
and a ∨ x′ = b ∨ x′.

Proof. Let a ∧ x = b ∧ x = 0 and a ∨ x = b ∨ y. By 2.6 there exists a
relative complement y of a∨x = b∨x in [x, 1]. We have a∧y = a∧(a∨x)∧y =
a∧x = 0 and a∨y = a∨x∨y = 1, so that y is a complement of a. Similarly,
y is a complement of b.

Let x be a complement of both a and b, where a and b are of finite
height. Since a ≤ b ∨ x and a is compact, there exists an element x1 ≤ x of
finite height such that a ≤ b ∨ x1. Similarly, there exists an element x2 ≤ x
such that b ≤ a ∨ x2. It is sufficient to put x′ = x1 ∨ x2. �

2.8. Theorem. Let L be a geometric lattice. The relation of perspectivity
is an equivalence on the set of atoms of L.

Proof. The relation is reflexive by 2.6. Clearly, it is symmetric. It
remains to prove that it is transitive. Denote by h the height function
on L. Let a, b, c be three atoms of L such that a, b are perspective and b, c
are perspective. By 2.7 there are elements x, y of finite height such that
a ∧ x = b ∧ x = 0, a ∨ x = b ∨ x, b ∧ y = c ∧ y = 0 and b ∨ y = c ∨ y; take x
to be of the minimal possible height. Denote by m the height of x and by n
the height of y. There is an independent set {s1, . . . , sm} of atoms in [0, x]
and an independent set {t1, . . . , tn} of atoms in [0, y]. For i = 1, . . . ,m put
xi = s1 ∨ · · · ∨ si−1 ∨ si+1 ∨ · · · ∨ sm.

Suppose a ≤ xi ∨ b for some i. Then xi ∨ a ≤ xi ∨ b, h(xi) = m − 1,
h(xi ∨ a) = h(xi ∨ b) = m and thus xi ∨ a = xi ∨ b, a contradiction with the
minimality of m.

Thus a � xi ∨ b. Hence h(a ∨ b ∨ xi) = 2 + m − 1 = m + 1. We get
a ∨ b ∨ xi = a ∨ x = b ∨ x for all i.
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It follows from 1.7 that {a, s1, . . . , sm} is an independent set of atoms.
By 1.8 there exists a subset {t′1, . . . , t

′

k} of {t1, . . . , tn} such that {a, s1, . . . ,
sm, t′1, . . . , t

′

k} is independent and a∨x∨y = a∨s1∨· · ·∨sm∨t′1∨· · ·∨t′k. Put
y′ = t′1∨ · · · ∨ t′k. Then {a, s1, . . . , y

′} and {b, s1, . . . , sm, y′} are independent
sets. Using the definition of independence we get y′ = (x ∨ y′) ∧ (b ∨ x1 ∨
y′) ∧ · · · ∧ (b ∨ xm ∨ y′). Since c ∧ y = 0, we have c � y. Hence c � y′ and
we have either c � x ∨ y′ or c � b ∨ xi ∨ y′ for some i. In the first case put
z = x ∨ y′, while in the second case put z = b ∨ xi ∨ y′. Then c ∧ z = 0 and
c ≤ a ∨ z, since c ≤ b ∨ y ≤ a ∨ x ∨ y = a ∨ x ∨ y′ = a ∨ b ∨ xi ∨ y′. Since
c � z, we have a � z and hence a ∧ z = 0. Thus z < z ∨ c ≤ z ∨ a where
z ≺ z ∨ a, so that z ∨ c = z ∨ a. By 2.7, a, c are perspective. �

2.9. Lemma. Let L be a geometric lattice and A∪ {a} be a set of atoms
of L such that a ≤

∨

A. Then a is perspective to at least one element of A.

Proof. Since a is compact, a ≤
∨

F for a finite subset F of A. Take F
to be minimal with this property. Let b be an arbitrary element of F and
put x =

∨

(F − {b}). Then b ∨ x =
∨

F , a � x by the minimality of F ,
hence h(a ∨ x) = h(x) + 1 (where h is the height function on L), and so
a∨x =

∨

F . By the minimality, F is independent and thus b∧x = 0. Since
a � x, we have a ∧ x = 0. By 2.7, a, b are perspective. �

2.10. Lemma. Let L be a complete lattice and X be a subset of L. Then
L ' Π([0, x] : x ∈ X) if and only if every element a of L can be uniquely
represented as a =

∨

(ax : x ∈ X) where ax ≤ x for all x ∈ X.

Proof. It is easy. �

2.11. Theorem. Every geometric lattice is isomorphic to the direct prod-
uct of directly indecomposable geometric lattices. A geometric lattice is di-
rectly indecomposable if and only if its any two atoms are perspective.

Proof. Let L be a geometric lattice. Denote by A the set of atoms of
L and by Z the set of the blocks of the perspectivity equivalence on A. We
are going to show that L is isomorphic to Π([0,

∨

B] : B ∈ Z). For every
a ∈ L and every B ∈ Z put aB =

∨

([0, a] ∩ B). Since a is a join of atoms,
we have a =

∨

(aB : B ∈ Z). By 2.10 it is sufficient to prove that this is the
only representation of a as the join of elements that are below the elements
∨

B (B ∈ Z). Let a =
∨

(xB : B ∈ Z) =
∨

(yB : B ∈ Z) where xB ≤
∨

B
and yB ≤

∨

B for all B ∈ Z, and suppose that xB 6= yB for at least one B.
Without loss of generality, yB � xB . We can suppose that xB < yB , as
otherwise we could replace the second representation of a with the join of
the two representations.

By 2.9 there exists an atom t ∈ B such that t ≤ yB and t � xB . Put
a1 = xB and a2 =

∨

(xC : C ∈ Z − {B}). Then a = a1 ∨ a2 and (again
using 2.9) a1 ∧ a2 = yB ∧ a2 = 0. We have t ∧ a1 = 0, a1 ∧ a2 = 0 and
t ≤ a1 ∨ a2. There exist a relative complement x1 of t ∨ a1 in [a1, a] and a
relative complement x2 of a2∧x1 in [0, a2]. (Follow the situation as pictured
in Fig. 4.)
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0

t a1 a2 ∧ x1 x2

t ∨ a1 x1 a2

a

Fig. 4

We have

t ∧ x1 = t ∧ (t ∨ a1) ∧ x1 = t ∧ a1 = 0,
x2 ∧ x1 = a2 ∧ x2 ∧ x1 = x2 ∧ (a2 ∧ x1) = 0,
t ∨ x1 = t ∨ a1 ∨ x1 = a,
x2 ∨ x1 = x2 ∨ (a2 ∧ x1) ∨ x1 = a2 ∨ x1 = a.

Take any atom u ≤ x2 (there exists at least one, since it is easy to see
that x2 > 0). Since x1 ≺ t ∨ x1 = x1 ∨ x2, we have x1 ∨ u = t ∨ x1 and, of
course, x1 ∧ u = 0. Hence t, u are perspective by 2.9. Since t ∈ B, we get
u ∈ B. But u ≤ a2 =

∨

(xC : C ∈ Z − {B}), so that u is perspective to an
atom not belonging to B, a contradiction.

We have proved that L is isomorphic to Π([0,
∨

B] : B ∈ Z). Each lattice
[0,

∨

b] with B ∈ Z has the property its every two atoms are perspective
(since they are perspective in L, and the lattice is a direct factor of L). In
order to finish the proof, it remains to show that if any two atoms of L are
perspective then L is directly indecomposable. Suppose that there exists
an isomorphism of L onto the direct product of two nontrivial lattices L1

and L2. Denote by p the element of L corresponding to 〈0, 1〉 and by q the
element of L corresponding to 〈1, 0〉. There exist an atom c ≤ p and an
atom d ≤ q. The elements c, d have a common complement e. It is easy to
see that e cannot correspond to any element of L1 × L2. �

2.12. Theorem. Let L be a geometric lattice such that any two atoms
of L are perspective. Then L is subdirectly irreducible. If, moreover, L is of
finite length then L is simple. Consequently, every finite dimensional geo-
metric lattice is isomorphic to the direct product of simple geometric lattices.

Proof. Let r be a non-identical congruence of L. There exist elements
u, v ∈ L such that u < v and 〈u, v〉 ∈ r. There exists an atom a of L such
that a ≤ v and a � u. Let b be any atom of L. Since a, b are perspective,
there exists a common complement x of a and b. It follows from 〈u, v〉 ∈ r
that 〈0, a〉 ∈ r, 〈x, 1〉 ∈ r and 〈0, b〉 ∈ r. Thus all atoms of L are r-congruent
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with 0 and L is subdirectly irreducible. If L is of finite length then 1 is the
join of finitely many atoms and thus 〈0, 1〉 ∈ r. �

3. Projective spaces

By a pre-projective space we mean an ordered pair 〈A,X〉 (the elements
of A are called its points and the elements of X are called its lines) satisfying
the following conditions:

(1) Any two distinct points are contained in a unique line
(2) For any five points a, b, c, x, y and any two lines p, q with a, b, x ∈ p

and b, c, y ∈ q there exist a point z and two lines r, s such that
a, c, z ∈ r and x, y, z ∈ s

(3) Every line has at least two points

By a projective space we mean a pre-projective space every line of which
has at least three points.

Condition (2) is called the Pasch axiom and is interpreted in Fig. 5.

a

b

c

x
y

z
Fig. 5

By a subspace of a pre-projective space 〈A,X〉 we mean a subset S such
that whenever a, b are two different points in S then any point on the line
containing a, b belongs to S. For two subsets S, T of A denote by S + T the
union of all the lines that contain two distinct points, one from S and the
other from T .

3.1. Lemma. Let S, T be two subspaces of a pre-projective space. Then
S + T is also a subspace.

Proof. For two different points a, b denote by a + b the line containing
a, b; for a point a put a + a = {a}. Let S, T be two subspaces. Let p, q be
two different points in S +T and r ∈ p+q. We need to prove that r ∈ S +T .

Let us first prove this under the assumption that q ∈ S. There are points
p1 ∈ S and p2 ∈ T with p ∈ p1 + p2. Clearly, we can suppose that q 6= p1

and r 6= p2. By the Pasch axiom there exists a point t ∈ (q + p1) ∩ (r + p2).
We have t ∈ S. If t = p2 then p ∈ S and r ∈ S ⊆ S|T . If t 6= p2 then
r ∈ t + p2 ∈ S + T .

If q ∈ T , the proof is similar. Now let q /∈ S ∪ T . Again, there exists a
point t ∈ (q + p1) ∩ (r + p2). If t = p2 then r ∈ p1 + p2 ⊆ S + T . If t 6= p2

then r ∈ t + p2 and we get r ∈ S + T by the previous part of the proof. �
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3.2. Theorem. The set of subspaces of a pre-projective space is a mod-
ular geometric lattice (with respect to inclusion). Conversely, if L is a mod-
ular geometric lattice then 〈A,X〉 is a pre-projective space where A is the
set of atoms and X is the set of lines of L. This correspondence between
pre-projective spaces and modular geometric lattices is one-to-one (up to
isomorphism).

Proof. Let 〈A,X〉 be a pre-projective space. Clearly, the set of sub-
spaces is a complete lattice; by 3.1, S ∨T = S + T . For any set U of points,
the subspace generated by U can be obtained as the union

⋃

i∈ω Ui where
U0 = U and Ui+1 is the set of the points contained in a line containing two
different points from Ui. From this we can see that the lattice is algebraic.

