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Abstract. Two duals of steady rings are introduced and studied.

1. Preliminaries

Throughout the paper, R stands for a non-zero associative ring with unit and
modules are unitary left R-modules. The terminology and notation used in what
follows is quite standard (see e.g. [13] or [14]). The only exception is the (left
R-)module Rω/R(ω) which is denoted by W in the sequel. Finally, a module will
be called complete if it is complete in a non-discrete linear Hausdorff topology.

2. ∪-compact modules and steady rings

It is well known and easy to check that the following seven conditions are equiv-
alent for a module M :

(A1) If Mi, i < ω, is a countable family of submodules of M such that ΣMi = M ,
then Σi≤nMi = M for some n < ω.

(A2) If M0 ⊆ M1 ⊆ M2 ⊆ . . . is a countable chain of submodules of M such
that

⋃
Mi = M , then Mn = M for some n < ω.

(A3) If ǫ :
∐

ω Ai → M is an epimorphism, then ǫ(
∐

i≤nAi) = M for some
n < ω.

(A4) If ϕ : M →
∐

I Ai is a homomorphism, then Im(ϕ) ⊆
∐

J Ai for a finite
subset J of I.

(A5) If ϕ : M →
∐

ω Ai is a homomorphism, then Im(ϕ) ⊆
∐

i≤nAi for some
n < ω.

(A6) If Q is a cogenerator for R-Mod and if ϕ : M → Q(ω) is a homomorphism,
then Im(ϕ) ⊆ Q(n) for some n < ω.

(A7) The canonical mapping
∐

I HomR(M,Ai) → HomR(M,
∐

I Ai) is an iso-
morphism.

Such a module M will be called ∪-compact in this paper (other known names:
Σ-compact,

∐
-slender, dually slender, small, e.t.c.) and one sees immediately that

every finitely generated module is ∪-compact. If the converse is true, then the ring
R is said to be left steady. Many such rings were studied in the literature (see e.g.
[2, 11, 12, 16]) but we will mention only the following few examples:

Proposition 2.1. R is left steady in each of the following cases:

(1) R is left noetherian.
(2) R is left perfect.
(3) R is left semiartinian of countable socle length.

2000 Mathematics Subject Classification. 16D10.

This work is part of the research project MSM 0021620839, financed by MŠMT.
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(4) R is a countable commutative ring.

Proof. (1), (2), (3) See [2, Theorem 1.8, Theorem 2.2] and (4) follows from [16,
Proposition 15]. �

3. ∩-compact modules and 1-dually steady rings

The following conditions are equivalent for a module M :
(B1) If Mi, i < ω, is a countable family of submodules of M such that

⋂
Mi = 0,

then
⋂

i≤nMi = 0 for some n < ω.

(B2) If M0 ⊇ M1 ⊇ M2 ⊇ . . . is a countable chain of submodules of M such
that

⋂
Mi = 0, then Mn = 0 for some n < ω.

(B3) If ι : M →
∏

ω Ai is a monomorphism, then ι−1(
∏

i≥nAi) = 0 for some
n < ω.

Such a module will be called ∩-compact in the paper and one sees again immedi-
ately that every finitely cogenerated module is ∩-compact. If the converse is true,
then we will say that the ring R is left 1-dually steady. Note that any submodule
of a ∩-compact module is ∩-compact and any factor of a left 1-dually steady ring
is left 1-dually steady as well. For further basic properties of ∩-compact modules
see [7].

Lemma 3.1. Every ∩-compact module has a finite uniform dimension.

Proof. Any infinite direct sum of nonzero modules is not ∩-compact and ∩-compact
modules are closed under submodules. �

As every nonzero finitely cogenerated module contains simple submodule, we get
the following consequence:

Corollary 3.2. A ring R is left 1-dually steady if and only if every uniform cyclic
module either contains a simple submodule or it is not ∩-compact.

Some examples of left 1-dually steady rings:

Proposition 3.3. R is left 1-dually steady in each of the following cases:

(1) R is right noetherian and every left ideal is a two-sided ideal.
(2) R is left semiartinian.
(3) R is countable.
(4) R is abelian regular.

Proof. (1)-(3) See [7, Proposition 3].
(4) An immediate consequence of 3.2, since every non-artinian factor of abelian

regular ring has an infinite uniform dimension. �

Recall that a module M is strongly ∪-compact, if for every countable sequence
m0,m1, · · · ∈ M there exists a finitely generated submodule F of M such that
mi ∈ F for each i < ω.

Proposition 3.4. Let R be a left nonsingular ring with a left maximal ring of
quotients Q. Then R is ∩-compact if and only if Q is semisimple and QR is strongly
∪-compact.