Let us prove that the lattice is modular. Let S, T, U be three subspaces
with S ⊆ U . We need to prove that (S + T ) ∩ U ⊆ S + (T ∩ U). Let
p ∈ (S + T ) ∩ U . There exist points p1 ∈ S and p2 ∈ T such that p belongs
to the line containing p1, p2. If p = p1, everything is clear. If p 6= p1 then p2

belongs to the line containing p and p1, so that p2 ∈ U and thus p2 ∈ T ∩U .
Hence p ∈ S + (T ∩ U).

Conversely, let L be a modular geometric lattice. Denote by A the
set of atoms and by Xthe set of lines (elements of height 2) of L. It is
easy to see that 〈A,X〉 is a pre-projective space. In order to prove that
the corresponding lattice is isomorphic to L, we need to prove that every
subspace S of 〈A,X〉 corresponds to an element of L. Being a subspace
means that S ⊆ A and whenever p, q ∈ S, r ∈ A and r ≤ p ∨ q then
r ∈ S. It is sufficient to prove that whenever p1, . . . , pn ∈ S, r ∈ A and
r ≤ p1 ∨ · · · ∨ pn then r ∈ S. This will be proved by induction on n.
For n ≤ 2 it is clear. Let n ≥ 3 and r ≤ p1 ∨ · · · ∨ pn. We can suppose
that p1, . . . , pn are independent, since otherwise we can use induction. Put
a = p2 ∨ · · · ∨ pn. We can suppose that r � a, since otherwise we can use
induction. Since r∨ a ≤ p1 ∨ a and both r∨ a and p1 ∨ a are of height n, we
have r ∨ a = p1 ∨ a. Put t = (p1 ∨ r) ∧ a. If t = 0, we get a contradiction
by modularity. Hence t 6= 0, t ∈ A and, by induction, t ∈ S. But then
r ≤ t ∨ p1 and r ∈ S. �

3.3. Lemma. Two points p, q of a modular geometric lattice L are per-
spective if and only if there exists a point r of L such that r 6= p, r 6= q and
r ≤ p ∨ q.

Proof. Let p, q be perspective. There exists a common complement x
of p and q. Put r = (p∨q)∧x. If r = 0, we get a contradiction by modularity.
Thus r 6= 0 and it follows that r is an atom. Of course, r ≤ p ∨ q. The
converse is obvious. �
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3.4. Theorem. Under the correspondence between pre-projective spaces
and modular geometric latticec, projective spaces correspond precisely to sim-
ple modular geometric lattices. Every modular geometric lattice is isomor-
phic to a direct product of modular geometric lattices corresponding to pro-
jective spaces.

Proof. It follows from 2.12 and 3.3. �

4. Desargues’ theorem and arguesian lattices

Let 〈A,X〉 be a projective space. Three points are said to be collinear if
they are contained in one line of 〈A,X〉. By a triangle (in 〈A,X〉) we mean
an ordered triple of points that are not collinear (in particular, they are
pairwise distinct.) Two triangles 〈a0, a1, a2〉 and 〈b0, b1, b2〉 are said to be
perspective with respect to a point d if ai ∨ aj 6= bi ∨ bj for 0 ≤ i, j ≤ 2 and
d is on the line ai ∨ bi for 0 ≤ i ≤ 2. Two triangles 〈a0, a1, a2〉 and 〈b0, b1, b2〉
are said to be perspective with respect to a line p if ai ∨ aj 6= bi ∨ bj for
0 ≤ i, j ≤ 2 and the points c0 = (a1∨a2)∧ (b1∨b2), c1 = (a0∨a2)∧ (b0∨b2),
c2 = (a0 ∨ a1)∧ (b0 ∨ b1) all lie on p. A projective space is said to satisfy the
Desargues’ theorem if its any two triangles that are perspective with respect
to a point, are also perspective with respect to a line. (See Fig. 6.)

a1

a2

a0

b1

b2

b0

c1

c2

c0

d

Fig. 6
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A lattice L is called arguesian if for any elements a0, a1, a2, b0, b1, b2 ∈ L,

(a0 ∨ b0) ∧ (a1 ∨ b1) ∧ (a2 ∨ b2) ≤ ((c ∨ a1) ∧ a2) ∨ ((c ∨ b1) ∧ b2)

where

c0 = (a1 ∨ a2) ∧ (b1 ∨ b2),
c1 = (a0 ∨ a2) ∧ (b0 ∨ b2),
c2 = (a0 ∨ a1) ∧ (b0 ∨ b1),
c = c0 ∧ (c1 ∨ c2).

Clearly, the class of arguesian lattices is a variety.

4.1. Theorem. Let L be a simple modular geometric lattice. Then L
is arguesian if and only if the corresponding projective space satisfies the
Desargues’ theorem.

Proof. The direct implication is clear. Let us prove the converse. Let L
be a simple modular geometric lattice such that the corresponding projective
space satisfies the Desargues’ theorem.

Claim 1. The arguesian identity holds whenever a0, a1, a2, b0, b1, b2 are
atoms of L. Put d = (a0 ∨ b0) ∧ (a1 ∨ b1) ∧ (a2 ∨ b2). We have to prove
that d ≤ ((c ∨ a1) ∧ a2) ∨ ((c ∨ b1) ∧ b2). Assume first that 〈a0, a1, a2〉 and
〈b0, b1, b2〉 are triangles perspective with respect to d. Then c1, c2, c3 are
pairwise distinct atoms; since they are collinear, c = c0 ∧ (c1 ∨ c2) = c0.
Then ((c ∨ a1) ∧ a2) ∨ ((c ∨ b1) ∧ b2) = a2 ∨ b2; of course, d ≤ a2 ∨ b2. If
the assumption about the triangles is not satisfied then there are several
cases to be considered (e.g., d = 0, d is a line, ai are collinear, bi are
collinear, ai = bi for some i); in all these cases it is trivial to check that
d ≤ ((c∨ a1)∧ a2)∨ ((c ∨ b1)∧ b2) (without use of the Desargues’ theorem).

Claim 2. Let t(x1, . . . , xn) be an n-ary term function (in the language of
lattices) in which each variable occurs at most once. Then for an atom a and
elements b1, . . . , bn ∈ L we have a ≤ t(b1, . . . , bn) if and only if there exist
elements a1, . . . , an ∈ L such that a ≤ t(a1, . . . , an), ai ≤ bi for all i, and ai

is an atom whenever bi 6= 0. We are going to prove the direct implication
by induction on n (the converse is clear). If n = 1, t = xi for some i, we
have a ≤ bi and so we can take ai = a. Observe that if either t = u ∧ v or
t = u∨ v for two term functions u and v then the sets of variables occurring
in u and v are disjoint and in each of the two terms some of the n variables
are missing. Let t = u∧ v. We have a ≤ u(b1, . . . , bn) and a ≤ v(b1, . . . , bn),
so that the existence of the desired elements ai follows from the induction
assumption. Finally, let t = u∨ v. We have a ≤ u(b1, . . . , bn)∨ v(b1, . . . , bn).
If either u(b1, . . . , bn) or v(b1, . . . , bn) equals 0, the existence of the elements
ai follows easily from the induction assumption. Let both these elements
be non-zero. It follows from 3.1 that there exist two atoms a′, a′′ such that
a ≤ a′ ∨ a′′, a′ ≤ u(b1, . . . , bn) and a′′ ≤ v(b1, . . . , bn). Now the existence of
the elements ai again follows from the induction assumption.

Claim 3. Let u(x1, . . . , xn) and v(x1, . . . , xn) be two term functions such
that each variable occurs at most once in u. If the inequality u ≤ v holds for
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all elements of L that are either atoms or zero, then it holds for all elements
of L. Let b1, . . . , bn ∈ L; we need to prove u(b1, . . . , bn) ≤ v(b1, . . . , bn).
It is sufficient to show that whenever a is an atom and a ≤ u(b1, . . . , bn)
then a ≤ v(b1, . . . , bn). By Claim 1 there are elements a1, . . . , an such that
a ≤ u(a0, . . . , an), ai ≤ bi for all i, and each ai is either an atom or zero. Thus
u(a1, . . . , an) ≤ v(a1, . . . , an). We get a ≤ u(a1, . . . , an) ≤ v(a1, . . . , an) ≤
v(b1, . . . , bn).

Since Claim 1 can be easily extended to include the case when the el-
ements a0, a1, a2, b0, b1, b2 are either atoms or zero, the proof is finished by
Claim 3. �

4.2. Theorem. Every arguesian lattice is modular.

Proof. Suppose that an arguesian lattice is not modular, so that it has
a pentagon sublattice described by O ≺ C ≺ I and O ≺ A ≺ B ≺ I. Put
a0 = a1 = b2 = A, b1 = B and a2 = b0 = C. Then c0 = B, c1 = I, c2 = A,
c = B, (a0∨b0)∧(a1∨b1)∧(a2∨b2) = B and ((c∨a1)∧a2)∨((c∨b1)∧b2) = A,
so that B ≤ A, a contradiction. �

4.3. Theorem. The congruence lattice of an algebra with permutable
congruences is arguesian.

Proof. Congruence permutability means that if r, s are two congru-
ences of the algebra and 〈x, y〉 ∈ r ∨ s then there exists an element z
with 〈x, z〉 ∈ r and 〈z, y〉 ∈ s. Let a0, a1, a2, b0, b1, b2 be congruences of
a congruence permutable algebra; let c0, c1, c2, c have the same meaning
as above. Let 〈x, y〉 ∈ (a0 ∨ b0) ∩ (a1 ∨ b1) ∩ (a2 ∨ b2). There exist ele-
ments z0, z1, z2 with 〈x, zi〉 ∈ a0 and 〈zi, y〉 ∈ b0 for i = 0, 1, 2. We have
〈z1, z2〉 ∈ c0∩ (c1∨c2) = c, 〈x, z2〉 ∈ (c∨a1)∩a2 and 〈z2, y〉 ∈ (c∨b1)∩b2, so
that 〈x, y〉 ∈ ((c∨a1)∩a2)∨((c∨b1)∩b2). Thus (a0∨b0)∩(a1∨b1)∩(a2∨b2) ⊆
((c ∨ a1) ∩ a2) ∨ ((c ∨ b1) ∩ b2). �

4.4. Theorem. The geometric lattice corresponding to a projective space
of dimension at least 3 is arguesian.

Proof. We must prove that if L is a simple geometric modular lattice
of length at least 4 then L is arguesian. Let 〈a0, a1, a2〉 and 〈b0, b1, b2〉 be
two triangles perspective with respect to the point d = (a0 ∨ b0)∧ (a1 ∨ b1)∧
(a2 ∨ b2). Put α = a0 ∨ a1 ∨ a2 and β = b0 ∨ b1 ∨ b2, so that α and β are
planes (elements of height 3).

Consider first the case when α 6= β. We have α∨β = α∨d = β∨d, from
which it follows that the height of α∨β is 4 and then that the height of α∧β
is 2, so that α∧ β is a line. For i 6= j, the lines ai ∨ aj and bi ∨ bj are in the
plane ai ∨aj ∨d and thus they intersect in a point. If i, j, k is a permutation
of 0,1,2 then the lines ai ∨ aj and bi ∨ bj are in the plane ai ∨ aj ∨ d, so their
intersection ck is a point. Since ai ∨ aj is in the plane α and bi ∨ bj is in the
plane β, ck is in the line α ∧ β. Hence c0, c1, c2 are collinear.

Now consider the case α = β. Since the length of L is at least 4, we have
α 6= 1 and there exists an element p of L such that α is covered by p; the
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height of p is 4. Denote by s a relative complement of α in the interval [d, p],
so that s is a line. Except the point d, this line contains at least two more
points d′ and d′′. Put ei = (d′ ∨ ai)∧ (d′′ ∨ bi). Then 〈e0, e1, e2〉 is a triangle
and the plane γ = e0 ∨ e1 ∨ e2 is different from the plane α. The triangles
〈a0, a1, a2〉 and 〈e0, e1, e2〉 are perspective with respect to the point d′′. By
the first case, the points (a0 ∨ a1) ∧ (e0 ∨ e1) and (b0 ∨ b1) ∧ (e0 ∨ e1) are
contained in the line δ = α ∧ γ and so (a0 ∨ a1) ∧ (b0 ∨ b1) ∈ δ. Similarly
(a0 ∨ a2) ∧ (b0 ∨ b2) ∈ δ and (a1 ∨ a2) ∧ (b1 ∨ b2) ∈ δ. �

4.5. Theorem. If a projective space satisfies the Desargues’ theorem
then it also satisfies the following (dual) statement: if two triangles are
perspective with respect to a line then they are also perspective with respect
to a point.

Proof. Under the above notation, let c0, c1, c2 be contained in a line s.
Put d = (a1 ∨ b1) ∧ (a2 ∨ b2). The triangles 〈a2, b2, c1〉 and 〈a1, b1, c2〉 are
perspective with respect to the point c0. Hence the points (a2 ∨ b2) ∧ (a1 ∨
b1) = d, (a2 ∨ c1)∧ (a1 ∨ c2) = a0 and (b2 ∨ c1)∧ (b1 ∨ c2) = b0 are collinear.
We get d = (a0 ∨ b0) ∧ (a1 ∨ b1) ∧ (a2 ∨ b2). �

5. Coordinatization of projective spaces

The most important example of a projective space can be obtained in
the following way. Take a division ring D and a cardinal number κ ≥ 2.
As one can easily check, the lattice of all submodules of the κ-dimensional
vector space over D is a simple arguesian geometric lattice (it is arguesian
by 4.3). Consequently, the lattice gives rise to a projective space.

The coordinatization theorem states that the converse is true: If L is
a simple arguesian geometric lattice of length at least 3 then there exists a
division ring D and a cardinal number κ ≥ 2 such that L is isomorphic to
the lattice of all subspaces of the κ-dimensional vector space over D.

The division ring D can be constructed in the following way. Take
an arbitrary line u and its three distinct points denoted by 0, 1,∞. Put
D = s − {∞}. For two elements a, b ∈ D put

a + b = (((a ∨ c) ∧ (d ∨∞)) ∨ ((c ∨∞) ∧ (b ∨ d))) ∧ s

and
ab = (q ∨ ((0 ∨ ((1 ∨ p) ∧ (q ∨ b))) ∧ (p ∨ a))) ∧ s

where c, d are two distinct points not in s such that 0, c, d are collinear, and
p, q are two distinct points not in s such that p, q,∞ are collinear. We omit
the lengthy proof.

Consequently, according to 4.4, if we assume that all division rings and
all their vector spaces are known then all projective spaces of dimension at
least 3 are known. Projective spaces of dimension 2, or projective planes,
are more difficult to describe.



CHAPTER 2

PROJECTIVE PLANES

1. Incidence structures

By an incidence structure we mean an ordered triple 〈A,B, I〉 such that
A and B are two disjoint sets, and I is a subset of A×B. Incidence structures
are also called bipartite graphs. The elements of A are called points and the
elements of B are called lines. For a point a and a line b we will write a < b
instead of 〈a, b〉 ∈ I and say that a is on b, or that b is on a, or that a lies
on b, or that b goes through a.

For an incidence structure 〈A,B, I〉, the incidence structure 〈B,A, I−1〉
is called dual to 〈A,B, I〉.

Let 〈A,B, I〉 be an incidence structure. Assuming that 0 and 1 are not
elements of A ∪ B, the set A ∪ B ∪ {0, 1} is an ordered set with respect to
the relation ≤ where x ≤ y means that either x = y or x = 0 or y = 1 or
〈x, y〉 ∈ I. We call this the ordered set corresponding to 〈A,B, I〉. Observe
that in general an incidence structure is not uniquely determined by its
corresponding ordered set.

Let us call an incidence structure admissible if it has at least one point,
every point is on at least one line and every line is on at least one point. In
the following we will consider only admissible incidence structures (in fact,
incidence structures satisfying much stronger conditions). Clearly, there is a
bijection between admissible incidence structures and the bounded ordered
sets of length 3 in which no atom is a coatom. Under this bijection, the
dual of an incidence structure corresponds to the dual of the corresponding
ordered set. Every admissible incidence structure is uniquely determined
by its corresponding ordered set. The difference between an admissible
incidence structure and its corresponding ordered set is almost negligible —
just adding two new elements 0 and 1. It will be useful to assume that an
admissible incidence structure is already an ordered set. Thus points are
precisely the atoms and lines are precisely the coatoms. A set of points is
said to be collinear if there exists a line containing all its elements. Two
admissible incidence structures are (called) isomorphic if they are isomorphic
as ordered sets.

It is easy to see that an admissible incidence structure is a lattice if
and only if its every two distinct points lie on at most one line. We will
investigate only admissible incidence structures with this property.

15
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2. Projective planes

By a projective plane we mean an incidence structure satisfying the
following three conditions:

(PP1) Every two distinct points are on precisely one line.
(PP2) Every two distinct lines are on precisely one point.
(PP3) There exist four distinct points, no three of which are collinear.

Clearly, every projective plane is an admissible incidence structure and
can be considered as a lattice. An ordered quadruple of points satisfying
(PP3) is called a frame of the projective plane.

2.1. Theorem. The following are equivalent for a lattice L:

(1) L is a projective plane
(2) L is a simple modular geometric lattice of length 3
(3) L is a modular lattice of length 3 in which every element except 0, 1

has at least two complements

Proof. It follows from the results of the last chapter that the first two
conditions are equivalent; the only thing that we need to verify is that in a
projective plane, every line has at least three points. Suppose that there is
a line p with at most two points. By (PP3) there exist four distinct points
a, b, c, d, no three of which are collinear. Since p ∧ (a ∨ b), p ∧ (a ∨ c) and
p ∧ (a ∨ d) are three points of p, at least two of them are equal. From this
it follows that a ≤ p. Similarly we get b ≤ p, c ≤ p and d ≤ p, so that p has
at least four points, a contradiction

The equivalence of (2) and (3) is easy. �

2.2. Theorem. The dual of a projective plane is a projective plane.

Proof. It follows from 2.1(3). �

2.3. Theorem. For every projective plane there exists a cardinal number
κ ≥ 3 such that every line contains precisely κ points and every point is
contained in precisely κ lines.

Proof. Let us fix a line p and denote by κ the cardinality of the set of
the points contained in p, so that κ ≥ 3. Let q be any other line. It is easy
to see that there exists a point a not contained in p and not contained in q.
The mapping assigning to any point b of p the line a∨ b is a bijection of the
set of points of p onto the set of lines containing a. Similarly, the mapping
assigning to any point c of q the line a ∨ c is a bijection of the set of points
of q onto the same set of lines. Thus any line contains precisely κ points.
By 2.2, there exists a cardinal number κ′ such that every point is contained
in precisely κ′ lines. But the point a is contained in precisely κ lines, so
κ = κ′. �

2.4. Theorem. Let L be a finite projective plane. Then there exists a
unique natural number n ≥ 2 such that every line of L contains precisely
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n + 1 points and every point of L is contained in precisely n + 1 lines. The
projective plane has precisely n2 +n+1 points and precisely n2 +n+1 lines.

Proof. The first statement follows from 2.3. Let uf fix a point a. There
are n + 1 points going through a, each of them with precisely n points
different from a; all these points are pairwise different and any point is
contained in a line going through a, so there are (n + 1)n + 1 = n2 + n + 1
points in total. By duality, the total number of lines is the same. �

For a finite projective plane, the number n from 2.4 is called its order.
Thus the order of a finite projective plane is a natural number greater or
equal 2.

2.5. Example. There is, up to isomorphism, precisely one projective
plane of order 2. Its geometry is pictured in Fig. 2.

2.6. Example. Let O, I,X, Y be four distinct elements. For every nat-
ural number n define three sets An, Bn, In with In ⊆ An × Bn as follows.
A0 = {O, I,X, Y }; B0 = {{a, b} : a, b ∈ A0 and a 6= b}; for a ∈ A0 and
p ∈ B0, 〈a, p〉 ∈ I0 if and only if a ∈ p. If An, Bn, In are defined then An+1

is the union of An with the set of the pairs 〈{p, q}, 0〉 such that p, q ∈ Ln

and there is no a ∈ An with 〈a, p〉 ∈ In and 〈a, q〉 ∈ In; Bn+1 is the union
of Bn with the set of the pairs 〈{a, b}, 1〉 such that a, b ∈ An and there is
no p ∈ Bn with 〈a, p〉 ∈ In and 〈b, p〉 ∈ In; In+1 is the union of In with
the set of the pairs 〈〈{p, q}, 0〉, p〉 with 〈{p, q}, 0〉 ∈ An+1 −An and the pairs
〈a, 〈{a, b}, 1〉〉 with 〈{a, b}, 1〉 ∈ Bn+1−Bn. Put A =

⋃

∞

n=0 An, B =
⋃

∞

n=0 Bn

and I =
⋃

∞

n=0 In. It is easy to check that 〈A,B, I〉 is a projective plane. It
is called the free projective plane; the elements O, I,X, Y are its generators.

3. Affine planes

By an affine plane we mean an incidence structure satisfying the follow-
ing three conditions:

(AP1) Every two distinct points are on precisely one line.
(AP2) For every point a and every line b with a � b there exists a unique

line c such that a ≤ c and b, c have no point in common.
(AP3) There exist four distinct points, no three of which are collinear.

Clearly, every affine plane is an admissible incidence structure and can
be considered as a lattice.

Two lines of an affine plane are said to be parallel if they are either equal
or have no point in common. We write p||q if p, q are two parallel lines.

3.1. Theorem. Parallelism is an equivalence relation on the set of lines
of an affine plane.

Proof. Let p, q, r be three lines such that p||q and q||r. We need to
prove p||r. Suppose that p, r are not parallel. Then a = p ∧ r is a point.
Clearly, p 6= q and q 6= r. There exists a unique line containing a and parallel
with q. Since both p and r have this property, we get p = r. �



18 2. PROJECTIVE PLANES

3.2. Corollary. In an affine plane, any line intersecting another line,
intersects all lines parallel to this other line.

3.3. Theorem. Let A be an affine plane. There exist two cardinal num-
bers κ and κ′ such that every line of A contains precisely κ points and every
point of A is contained in precisely κ′ lines. If κ is infinite then κ′ = κ. If
κ = n is finite then κ′ = n + 1, there are precisely n2 points and there are
precisely n2 + n lines.

Proof. It is easy. �

For a finite affine plane, the number n ≥ 2 from 3.3 is called its order.
For a projective plane P and its any one line p we define an affine plane

AP(P, p) as follows. Its points are all points of P except the points contained
in p; its lines are all lines of P except the line p; a ≤ q in AP(P, p) if and
only if a ≤ q in P . One can easily check that we obtain an affine plane.