Proof. Let R be ∩-compact. Since RQ is an injective envelope of RR and Q is a
von Neumann regular ring (see e.g. [13, Chapter XII]), Q is semisimple by 3.1.
Hence there exists a primitive set of orthogonal idempotents {ei}i≤k ⊆ Q. Let
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m1,m2, · · · ∈ Q is a countable sequence. Put Ai
n = {r ∈ Re| reimn ∈ R}. Note

that that
⋂

nA
i
n 6= 0 for each i since R is ∩-compact, hence there is a nonzero

element riei ∈ Rei such that reimn ∈ R for all n. As Qriei = Qei, there exists
qi ∈ Q for which qiriei = ei, thus eimn = qi(rieimn) ∈ qiR. As rieimn ∈ R and
mn =

∑
i eim we get that mn ∈

∑
i≤k qiR for all n < ω.

Suppose that Q is semisimple and QR is strongly ∪-compact and let In be an
increasing chain of left ideals such that

⋂
j≤n Ij 6= 0 for each n < ω. Note that

we may suppose that In = Rxn and Qxn = Qe, where e2 = e ∈ Q, is a simple
Q-module. Then there exist s ∈ R and yn ∈ Q such that se ∈ R\{0} and ynxn = e.
As QR is strongly ∪-compact, there exist u1, . . . , uk ∈ Q for which yn ∈

∑
i≤k uiR.

Moreover, there exists v ∈ eQ and a ∈ R satisfying e = vsynxn and aevui ∈ R
where aevui 6= 0 for at least one i ≤ k. Now, since 0 6= ae = aevsynxn ∈ R and
aevsyn ∈ R for each n, we obtain that

⋂
nRxn 6= 0. �

Corollary 3.5. Let R be a commutative domain with a quotient field Q 6= R. Then
the following conditions are equivalent:

(i) R is ∩-compact,
(ii) every countably generated submodule of RQ is a fractional ideal.

Moreover, if R is uniserial, then the above conditions are equivalent to:

(iii) RQ is ∪-compact,
(iv) RQ is not countably generated.

4. Slender and slim modules and 2-dually steady rings

Consider the following three conditions for a module M :
(B4) If ψ :

∏
I Bi →M is a homomorphism, then

∏
J Bi ⊆ Ker(ψ) for a cofinite

subset J of I.
(B5) If ψ :

∏
ω Bi → M is a homomorphism, then

∏
i≥nBi ⊆ Ker(ψ) for some

n < ω.
(B6) If ψ : Rω →M is a homomorphism, then Rω\n ⊆ Ker(ψ) for some n < ω.
(B7) The canonical mapping

∐
I HomR(Bi,M) → HomR(

∏
I Bi,M) is an iso-

morphism.
Clearly, the conditions (B5) and (B6) are equivalent and the corresponding mod-

ules are just the well known slender modules (see [3, Chapter III]). Similarly, the
conditions (B4) and (B7) are equivalent and the corresponding modules are called
slim in [4]. Every slim module is slender and, according to [8] or [9, Proposition 2.3]
the converse is true if and only if there are no measurable cardinal numbers (and
then the conditions (B4), (B5), (B6) and (B7) are equivalent). On the other hand,
if κ is a measurable cardinal and |R| < κ, then there exist no non-zero slim R-
modules. Consequently, in case there are too many measurable cardinals, non-zero
slim modules do not exist over any ring (the converse is also true - see [4, Theorem
8.2]).

Proposition 4.1 ([1]). A module M is slender if and only if HomR(W,M) = 0,
W = Rω/R(ω) , and M is not complete (i.e., not complete in any non-discrete
linear Hausdorff topology).

Proposition 4.2. (i) If a module M is ∩-compact or if |M | < 2ω, then M is
slender if and only if HomR(W,M) = 0.
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(ii) If S is a submodule of Rω maximal with respect to R(ω) ⊆ S and (1, 1, 1, . . . ) 6∈
S then the factor-module T = Rω/S is cocyclic and not slender.

(iii) If A is a nonzero slender module, then A(ω) is a slender module that is not
finitely cogenerated.

Proof. (i) The assertion follows immediately from 4.1.
(ii) The socle of T is an essential simple submodule, and hence T is cocyclic. By

4.1, T is not slender.
(iii) Slender modules are closed under direct sums. �

Proposition 4.3. Assume that every maximal left ideal of R is a two-sided ideal.
Then no non-zero finitely cogenerated module is slender.

Proof. Due to 4.1, no simple module is slender and it is enough to take into account
that slender modules are closed under submodules. �

Proposition 4.4. The following conditions are equivalent:

(1) All slender modules are finitely cogenerated,
(2) there exist no non-zero slender modules,
(3) there exist no non-zero slender cyclic modules,
(4) HomR(W,R/I) 6= 0 for every proper left ideal I such that the cyclic factor-

module R/I is not complete.