For an affine plane A we define a projective plane PP(A) as follows. Its
points are the points of A and, moreover, for each block D of the parallelism
relation one new point ∞D; its lines are the lines of A and, moreover, one
new line ∞; for a point a and a line p, a < p if and only if one of the
following three cases takes place:

(1) a < p in A
(2) p = ∞ and a is one of the new points
(3) a = ∞D for some D and p ∈ D

One can easily check that we obtain a projective plane.
This correpsondence between affine and projective planes is not one-

to-one. For a projective plane P and its any line p, the projective plane
PP(AP(P, p)) is isomorphic to P . For an affine plane A, we have A =
AP(PP(A),∞)) but we may obtain an affine plane not isomorphic with A
if we use other line than ∞. Nevertheless, the correspondence is almost
one-to-one. It is not necessary to study affine planes for themselves, since
we can always embed them into projective planes and proceed from there.

For a field K we define an affine plane AP(K) as follows. Its points are
the elements of K × K; for each triple 〈a, b, c〉 ∈ K3 − ({0} × {0} × K) we
have a line pa,b,c = {〈x, y〉 ∈ K2 : ax+ by + c = 0} (there are different triples
producing the same line); a point is on a line if and only if it is its element.
One can easily check that we obtain an affine plane.

For a field K put PP(K) = PP(AP(K)). This projective plane is iso-
morphic to the lattice of all subspaces of the 3-dimensional vector space
over K. As we know from before, this projective plane is arguesian.

For the two-element field Z2, AP(Z2) is an affine plane of order 2. It is
pictured in Fig 7.

The projective plane PP(Z2) of order 2 is pictured in Fig. 2.

3.4. Theorem. For every prime power pk (p is a prime number, k ≥ 1)
there is an arguesian projective plane of order pk.
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Fig. 6

Proof. It is well known that for any prime power pk there is a field
with pk elements. �

4. Perspectivities and projectivities

Let p, q be two distinct lines of a projective plane and a be a point with
a � p and a � q. The mapping, assigning to any point x of p the point
(p∨x)∧ q of q is called the perspectivity from p to q with center a. Clearly,
this mapping is a bijection of the set of points on p onto the set of points
on q.

Let p, q be two lines of a projective plane and let n be a positive natural
number. A mapping of the set of points on p into the set of points on q is said
to be a projectivity from p to q of order n if there exist lines p0, . . . , pn such
that p0 = p, pn = q and the mapping is a composition of some perspectivities
from pi−1 to pi (i = 1, . . . , n). Of course, a projectivity is a bijection.

4.1. Theorem. Let p, p′ be two distinct lines of a projective plane, a, b, c
be three distinct points on p, and a′, b′, c′ be three distinct points on p′. Then
there exists a projectivity of order 2 from p to p′, taking a to a′, b to b′ and
c to c′.

Proof. We can assume without loss of generality that a, a′, p ∧ p′ are
three distinct points. (If a, a′ do not have this property then either b, b′ or
c, c′ can be taken instead.) There exists a point d ≤ a ∨ a′ different from
both a and a′. There exists a line p′′ containing a′ and different from both
a ∨ a′ and p′. The perspectivity with center d takes a, b, c to three distinct
points a′′, b′′, c′′ on p′′; we have a′′ = a′. Put e = (b′ ∨ b′′) ∧ (c′ ∨ c′′).

Claim 1. e is a point with e � p′ and e � p′′. This follows from the
following computations.

e ∧ p′ = ((b′ ∨ b′′) ∧ p′) ∧ ((c′ ∨ c′′) ∧ p′)

= (b′ ∨ (b′′ ∧ p′)) ∧ (c′ ∨ (c′′ ∨ p′)) = (b′ ∨ 0) ∧ (c′ ∨ 0) = 0,

e ∧ p′′ = 0 similarly,

e ∨ p′ = ((b′ ∨ b′′) ∧ (c′ ∨ c′′) ∨ b′ ∨ c′

= ((b′ ∨ b′′) ∧ (c′ ∨ c′′ ∨ b′)) ∨ c′

= (b′ ∨ b′′ ∨ c′) ∧ (c′ ∨ c′′ ∨ b′) = (p′ ∨ b′′) ∧ (p′ ∨ c′′) = 1,
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e ∨ p′′ = 1 similarly.

Claim 2. The perspectivity from p′′ to p′ with center e takes a′′ to a′,
b′′ to b′ and c′′ to c′. Clearly, it takes a′′ to a′ = a′′. We have

p′ ∧ (e ∨ b′′) = p′ ∧ (b′′ ∨ ((b′ ∨ b′′) ∧ (c′ ∨ c′′)))

= p′ ∧ ((b′ ∨ b′′) ∧ (b′′ ∨ c′ ∨ c′′))

= p′ ∧ ((b′ ∨ b′′) = (p′ ∧ b′′) ∨ b′ = b′

and similarly p′ ∧ (e ∨ c′′) = c′. �

5. Collineations

Automorphisms of a projective plane are called its collineations.
Let f be a collineation of a projective plane. A point a is called a center

of f if f(x) = x for all x ≥ a. A line p is called an axis of f if f(x) = x for
all x ≤ p. A collineation is called central if it has a center; it is called axial
if it has an axis.

5.1. Example. Let A be an affine plane over a field K and P be the
corresponding projective plane; let v be a non-zero vector. The translation
by v is a collineation of P with the infinite line serving as the axis and the
infinite point corresponding to the lines parallel with v serving as the center.

5.2. Theorem. Let f be a non-identical collineation of a projective
plane. Then f has at most one center and at most one axis.

Proof. Suppose that f has two different centers a and b. For every
point c � a ∨ b we have f(c) = f((a ∨ c) ∧ (b ∨ c)) = f(a ∨ c) ∧ f(b ∨ c) =
(a ∨ c) ∧ (b ∨ c) = c. Every line other than p contains at least three points,
two of which are not on a ∨ b and so is fixed by f . Consequently, every line
is fixed by f . But then also all points are fixed by f and f is the identity, a
contradiction. By duality, f has also at most one axis. �

5.3. Lemma. Let f be a collineation of a projective plane with center a
and let p be a line such that f(p) 6= p. Then f(p) ∧ p is fixed by f .

Proof. Since p 6= f(p), we have a � p, a � f(p) and p ∧ f(p) =
p ∧ (a ∨ (p ∧ f(p))) = f(p) ∧ (a ∨ (p ∧ f(p))). Therefore f(p ∧ f(p)) = f(p ∧
(a∨(p∧f(p)))) = f(p)∧f(a∨(p∧f(p))) = f(p)∧(a∨(p∧f(p))) = p∧f(p). �

5.4. Lemma. Let f be a collineation of a projective plane with center a
and let p be a line such that either a � p or else a ≤ p and there exist points
b, c ≤ p such that a, b, c are distinct and all of them are fixed by f . Then p
is an axis of f .

Proof. Consider first the case when a � p. For any point b ≤ p we
have b = p ∧ (a ∨ b); since p and a ∨ b are fixed by f , the point b is fixed by
f and p is an axis for f .

Now let a ≤ p and let b, c ≤ p be as above. Suppose that there exists a
point d < p with f(d) 6= d. Take a line q with p ∧ q = d. We have f(q) 6= q
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and by 5.3, q ∧ f(q) is a point fixed by f . But then b ∨ (q ∧ f(q)) and
c ∨ (q ∧ f(q)) are fixed lines not containing a, so that by the first case they
are two different axes for f , a contradiction with 5.2. Therefore all points
on p are fixed by f and p is an axis. �

5.5. Theorem. A collineation of a projective plane is central if and only
if it is axial.

Proof. Let f be a non-identical collineation with center a. Take a
point b with f(b) 6= b. The proof can be easily finished, using the previous
lemmas, if we consider two other distinct lines on b. �

5.6. Theorem. Let a be a point and p be a line of a projective plane.
Then every collineation with center a and axis p is uniquely determined by
its value at any point different from a and not on p.

Proof. Let f be a collineation with center a and axis p, and let b be a
point with b 6= a and b � p. For any point c with c � a∨b and c � p we have
c = (a∨c)∧ (b∨ (p∧ (b∨c))) and therefore f(c) = f(a∨c)∧ (f(b)∨f(p∧ (b∨
c))) = (a∨c)∧(f(b)∨(p∧(b∨c))). Now for any line q with q 6= p and q 6= a∨b
there exists a point c with c ≤ q, c � p and c � a∨ b; we have q = c∨ (p∧ q)
and so f(q) = (p ∧ q) ∨ f(c) = (p ∧ q) ∨ ((a ∨ c) ∧ (f(b) ∨ (p ∧ (b ∨ c)))).
Therefore f(q) is determined for all lines q by f(b) and hence f is determined
by f(b). �

Let a be a point and p be a line of a projective plane. The projective
plane is said to be a − p transitive if for any pair a0, b0 such that a, a0, b0

are three distinct collinear points with a0 � p and b0 � p there exists a
collineation f with center a and axis p such that f(a0) = b0. (This means
that all possible collineations with center a and axis p do exist.) A projective
plane is said to be p-transitive (or transitive with respect to p) if it is a− p
transitive for every point a on p.

5.7. Theorem. A projective plane is arguesian if and only if it is a− p
transitive for its any point a and its any line p.

Proof. Let us start with the converse implication. Let 〈a0, a1, a2〉 and
〈b0, b1, b2〉 be two triangles perspective with respect to a point d; define
c0, c1, c2 as before. There exists a collineation f with center d and axis
c0 ∨ c1. We have a0 = (d ∨ b0) ∧ (a2 ∨ c1) and a1 = (d ∨ b1) ∧ (a2 ∨ c0),
so that f(a0) = (d ∨ b0) ∧ (f(a2) ∨ c1) = (d ∨ b0) ∧ (b2 ∨ c1) = b0 and
similarly f(a1) = b1. Hence (a0 ∨ a1) ∧ (c0 ∨ c1) = f((a0 ∨ a1)∧ (c0 ∨ c1)) =
f(a0 ∨ a1) ∧ (c0 ∨ c1) = (f(a0) ∨ f(a1)) ∧ (c0 ∨ c1) = (b0 ∨ b1) ∧ (c0 ∨ c1).
Since a0 ∨ a1 6= b0 ∨ b1, we get c2 = (a0 ∨ a1) ∧ (b0 ∨ b1) ≤ c0 ∨ c1.

It remains to prove the direct implication. Let a be a point and p be a
line. Denote by U the set of the ordered pairs 〈ai, bi〉 of points such that
a, ai, bi are pairwise distinct and collinear and neither ai nor bi is on the
line p. For 〈ai, bi〉 ∈ U and any point b with b � a ∨ ai and b � p put
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fi(b) = (a∨ b)∧ (bi ∨ (p∧ (b∨ ai))). It is easy to check that a∨ b = a∨ fi(b)
and fi(b) � p.

Claim 1. For 〈a0, b0〉 ∈ U and 〈a1, b1〉 ∈ U with a0 ∧ (a ∨ a1) = 0 =
a1 ∧ (a ∨ a0) we have f0(a1) = b1 if and only if p ∧ (a0 ∨ a1) = p ∧ (b0 ∨ b1)
if and only if f1(a0) = b0. It is sufficient to prove the equivalence of the
first two conditions. If f0(a1) = b1 then p ∧ (b0 ∨ b1) = p ∧ (b0 ∨ ((a ∨
a1) ∧ (b0 ∨ (p ∧ (a0 ∨ a1))))) = p ∧ (b0 ∨ a ∨ a1) ∧ (b0 ∨ (p ∧ (a0 ∨ a1))) =
(a∨a0∨a1)∧((p∧b0)∨(p∧(a0∨a1))) = p∧(a0∨a1). If p∧(a0∨a1) = p∧(b0∨b1)
then f0(a1) = (a∨a1)∧(b0∨(p∧(a0∨a1))) = (a∨b1)∧(b0∨(p∧(b0∨b1))) =
(a ∨ b1) ∧ (b0 ∨ b1) = b1.

Claim 2. Let 〈a0, b0〉 ∈ U and 〈a1, b1〉 ∈ U be such that a0∧(a∨a1) = 0 =
a1∧ (a∨a0) and f0(a1) = b1. Then for any point a2 � p with a2∧ (a∨a0) =
0 = a2 ∧ (a∨a1) we have f0(a2) = f1(a2). Consider the triangles 〈a, a2, a1〉
and 〈b0, p∧ (a0 ∨a2), p∧ (a0 ∨a1)〉. We have (a∨ b0)∧ (a2 ∨ (p∧ (a0∨a2))) =
(a ∨ b0) ∧ (a0 ∨ a2) = a0 and a1 ∨ (p ∧ (a0 ∨ a1)) = a0 ∨ a1 ≥ a0, so that
the triangles are perspective with respect to the point a0. Since the lattice
is arguesian, we get c2 ≤ c0 ∨ c1 where

c2 = (a ∨ a2) ∧ (b0 ∨ (p ∧ (a0 ∨ a2))) = f0(a2),

c1 = (a ∨ a1) ∧ (b0 ∨ (p ∧ (a0 ∨ a1))) = f0(a1) = b1,

c0 = (a2 ∨ a1) ∧ ((p ∧ (a0 ∨ a2)) ∨ (p ∧ (a0 ∨ a1))) ≤ p ∧ (a1 ∨ a2).

Hence f0(a2) ≤ b1 ∨ (p ∧ (a1 ∨ a2)) and thus f0(a2) ≤ (a ∨ a2) ∧ (b1 ∨ (p ∧
(a1 ∨ a2))) = f1(a2). Since both f0(a2) and f1(a2) are complements of p, we
get f0(a2) = f1(a2).

Claim 3. Let 〈a0, b0〉, 〈a1, b1〉, 〈a2, b2〉 be elements of U such that a1 ∧
(a ∨ a0) = 0 = a2 ∧ (a ∨ a0), f0(a1) = b1 and f0(a2) = b2, Then f1(a3) =
f2(a3) for all points a3 ≤ a ∨ a0. If (a ∨ a1) ∧ (a ∨ a2) = a then, since
a3 ∧ (a ∨ a1) = 0 = a3 ∧ (a ∨ a2), f1(a3) = f2(a3) by Claim 2. The only
remaining case is a∨ a1 = a∨ a2. If a3 is any point on a∨ a0 different from
both a and a0, then a4 = (a0∨a2)∧ (a1∨a3) is a point not on a∨a0 and not
on a∨ a1 and we have a4 ∧ (a∨ a0) = 0 = a4 ∧ (a∨ a1). Put b4 = f0(a4). By
Claim 2, f1(a4) = f0(a4) = b4. Applying Claim 2 again to the pairs 〈a1, b1〉
and 〈a4, b4〉 we obtain f1(a3) = f4(a3) for all a3 ≤ a ∨ a0. Since this works
for 〈a2, b2〉 as well, we get f1(a3) = f2(a3).

We are now able to extend the definition of a single f0, for 〈a0, b0〉 ∈ U ,
to all points: with 〈a1, b1〉 ∈ U , p∧(a0∨a1) = p∧(b0∨b1) and a0∧(a∨a1) = 0
we can define

f(b) =











b if b ≤ p,

(a ∨ b) ∧ (b0 ∨ (p ∧ (a0 ∨ b))) if b � a ∨ a0,

(a ∨ b) ∧ (b1 ∨ (p ∧ (a1 ∨ b))) if b � a ∨ a1.

Let q be a line. If a ≤ q or q = p, put f(q) = q. For q otherwise we can
find a pair 〈a3, b3〉 ∈ U with f(a3) = b3 and q = (q ∧ (a ∨ a3)) ∨ (q ∧ p).
Moreover, if we let a4 = q∧(a∨a3), we can determine b4 = f(a4). We define
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f(q) = b4 ∨ (q ∧ p). Now for a point b ≤ q, b 6= a4 and b 6= q ∧ p, we have
f(b) = (a∨ b)∧ (b4 ∨ (p∧ (a∨ a4))) since b∧ (a∨ a4) = b∧ (a∨ a1) = 0. But
then f(b) ≤ f(q) as desired. Our collineation f is completely defined. �

By an elation of a projective plane we mean a collineation with an axis
and a center on the axis.

5.8. Theorem. Let f, g be two non-identical elations of a projective
plane with the same axis p but different centers a and b. Then gf is an
elation with axis p and center different from both a and b.

Proof. Clearly, gf is a collineation with axis p. By 5.5 it has a center c.
Suppose that c is not on p. We have f(a) = a, g(b) = b and gf(c) = c. The
points a, c, f(c) and also the points b, c, g−1(c) are collinear; but f(c) =
g−1(c), so the two lines are the same and a = b, a contradiction. Thus gf
is an elation. If c = a then g has center a, a contradiction. Similarly, we
cannot have c = b. �

Let P be a projective plane. For any point a and any line p, the set of
all collineations with center a and axis p is a subgroup of the group of all
collineations of P ; it is denoted by G(a, p). It follows from 5.8 that the set
of all elations with axis p is also a subgroup; this group is denoted by G(p).

5.9. Theorem. Let p be a line of a projective plane. If there exist two
distinct points a, b on p such that the groups G(a, p) and G(b, p) are both
nontrivial then the group G(p) of elations with axis p is abelian and all its
non-unit elements are either of infinite order or of the same prime order.

Proof. Let f, g ∈ G(p) be two elations with different centers a, b re-
spectively. Let c be any point not on p. Since f(c) < a ∨ c, we have
gf(c) < g(a) ∨ g(c) = a ∨ g(c). But also gf(c) < b ∨ f(c), so gf(c) =
(a ∨ g(c)) ∧ (b ∨ f(c)). Quite similarly, fg(c) = (a ∨ g(c)) ∧ (b ∨ f(c)) and
we get gf(c) = fg(c). If c is a point on p then gf(c) = c = fg(c). Thus
gf = fg for any f, g with different centers.

Now let f, g ∈ G(p) have the same center a. In order to prove that
gf = fg, it is sufficient to consider the case when f, g are non-identical.
There exist a point b 6= a and a non-identical elation h ∈ G(b, p). By 5.8, gh
is an elation with center c different from both a and b. Thus f commutes
with both gh and h; consequently, it commutes with g.

Let there exist a non-unit element of G(p) of a finite order. Then there
exists a non-unit element f of G(p) of a prime order s; denote its center
by a. If g is any other non-unit element of G(p) with center b 6= a then gf
has center c different from both a and b and (gf)s = gs ∈ G(c, p) ∩ G(b, p)
implies gs = 1G(p), so g is of order p. Using this g, we can see that also any
non-unit element in G(a, p) is of order s. �

5.10. Theorem. Let p be a line of a projective plane. If there are two
distinct points a, b on p such that the plane is both a− p and b− p transitive
then it is p-transitive.
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Proof. Let c be a point on p different from both a and b. Let c, a0, b0

be three distinct collinear points such that a0, b0 are not on p. Denote by
d the point (a ∨ a0)∧)b ∨ b0). There exist collineations f ∈ G(a, p) and
g ∈ G(b, p) with f(a0) = d and g(d) = b0. Clearly, the collineation h = gf
belongs to G(c, p) and h(a0) = b0. �

5.11. Theorem. Let p, q be two distinct lines of a projective plane such
that the plane is both p-transitive and q-transitive. Then the plane is r-
transitive for any line r containing the point p ∧ q.

Proof. Let r contain the point a = p ∧ q and be different from both p
and q. Take any point b on r different from a and let b1, b2 be two points
not on r such that b, b1, b2 are pairwise distinct and collinear. Put c =
(b∨b1∨b2)∧p and d = (b∨b1∨b2)∧q. There exists an elation f with center
c and axis p such that f(d) = b. We have f(q) = r. The points d = f−1(b),
f−1(b1), f−1(b2) are collinear; there exists an elation g with center d and
axis q such that gf−1(b1) = f−1(b2). It is easy to check that fgf−1 is an
elation with center b and axis r, such that fgf−1(b1) = b2. Since b was an
arbitrary point on p different from a, we can use 5.10 to finish the proof. �

5.12. Corollary. If a projective plane is transitive with respect to three
different lines having no common point then it is transitive with respect to
any line.



CHAPTER 3

COORDINATIZATION

1. Projective planes — ternary rings

By a ternary ring we mean an algebra with one ternary operation T and
two constants 0, 1 such that the two constants are distinct elements and the
following five conditions are satisfied:

(T1) T (0, a, b) = T (a, 0, b) = b for all a, b
(T2) T (1, a, 0) = T (a, 1, 0) = a for all a, b
(T3) for any triple a, b, c there exists precisely one x with T (a, b, x) = c
(T4) for any quadruple a, b, c, d with a 6= c there exists precisely one x

with T (x, a, b) = T (x, c, d)
(T5) for any quadruple a, b, c, d with a 6= c there exists precisely one pair

x, y with T (a, x, y) = b and T (c, x, y) = d

1.1. Example. Every division ring can be considered as a ternary ring
with respect to T (x, y, z) = xy + z.

1.2. Lemma. Let a, b, c be three elements of a ternary ring such that
a 6= 0. Then there exist precisely one element x with T (x, a, b) = c and
precisely one element y with T (a, y, b) = c.

Proof. It is easy. �

For elements a, b of a ternary ring we define a + b = T (a, 1, b) and
ab = T (a, b, 0). In general, these two operations are neither commutative
nor associative; in general, it is not true that T (x, y, z) = xy + z.

1.3. Theorem. For any element a of a ternary ring D we have

a + 0 = 0 + a = a,
a0 = 0a = 0,
a1 = 1a = a.

D is a loop with respect to +, 0 and D − {0} is a loop with respect to ·, 1.

Proof. It is obvious. �

For every ternary ring D we define an incidence structure PP (D) in the
following way. Its points are the elements (a, b), (m) and (∞) where a, b,m
are arbitrary elements of D; its lines are the elements Lm,b, La and L∞

where a, b,m are arbitrary elements of D; a line Lm,b contains the points
(x, y) with y = T (x,m, b) and the point (m); a line La contains the points

25
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(x, y) with x = a and the point (∞); the line L∞ contains the points (m)
with arbitrary m and the point (∞).

1.4. Theorem. Let D be a ternary ring. Then PP (D) is a projective
plane and the quadruple (0, 0), (1, 1), (0), (∞) is its frame.

Proof. First we must prove that any two distinct points are on precisely
one line. If the points are (a, b) and (a′, b′) with a 6= a′, it follows from (T5).
If the points are (a, b) and (m) with m ∈ D, it follows from (T3). In the
remaining cases it is clear.