Moreover, if every left ideal of R is a two-sided ideal, then the above conditions are
equivalent to:

(5) Slender modules are closed under factor-modules.

Proof. First, (1) implies (2) by 4.2 (3) and (2) implies (1), (3) and (5) trivially.
Further, (3) is equivalent to (4) by 4.1 and (3) implies (1) due to the fact that
slender modules are closed under submodules. Now, assume that all left ideals are
two-sided and that the condition (5) is satisfied. We are going to show that then
(3) is true. For, let I be an ideal of R such that the cyclic module M = RR/I is
slender and let κ be a cardinal number such that κ ≥ |Rω|. Since slender modules
are closed under direct sums, the module N = M (ω) is slender. On the other hand,
N may be viewed as a free R/I-module and consequently there is an epimorphism
ϕ : N →Mω. According to (5), Mω is a slender module and it follows immediately
that M = 0. �

If the ring R satisfies the equivalent conditions 4.4(1), . . . , (4), then we will say
that R is left 2-dually steady.

Lemma 4.5. Let I be an ideal, finitely generated as a right ideal, of R, and let
S = R/I. If M is a module such that IM = 0, then M is a slender R-module if
and only if M is a slender S-module.

Proof. There is a natural isomorphism θ : W/IW → Sω/S(ω). �

Corollary 4.6. If R is left 2-dually steady and I is an ideal, finitely generated as
a right ideal, of R, then the factor-ring R/I is also left 2-dually steady.

Lemma 4.7. No simple module is slender in each of the following cases:

(1) Every maximal left ideal is a two-sided ideal.
(2) I 6= I2 for every maximal left ideal I.
(3) R is a left V-ring.
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(4) Every simple module is finite.
(5) R/J(R) is a left 2-dually steady ring.

Proof. Easy. �

Proposition 4.8. Assume that R is left semiartinian. Then R is left 2-dually
steady in each of the following cases:

(1) Every maximal left ideal is a two-sided ideal,
(2) R is a left V-ring,
(3) every simple module is finite,
(4) R/J(R) is left 2-dually steady ring.

Proof. Combine 4.7 and the fact that slender modules are closed under submodules.
�

Proposition 4.9. R is both left 1- and 2-dually steady in each of the following
cases:

(1) R is right perfect ring,
(2) R is commutative semiartinian,
(3) R is complete commutative principal ideal domain.

Proof. (1), (2) An immediate consequence of 4.8 and 3.3.
(3) If R is a principal ideal domain, then no simple module is slender and, up

to isomorphism, the only Soc-torsionfree cyclic module is R itself. Now, it is clear
that R satisfies the condition 4.4(4). Finally, R is left 1–dually steady by 3.3(1) �

5. Small 2-dually steady rings

Throughout this section, a small ring is any ring R with |R| < 2ω.

Proposition 5.1. If R is small, then the following conditions are equivalent:

(1) R is left 2-dually steady,
(2) HomR(W,R/I) 6= 0 for every proper left ideal I,
(3) HomR(W,M) 6= 0 for every non-zero module M .

Proof. We have |A| ≥ 2ω for every complete module A and the rest is clear from
4.1 and 4.4. �

Proposition 5.2. A small prime ring R is (left, right) 2-dually steady if and only
if R is isomorphic to a full matrix ring over a division ring.

Proof. The direct implication follows from [5, statement 4.1] and the converse one
is clear. �

Theorem 5.3. The following conditions are equivalent for a small ring R:

(1) R is right noetherian and left 2-dually steady.
(2) R is right artinian.

If these conditions are satisfied, then R is (left and right) steady, 1-dually steady
and 2-dually steady.

Proof. Assume (1) be true. Since R satisfies maximal condition on ideals, the prime
radical P of R is the intersection of a finite family of prime ideals, say P = P1 ∩
· · ·∩Pn. Further, by 4.6 and 5.2, all the factor-rings R/Pi are completely reducible
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and consequently P = J(R) and R is semilocal. Since R is right noetherian, P is
nilpotent and it follows easily that R is right artinian.

Conversely, if R is right artinian, then R is (left, right) steady by 2.1(2) (and
its right hand form), R is 1-dually steady by 3.3(2) and R is 2-dually steady by
4.9. �

6. Commutative noetherian 2-dually steady rings

Theorem 6.1. Let R be a commutative noetherian ring.

(1) R is 2-dually steady if and only if every non-zero Soc-torsionfree cyclic
module is complete.

(2) If R is 2-dually steady, then R is semilocal and, moreover, if R is not
artinian, then R/Soc(R) is complete.

Proof. (1) Combine 4.4(3) and [6, statement 4.4].
(2) Use (1) and [6, statements 3.1 and 3.2]. �
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