Next we must prove that any two distinct lines are on precisely one point.
If the lines are Lm,b and Lm′,b′ with m 6= m′, it follows from (T4). If the
lines are Lm,b and Lm,b′ with b 6= b′, it follows from (T3). In the remaining
cases it is clear.

One can easily check that no three of the four points (0, 0), (1, 1), (0), (∞)
are collinear. �

1.5. Theorem. For every projective plane P and every frame O, I,X, Y
of P there exists a ternary ring D with zero O and unit I and such that
P ' PP (D).

O
I

b
a

p

X

Y

O
I

X

Y

q

q′

Fig. 7 Fig. 8

Proof. Denote by D the set of the points on the line O ∨ I but not on
the line X ∨ Y . For every point p not on X ∨ Y put φ0(p) = 〈a, b〉 where
a = (O ∨ I) ∧ (p ∨ Y ) and b = (O ∨ I) ∧ (p ∨ X) (we call a and b the first
and the second coordinate of p respectively), so that φ0 is a bijection of
the set of points not on X ∨ Y onto D × D; for 〈a, b〉 ∈ D × D we have
φ−1

0 (a, b) = (a ∨ Y ) ∧ (b ∨ X). Clearly, a point not on X ∨ Y has the first
coordinate O if and only if it is on O ∨ Y ; it has the first coordinate I if
and only if it is on I ∨ Y . For every point q on X ∨ Y other than Y denote
by φ1(q) the second coordinate of the point q′ = (I ∨ Y )∧ (O ∨ q) (the first
coordinate is I), so that φ1 is a bijection of the set of points on X∨Y without
Y onto the set D; for m ∈ D we have φ−1(m) = (X ∨ Y )∧ (O ∨ φ−1

0 (I,m)).
It is easy to prove that each line different from both X ∨ Y and O ∨ Y

contains for every x ∈ D precisely one point with coordinates x, y. For
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m, b, x, y ∈ D write y = T (x,m, b) if the point with coordinates x, y is on
the line φ−1

0 (O, b) ∨ φ−1
1 (m). Then T is a ternary operation on D and it is

easy to check that D is a ternary ring with respect to T , O and I.
The mapping φ extending both φ0 and φ1 and assigning ∞ to Y is a

bijection of the set of points of P onto the set of points of PP (D). It is easy
to extend φ to the lines to obtain an isomorphism. �

A ternary ring is called reducible if T (x, y, z) = xy + z for all x, y, z.
Such ternary rings can be considered as algebras with two binary operations
and two constants.

1.6. Example. The ternary ring of the free projective plane with re-
spect to the frame consisting of the four generators is not reducible and the
addition is neither commutative nor associative.

2. Line transitive projective planes — VW-systems

By a double loop we mean an algebra D with two binary operations +, ·
and two constants 0, 1 such that D is a loop with respect to +, 0, D − {0}
is a loop with respect to ·, 1 and x0 = 0x = 0 for all x ∈ D. (In particular,
the product of two non-zero elements is non-zero.) A double loop is called
coordinatizable if it has the following two properties:

(1) for any elements a, b, c, d with a 6= c there exists a unique element
x with xa + b = xc + d

(2) for any elements a, b, c, d with a 6= c there exists a unique pair of
elements x, y with ax + y = b and cx + y = d

Clearly, reducible ternary rings can be identified with coordinatizable
double loops.

2.1. Theorem. Let D be a ternary ring. The projective plane PP (D)
is (∞) − L∞ transitive if and only if the following are true:

(1) D is reducible
(2) D is a group with respect to +

Proof. Let PP (D) be (∞) − L∞ transitive. Let a,m, b ∈ D. Put

O = (0, 0), X = (0), Y = (∞), M = (m), Q = (1),
R = (0, b), S = (a, T (a,m, b)),
U = (Y ∨ S) ∧ (O ∨ M),
V = (X ∨ U) ∧ (O ∨ Q),
W = (V ∨ Y ) ∧ (R ∨ Q)

(see Fig. 9).
Denote by f the collineation with axis L∞ = X ∨ Y and center ∞ = Y ,

such that f(O) = R. We have

f(X) = X,
f(U) = f((Y ∨ U) ∧ (O ∨ M)) = (Y ∨ U) ∧ (R ∨ M) = S,
f(V ) = f((Y ∨ V ) ∧ (O ∨ Q)) = (Y ∨ V ) ∧ (R ∨ Q) = W .
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O X

Y
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Q

R S
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V

W

Fig. 9

Since X,U, V are collinear, it follows that X,S,W are collinear. Since Y ∨S
has equation x = a and O ∨M has equation y = xm, we have U = (a, am).
Since O ∨ Q has equation y = x and X ∨ U has equation y = am, we have
V = (am, am). Since V ∨ Y has equation x = am and R ∨ Q has equation
y = x+b, we have W = (am, am+b). Since X,S,W are collinear, the points
S and W have the same second coordinates and thus T (a,m, b) = am + b.

In order to prove that D is a group with respect to +, it remains to show
that the addition is associative. Let b ∈ D and f be the collineation with
axis L∞ and center ∞, such that f(0, 0) = (0, b). The line with equation
y = x is mapped to the line with equation y = x + b and the line with
equation x = c (where c is an arbitrary element of D) is mapped to itself, so
that f(c, c) = (c + b). For any element a ∈ D, the line with equation y = c
is mapped to the line with equation y = c + b and the line with equation
x = a is mapped to itself, so that f(a, c) = (a, c + b). Let d be an arbitrary
element of D and g be the collineation with axis L∞ and center ∞ such
that g(0, 0) = (0, d). Then gf(0, 0) = g(0, b) = (0, b+ d) and thus gf(a, c) =
(a, c + (b + d)). On the other hand, gf(a, c) = g(a, c + b) = (a, (c + b) + d).
We get c + (b + d) = (c + b) + d for arbitrary b, c, d ∈ D.

Conversely, let (1) and (2) be satisfied. For an arbitrary element b of
D define a mapping f as follows: a point (a, c) is mapped to (a, c + b), the
points on L∞ to themselves, a line Lm,c is mapped to the line Lm,c+b and
the other lines to themselves. Clearly, it is sufficient to prove that f is a
collineation and for this it is sufficient to show that if a point (a, d) lies on
Lm,c then (a, d+ b) lies on Lm,c+b. If d = am+ c then d+ b = (am+ c)+ b =
am + (c + b). �

By a VW-system (or Veblen-Wedderburn system) we mean a double
loop D satisfying the following conditions:

(VW1) D is an abelian group with respect to addition
(VW2) (a + b)c = ac + bc for all a, b, c ∈ D
(VW3) for any elements a, b, c ∈ D with a 6= b, the equation xa = xb + c

has a unique solution

Clearly, every VW-system is a coordinatizable double loop.
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2.2. Theorem. A ternary ring D is a VW-system if and only if the
projective plane PP (D) is L∞-transitive.

Proof. Let D be a VW-system. It is easy to check that for any r, s ∈ D
we get a collineation if we map a point (x, y) to (x + r, y + s), all the other
points to themselves, a line with equation x = c to a line with equation
x = r + c, a line with equation y = xm + b to the line with equation
y = xm − rm + s + b and the line L∞ to itself. For s = rt this collineation
is an elation with center (t) and axis L∞.

Conversely, let the plane be L∞-transitive. By 2.1, D is a coordinatizable
double loop and D is a group with respect to addition. We have seen in the
proof of the theorem that for any element b ∈ D there exists an elation
fb ∈ G((∞), L∞) such that fb(a, c) = (a, c + b) for all a, c ∈ D. By 2.5.9,
the group G(L∞) is abelian. For any b, d ∈ D we have fdfb = fbfd and for
any a, c ∈ D (a, c + b + d) = (a, c + d + b), i.e., b + d = d + b. Thus D is an
abelian group with respect to addition.

Let a,m, b ∈ D. Denote by f the elation with center (0) and axis L∞,
such that f(0, 0) = (b, 0). The line with equation y = x is mapped to the line
with equation y = x−b and the line with equation y = a is mapped to itself,
so that f(a, a) = (a + b, a). The line with equation x = a is mapped to the
line with equation x = a + b and the line with equation y = am is mapped
to itself, so that f(a, am) = (a + b, am). Since f(0, 0) = (b, 0), the line with
equation y = xm is mapped to the line with equation y = xm−bm. Since the
point (a, am) is on the line with equation y = xm, it follows that (a+b, am)
is on the line with equation y = xm − bm. Thus am = (a + b)m − bm, i.e.,
(a + b)m = am + bm.

We have proved (VW1) and (VW2). Condition (VW3) is also satisfied,
since the lines with equations y = xa and y = xb + c contain a single point
(x, y). �

2.3. Example. Let F be a finite field and x2 − rx− s be an irreducible
quadratic polynomial over F . Put D = F × F , identify the elements of F
with the pairs 〈a, 0〉 (a ∈ F ) and define addition and multiplication on D as
follows: 〈a, b〉+〈c, d〉 = 〈a+c, b+d〉; 〈a, b〉c = 〈ac, bc〉; if w and 〈a, b〉 are two
elements of D with b 6= 0 then w can be uniquely expressed as w = c+〈a, b〉d
for some c, d ∈ F and we put w〈a, b〉 = 〈ac + adr + ds, bc + bdr〉. It can be
proved that D is a VW-system.

3. Moufang planes — alternative fields

3.1. Theorem. Let D be a ternary ring. The projective plane PP (D)
is p-transitive for every line p containing (∞) if and only if D is a reducible
ternary ring satisfying

(1) D is an abelian group with respect to addition
(2) (a + b)c = ac + bc for all a, b, c ∈ D
(3) c(a + b) = ca + cb for all a, b, c ∈ D



30 3. COORDINATIZATION

(4) for every a ∈ D−{0} there exists an element a−1 such that aa−1 =
a−1a = 1 and a−1(ab) = b for all b ∈ D

If these conditions are satisfied then (y(zy))x = y(z(yx)) for all x, y, z ∈ D.

Proof. Let the projective plane be p-transitive for every line p contain-
ing (∞). By 2.2, D is a reducible ternary ring satisfying (1) and (2). Let
a, b,m ∈ D. Let f be the elation with center (∞) and axis x = 0, sending
the point (0) to (m). Since f sends (0) to (m) and (0, b) to itself, it sends the
line y = b to the line y = xm+b. Since , moreover, f sends the line x = a to
itself, it sends the point (a, b) to (a, am+b). Thus f sends (1, b) to (1,m+b);
since it sends (0, 0) to itself, it sends the line y = xb to y = x(m + b). Since
the point (a, ab) (which is sent to (a, am + ab)) is on the line y = xb (which
is sent to y = x(m + b)), the point (a, am + ab) is on the line y = x(m + b).
This means that am + ab = a(m + b) and we have proved (3).

Let a ∈ D − {0}. Let g be the elation with center (0, 0) and axis x = 0,
sending the point (0) to (−1− a, 0). Since (0, 1 + a) is sent to itself and (0)
is sent to (−1 − a, 0), the line y = 1 + a is sent to the line y = x + 1 + a.
Since (0) is sent to (−1 − a, 0) and (0, b + ab) (for any b ∈ D) is sent to
itself, the line y = b + ab is sent to the line y = xb + b + ab. Thus the line
y = 1 + a is sent to y = x + 1 + a; since, moreover, the line y = x(1 + a)
is sent to itself, the point (1, 1 + a) is sent to the point (d, d + 1 + a) for
some d ∈ D satisfying d(1 + a) = d + 1 + a. Since (∞) is sent to itself and
(1, 1 + a) is sent to (d, d + 1 + a), the line x = 1 is sent to the line x = d.
Since the line y = x(b + ab) is sent to itself and the line y = b + ab is sent
to y = xb + b + ab, the point (1, b + ab) is sent to the point (d, d(b + ab))
and we have d(b + ab) = db + b + ab. Put u = d − 1. We get ua = 1 from
d(1 + a) = d + 1 + a and u(ab) = b from d(b + ab) = db + b + ab. Similarly
as a 6= 1 implies ua = 1 and u(ab) = b for some u, there exists an element v
with vu = 1 and v(ua) = a. Hence v = v1 = a and au = 1. With a−1 = u
we get (4).

Conversely, let D be a reducible ternary ring satisfying the four condi-
tions. Clearly, D is a VW-system and thus, by 2.2, the projective plane is
L∞-transitive. By 2.5.11, it is sufficient to prove that it is also transitive
with respect to the line with equation x = 1. For this, it is sufficient to prove
that there exists a collineation f mapping L∞ to this other line. Define f in
this way: f sends the point (∞) to itself, the points (m) to (1,m), the points
(c, d) with c 6= 0 and c 6= −1 to ((1+ c−1)−1, (1+ c)−1d), the points (0, d) to
themselves, the points (−1, d) to (−d), the line L∞ to the line with equation
x = 1, the lines x = c with c 6= 0 and c 6= −1 to the lines x = (1 + c−1)−1,
the line x = 0 to itself, the line x = −1 to L∞ and the lines y = xm + b to
the lines y = x(m − b) + b. In order to verify that this is a collineation, a
crucial step is to check that if a point (c, d) with c 6= 0 and c 6= −1 is on a
line y = xm+ b then its image is on the image of the line, i.e., to check that
(1 + c)−1(cm + b) = (1 + c−1)−1(m − b) + b. This is a consequence of the
following claims.
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Claim 1. (1 + c−1)−1 = 1 − (1 + c)−1. Indeed,

1 = (c + 1)(1 + c)−1,

1 = c(1 + c)−1 + (1 + c)−1,

c−1 = (1 + c)−1 + c−1(1 + c)−1 = (1 + c−1)(1 + c)−1,

1 = (1 + c−1)(1 − (1 + c)−1).

Claim 2. (1 + c)−1b = (1 + c−1)−1(−b) + b. This follows from Claim 1.
Claim 3. (1 + c)−1(cm) = (1 + c−1)−1m. Indeed,

(1 + c)−1((c + 1)m) = m,

(1 + c)−1(cm) = m − (1 + c)−1m,

(1 + c)−1(cm) = (1 − (1 + c)−1)m

and we can use Claim 1.
Let us prove (y(zy))x = y(z(yx)) for x, y, z ∈ D. If either y = 0 or

y = −z−1, it is evident. Let y 6= 0 and y 6= −z−1. Put

t = (y−1 − (y + z−1)−1)(y(zy) + y).

We have

(y + z−1)t = (y + z−1)(zy + 1 − (y + z−1)−1(y(zy)) − (y + z−1)−1y)

= (y + z−1)(zy + 1) − y(zy) − y

= y(zy) + y + y + z−1 − y(zy) − y = y + z−1,

so that t = 1. Thus the elements y−1− (y +z−1)−1 and y(zy)+y are inverse
to each other and it follows that

(y−1 − (y + z−1)−1)((y(zy))x + yx) = x.

Put

w = (y−1 − (y + z−1)−1)(y(z(yx)) + yx)

= z(yx) + x − (y + z−1)−1(y(z(yx)) + yx).

We have

(y + z−1)w = (y + z−1)(z(yx) + x) − y(z(yx)) − yx

= yx + yx + z−1x − yx = (y + z−1)x,

so that w = x. Since the expressions of x and w are equal, we get (y(zy))x =
y(z(yx)). �

By a Moufang plane we mean a projective plane that is p-transitive for
any line p.

By an alternative field we mean a double loop D satisfying the following
conditions:

(AR1) D is an abelian group with respect to addition
(AR2) (a + b)c = ac + bc for all a, b, c ∈ D
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(AR3) c(a + b) = ca + cb for all a, b, c ∈ D
(AR4) for every a ∈ D−{0} there exists an element a−1 such that aa−1 =

a−1a = 1 and a−1(ab) = b and (ba)a−1 = b for all b ∈ D

3.2. Theorem. Let D be a ternary ring. The projective plane PP (D)
is a Moufang plane if and only if D is (reducible and) an alternative field.

Proof. Let PP (D) be a Moufang plane. In order to prove that D is an
alternative field, by 3.1 it remains to prove (ba)a−1 = b. Let f be the elation
with center (0, 0) and axis y = 0, sending the point (∞) to (0,−1). Since
(∞) is sent to (0,−1) and (a, 0) is sent to itself, the line x = a is sent to the
line y = xa−1 − 1. Hence the line x = 1 is sent to y = x − 1; since the line
y = x(1−ab) is sent to itself, the point (1, 1−ab) is sent to ((ab)−1, (ab)−1−1).
Since, moreover, the point (0) is sent to itself, the line y = 1 − ab is sent to
y = (ab)−1−1. Since x = a is sent to y = xa−1−1 and y = x(a−1−b) is sent
to itself, the point (a, 1 − ab) is sent to (b−1, b−1a−1 − 1). Since, moreover,
the point (0) is sent to itself, the line y = 1 − ab is sent to y = b−1a−1 − 1.
But the same line is sent to y = (ab)−1 − 1 and we get (ab)−1 = b−1a−1.
Now (ba)a−1 = (a−1b−1)−1a−1 = (a(a−1b−1))−1 = (b−1)−1 = b.

Conversely, let D be an alternative field. By 3.1, the projective plane is
transitive with respect to any line containing (∞). So, by 2.5.12, it remains
to prove that it is also transitive with respect to some line not contain-
ing (∞). For this, it is sufficient to find a collineation f not sending (∞)
to itself. We can construct f in the following way: f sends a point (a, b) to
(b, a), a point (m) with m 6= 0 to (m−1), the point (0) to (∞), the point
(∞) to (0), a line y = xm+ b with m 6= 0 to y = xm−1 − bm−1, a line x = c
to y = c, a line y = c to x = c and the line L∞ to itself. �

3.3. Remark. It can be proved that if a projective plane is transitive
with respect to two different lines, then it is transitive with respect to any
line, so that the conditions of 3.1 are equivalent to those of 3.2; this means
that in the definition of an alternative field, the condition (ba)a−1 = b is
a consequence of the other conditions. Also, it can be proved that for a
Moufang plane P , all the ternary rings of P (for all possible frames of P )
are (alternative fields and) isomorphic to each other.

4. Arguesian projective planes — division rings

4.1. Theorem. Let D be a ternary ring. The projective plane PP (D)
is (0) − L0 transitive if and only if D is a reducible ternary ring and the
multiplication of D is associative (so that D−{0} is a group with respect to
multiplication).

Proof. Let the plane be (0) − L0 transitive. For every m ∈ D − {0}
there exists a collineation fm with center (0) and axis x = 0 sending (m)
to (1). Since (0, 0) is sent to itself and (m) is sent to (1), the line y = xm
is sent to y = x. Since, moreover, the line y = am (for any a ∈ D) is sent
to itself, the point (a, am) is sent to (am, am). Since, moreover, (∞) is sent
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to itself, the line x = a is sent to x = am. Since, moreover, the line y = c
(for an arbitrary c ∈ D) is sent to itself, the point (a, c) is sent to (am, c).
Since the point (0, b) (for an arbitrary b ∈ D) is sent to itself and (m) is sent
to (1), the line y = T (x,m, b) is sent to the line y = x+b. Consequently, if a
point (a, c) is on the line y = T (x,m, b) then (am, c) is on the line y = x+ b.
We get T (a,m, b) = am + b for all a, b ∈ D.

Let m,n ∈ D−{0} and a ∈ D. The point (a, 1) is sent to (am, 1) by fm

and this point is sent to ((am)n, 1) by fn, so that (a, 1) is sent to ((am)n, 1)
by fnfm. In particular, (1, 1) is sent to (mn, 1) by fnfm. Hence fnfm = fmn.
But (a, 1) is sent to (a(mn), 1) by fmn and we get (am)n = a(mn). The
multiplication is associative.

Conversely, let D be reducible and let G − {0} be a group. For every
m 6= 0 we can define a collineation as follows: a point (a, b) is sent to (am, b),
a point (n) to (m−1n), the point (∞) to itself, a line y = xn + n is sent to
the line y = xm−1n + b, a line x = a to x = am and the line L∞ to itself. If
m runs over all non-zero elements of D, we obtain all possible collineations
with center (0) and axis L0. �

4.2. Theorem. The projective plane corresponding to a division ring is
arguesian. Given an arguesian projective plane P , for every frame of P
the corresponding ternary ring is reducible and is a division ring; all these
division rings (for all frames of P ) are isomorphic to each other.

Proof. It is clear that for a division ring D, the lattice PP (D) is iso-
morphic to the lattice of submodules, and thus to the congruence lattice of
the 2-dimensional vector space over D; it follows from 1.4.3 that the lattice
is arguesian.

Let P be an arguesian projective plane. It follows from 2.5.7, 1.5, 3.2
and 4.1 that for every frame of P the corresponding ternary ring is reducible
and is a division ring. In order to prove that all these division rings are iso-
morphic to each other, it is sufficient to prove that for any two frames there
exists a collineation sending the points of the first to the points of the second
frame (in the given order). We can assume that P = PP (D) for a division
ring D and that one of these two frames is the frame (0, 0), (1, 1), (0), (∞).

By a triangle of P we mean a triple of non-collinear points. By 2.5.7, for
any triangle a, b, c and any point c′ not on a ∨ b there exists a collineation
sending a, b, c to a, b, c′. From this it easily follows that for any two triangles
a, b, c and a′, b′, c′ there exists a collineation sending a, b, c to a′, b′, c′.

Thus we may assume that the second frame is (0, 0), (a, b), (0), (∞) for
some a, b ∈ D − {0}. A collineation fixing (0, 0), (0), (∞) and sending (a, b)
to (1, 1) can be defined in this way: a point (x, y) is sent to (xa−1, yb−1), a
point (m) is sent to (amb−1), the point (∞) is sent to itself, a line y = xm+c
is sent to y = xamb−1 + cb−1, a line x = c is sent to x = ca−1 and the line
L∞ is sent to itself. �





CHAPTER 4

FINITE PROJECTIVE PLANES

1. Auxiliary facts from number theory

1.1. Lemma. For any numbers (more generally, any elements of a com-
mutative ring) x1, x2, x3, x4, y1, y2, y3, y4 we have

(x2
1 + x2

2 + x2
3 + x2

4)(y
2
1 + y2

2 + y2
3 + y2

4) =(x1y1 + x2y2 + x3y3 + x4y4)
2+

(x1y2 − x2y1 + x3y4 − x4y3)
2+

(x1y3 − x3y1 + x4y2 − x2y4)
2+

(x1y4 − x4y1 + x2y3 − x3y2)
2

Proof. It can be easily checked. �

1.2. Lemma. (Lagrange’s theorem) Every natural number can be ex-
pressed as the sum of four quadrates of natural numbers.

Proof. By 1.1 it is sufficient to prove that every prime number p can
be expressed as the sum of four quadrates. For p = 2 we have p = 12 + 12 +
02 + 02. Let p ≥ 3.

Claim 1. There exist two natural numbers x, y such that x, y ≤ 1
2 (p− 1)

and x2 + y2 + 1 ≡ 0 (mod p). The numbers x2 with 0 ≤ x ≤ 1
2(p − 1) are

pairwise incongruent modulo p, since if x2 ≡ x′2 then the number x2−x′2 =
(x − x′)(x + x′) is divisible by p and thus either x − x′ or x + x′ is divisible
by p which is possible only if x = x′. Similarly, the numbers −y2 − 1 with
0 ≤ y ≤ 1

2 (p−1)) are pairwise incongruent modulo p. In the union of the two
sets there are p+1 numbers, so two of them must be congruent. This means
that there are x and y with 0 ≤ x, y ≤ 1

2(p − 1)) such that x2 ≡ −y2 − 1
(mod p).

Claim 2. There exists a number m with 0 < m < p, such that mp can be
expressed as the sum of four quadrates. Let x, y be as in Claim 1. We have
x2 + y2 + 1 = mp for some m > 0. Since x2 + y2 + 1 < 1

4p2 + 1
4p2 + 1 < p2,

we have m < p. We can express p as p = x2 + y2 + 12 + 02.
Claim 3. Let m be the least number with the properties from Claim 2.

Then m = 1. Let mp = x2
1 + x2

2 + x2
3 + x2

4. Suppose first that m is even.
Then either all the numbers x1, x2, x3, x4 are even or they are all odd or two
of them are even and two of them are odd. So, without loss of generality we
can assume that both x1 + x2 and x3 + x4 are even. Then

1

2
mp = (

x1 + x2

2
)2 + (

x1 − x2

2
)2 + (

x3 + x4

2
)2 + (

x3 − x4

2
)2,
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a contradiction with the minimality of m. Thus m is odd. Suppose that
m > 1. Since 0,±1, . . . ,±1

2(m − 1) are m numbers pairwise incongruent

modulo m, there exist numbers y1, y2, y3, y4 with |yi| < 1
2m such that yi ≡ xi

(mod m). We have y2
1 +y2

2+y2
3 +y2

4 ≡ x2
1+x2

2+x2
3+x2

4 ≡ 0 (mod m), so that
y2
1 + y2

2 + y2
3 + y2

4 = mn for some n ≥ 0. If n = 0 then yi = 0 for all i, xi ≡ 0
(mod m) for all i, x2

1 + x2
2 + x2

3 + x2
4 ≡ 0 (mod m2), mp ≡ 0 (mod m2) and

p ≡ 0 (mod m), a contradiction. Thus n > 0. Since mn < 4 · 1
4m2 = m2, we

have n < m. Since x1y1+x2y2+x3y3+x4y4 ≡ x2
1+x2

2+x2
3+x2

4 (mod m), we
have x1y1+x2y2+x3y3+x4y4 = mz for some z. For i, k = 1, 2, 3, 4 with i 6= k
we have xiyk−xkyi ≡ xixk−xkxi = 0 (mod m), so that xiyk−xkyi = mzi,k

for some integers zi,k. Now

mpmn = (x2
1 + x2

2 + x2
3 + x2

4)(y
2
1 + y2

2 + y2
3 + y2

4)

= m2z2 + m2(z1,2 + z3,4)
2 + m2(z1,3 + z4,2)

2 + (z1,4 + z2,3)
2

by 1.1, so that pn = z2 + (z1,2 + z1,3)
2 + (z1,3 + z4,2)

2 + (z1,4 + z2,3)
2, a

contradiction with the minimality of m. �

1.3. Lemma. A natural number a can be expressed as the sum of two
squares of natural numbers if and only if for every prime number p with
p ≡ 3 (mod 4), the largest nonnegative number e such that pe divides a is
even.

Proof. Let a = b2 +c2 and suppose that there is a prime number p ≡ 3
(mod 4) such that a is divisible by p2k+1 but not by p2k for some k. Denote
by m the largest number such that pm divides b. It is easy to see that m
is also the largest number such that pm divides c, and m ≤ k. We can
suppose that m = 0, since otherwise we can replace a with a/p2m, b with
b/pm and c with c/pm. We have b2 + c2 = a ≡ 0 (mod p), b 6≡ 0 (mod p)
and c 6≡ 0 (mod p). Thus there exists an element z of the finite field F with
p elements such that z2 = −1 (z is the element corresponding to b divided
by the element corresponding to c). As it is well known, the multiplicative
group of this field is a cyclic group. Let g be its generator. We have z = gc

for some c, so g2c = −1 and g4c = 1. Since the group is of order p − 1, we
get 4c = (p− 1)d for some d. Thus 2c = p−1

2 d where p−1
2 is odd (since p ≡ 3

mod 4), d is even and 2c is divisible by p−1. Hence g2c = 1, a contradiction.
The converse implication is a consequence of the following claims 1 and 3.

Let us call a natural number expressible if it can be expressed as the sum
of two squares.

Claim 1. The product of two expressible numbers is expressible. Indeed,
by 1.1 we have (x2

1 + x2
2)(y

2
1 + y2

2) = (x1y1 + x2y2)
2 + (x1y2 − x2y1)

2.
Claim 2. If p is a prime number with p ≡ 1 (mod 4) then the number

x = (1
2(p−1))! satisfies x2 +1 ≡ 0 (mod p). By Fermat’s theorem we have

xp−1 ≡ 1 (mod p) whenever x is not divisible by p. Thus the polynomial
xp−1, considered as a polynomial over the field with p elements, has p − 1
different roots 1, . . . , p− 1. It follows that xp−1 − 1 ≡ (x− 1)(x− 2) . . . (x−
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(p − 1)) (mod p) for all x. In particular, for x = 0 we get (p − 1)! ≡ −1
(mod p) (Wilson’s theorem). Thus

−1 ≡ (p − 1)! ≡ 1 · 2 · · · · ·
1

2
(p − 1)(−

1

2
(p − 1)) · · · · · (−2) · (−1)

≡ (−1)
1

2
(p−1)(

1

2
(p − 1))!2.

Since p ≡ 1 (mod 4), the number 1
2(p − 1) is even, (−1)

1

2
(p−1) = 1 and we

get (1
2 (p − 1))!2 ≡ −1 (mod p).

Claim 3. Let p be a prime number with p ≡ 1 (mod 4). Then p is
expressible. By Claim 2 there exists a natural number z with z2 + 1 ≡ 0
(mod p). Denote by e the least natural number with e2 > p. There are more
than p (precisely, e2) ordered pairs 〈u, v〉 with 0 ≤ u, v < p and thus among
the numbers u+zv there must be two that are congruent modulo p. So, there
exist natural numbers u′, v′, u′′, v′′ less than p such that u′ + zv′ ≡ u′′ + zv′′

(mod p) and v′ 6≡ v′′ (mod p) (if v′ ≡ v′′ then also u′ ≡ u′′, a contradiction).
Put x = u′ − u′′ and y = v′ − v′′. We have x + zy ≡ 0 (mod p), so that
zy ≡ −x. Put a = |x| and b = |y|. We have zb ≡ ±a and 0 < a, b < e,
so that a2, b2 < p. We have a2 + b2 ≡ z2b2 + b2 = (z2 + 1)b2 ≡ 0 (mod p),
hence a2 + b2 = mp for some m; since a2, b2 < p, the only possibility for m
is m = 1. Thus p = a2 + b2. �

1.4. Lemma. Let a, b, c, d, x be natural numbers such that a2 + b2 =
x(c2 + d2). Then also x can be expressed as the sum of two quadrates of
natural numbers.

Proof. It follows from 1.3. �

2. The Bruck–Ryser theorem

2.1. Theorem. Let n ≥ 2 be a natural number congruent with either
1 or 2 modulo 4. If n cannot be expressed as the sum of two quadrates of
natural numbers then there is no projective plane of order n.

Proof. Suppose there is. Put N = n2 + n + 1, so that there are N
points and N lines. Since n is congruent with either 1 or 2, N is congruent
with 3 modulo 4. For i, j ∈ {1, . . . ,N} put ai,j = 1 if the i-th point is on
the j-th line, and put ai,j = 0 otherwise. Denote by A the matrix with
elements ai,j. Then AAT = AT A = nI + J where AT is the transpose of
A, I is the unit matrix and J is the matrix with all elements equal 1. For
every j = 1, . . . , N define a linear form (over the field of rational numbers)

in variables x1, . . . , xN by Li =
∑N

i=1 ai,jxi. Then

L2
1 + · · · + L2

N = n(x2
1 + · · · + x2

N ) + (x1 + · · · + xN )2

= n(x2 +
x1

n
)2 + · · · + n(xN +

x1

n
)2 + (x2 + · · · + xN )2.

Let us introduce new variables y1, . . . , yN by y1 = x2 + · · · + xn and yi =
xi+

x1

n
for i = 2, . . . , N . Then y1, . . . , yN is another base of the n-dimensional
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vector space over the field of rational numbers. So, if we express each Lj as
a linear form in the new variables, we get

L2
1 + · · · + L2

N = y2
1 + ny2

2 + · · · + ny2
N

for all rational numbers y1, . . . , yN .
By 1.2 there exist natural numbers a1, a2, a3, a4 such that n = a2

1 +
a2

2 + a2
3 + a2

4. Let us introduce new variables z1, . . . , zN as follows: z1 = y1,
zN−1 = yN−1, zN = yN and, for i ≡ 2 (mod 4),

zi = a1yi + a2yi+1 + a3yi+2 + a4yi+3,

zi+1 = a1yi+1 − a2yi + a3yi+3 − a4yi+2,

zi+2 = a1yi+2 − a3yi + a4yi+1 − a2yi+3,

zi+3 = a1yi+3 − a4yi + a2yi+2 − a3yi+1.

It is easy to check that these variables are again independent, so that if
we express each Lj as a linear form in the last variables, we get (according
to 1.1)

L2
1 + · · · + L2

N = z2
1 + · · · + z2

N−2 + n(z2
N−1 + z2

N )

for all rational numbers z1, . . . , zN . Observe that Lj are now linear forms
with different rational coefficients. We have L1 = b1z1 + · · · + bNzN for
some rational numbers b1, . . . , bN . If b1 6= 1, substitute L1 for z1; if b1 = 1,
substitute −L1 for z1. Then L2

1 = z2
1 and (after the substitution) L2

2 +
· · · + L2

N = z2
2 + · · · + z2

N−2 + n(z2
N−1 + z2

N ). Proceeding in this way we

get L2
N−1 + L2

N = n(z2
N−1 + z2

N ). Substitute for zN−1 and zN some positive
integers that are multiples of all denominators of coefficients of the forms
LN−1 and LN . We obtain a2 + b2 = n(c2 + d2) for some integers a, b, c, d.
By 1.4, n is the sum of two quadrates. �

3. Projective planes of small orders

As we already know, for every prime power n there exists a projective
plane of order n. It follows from 2.1 that there are no projective planes
of orders 6, 14, 21, 22, 30. It has been proved by C. Lam et al. in 1989
(heavy use of computers) that there is no projective plane of order 10. The
remaining numbers, up to 30, are 12, 15, 18, 20, 24, 26, 28. For each of
these numbers, the existence of a projective plane of that order is an open
problem. It is not known if there is a projective plane of an order that is
not a prime power.
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