
Multi-block Collisions in Hash functions based
on 3C and 3C+ Enhancements of the

Merkle-Damg̊ard Construction?

Daniel Joščák and Jǐŕı Tůma
joscd1am@karlin.mff.cuni.cz and tuma@karlin.mff.cuni.cz

Charles University in Prague,
Faculty of Mathematics and Physics, Department of Algebra,

Sokolovská 83, 186 75 Prague 8, Czech Republic.

Abstract. At the ACISP 2006 conference Praveen Gauravaram et al
[2] proposed 3C and 3C+ constructions as enhancements of the Merkle-
Damg̊ard construction of cryptographic hash functions. They conjec-
tured these constructions improved multi-block collision resistance of the
hash functions. In this paper we show that the recently found collision
attack on MD5 can be easily extended to the 3C and 3C+ constructions
based on the MD5 compression function. In fact we show that if an al-
gorithm satisfying some mild assumptions can find multi-block collisions
for the Merkle-Damg̊ard construction then it can be easily modified to
find multi-block collisions for the 3C and 3C+ constructions based on
the same compression function.
Keywords: hash functions, multi-block collision attack, 3C and 3C+
constructions.

1 Introduction

Research in the design and analysis of cryptographic hash functions has
been very active since Wang at al [7] published their first collision search
algorithm for the MD5 hash function. Collision search algorithms for other
hash functions have been discovered, in particular for SHA-0, see [1], [8].
An algorithm for finding collisions in SHA-1 that is significantly more
efficient than the generic birthday attack was announced in [9].

In the light of these attacks Gauravaram et al [2] have proposed a
slight modification to the Merkle-Damg̊ard construction for an improved
protection against many known attacks on MD based hash functions.
Their idea is to add additional registers that would collect xors of all
chaining variables. After the message is processed the content of addi-
tional registers is padded to provide one more message block and the

? Research was supported by the Institutional grant MSM0021620839

2

extra block is used as an input for the last calculation of the compression
function. Thus the original MD construction remains and the extra se-
curity is supposed to be provided by the additional registers, see Figure
1.

Since the 3C construction contains the original MD contruction, any
n-block internal collision for the 3C construction must be in fact an n-
block collision of the MD construction based on the same compression
function. However, because of the extra use of the compression function
at the end of the 3C construction one cannot claim that an n-block colli-
sion for the 3C construction must be also an n-block collision of the MD
construction. To find an n-block collision (where n ≥ 2) for the 3C con-
struction that is not an n-block collision for the MD construction based
on the same compression function would require to find a collision in
the compression function with different IV’s and possibly different input
blocks.

In this paper we show that the 3C construction does not increase
significantly resistance against multi-block collisions. In fact, under very
mild assumptions we prove that if there is an algorithm that finds n-block
collisions for the MD construction based on a compression function, then
one can easily find (2n)-block collisions for the 3C construction based
on the same compression function and (2n + 1)-block collisions for its
modification called 3C+. Our theorem can be applied in particular to the
MD5 compression function.

We also observe that the 2-block collisions for the SHA-0 hash function
published in [8] are in fact also 2-block collisions for the 3C construction
based on the same collision function.

The paper is organized as follows. In section 2 we discuss the 3C
and 3C+ design principles, in section 3 we point out a few important
properties of the recent 2-block collision attacks on MD5. In Section 4 we
prove two simple general theorems how multi-collision attacks on the MD
construction can be extended to multi-collision attacks on the 3C and
3C+ constructions. We conclude the paper in section 5. In the appendix
we present concrete examples of colliding messages for the 3C and 3C+
constructions based on the compression function of MD5.

2 Description of 3C and 3C+

The 3C construction is a generic construction designed as an enhance-
ment to the Merkle-Damg̊ard construction with the idea to increase its
resistance against multi-block collision attacks. One of the main proper-

3

ties of the 3C construction is that it is as efficient as the standard hash
functions when it is instantiated with the compression functions of any
of these hash functions.

The 3C construction accumulates every chaining state of the MD con-
struction by xoring it to the register already containing xor of all previous
chaining states.

@
@f

@
@f

@
@f

@
@f

@
@f

⊕ ⊕ ⊕

- - -- -

6 6 6

- - - -
�

H

P
A
D

-
-

IV0 IV1 IV2 IVL−1 IVL

C1 C2 CL−1 CL

M1 M2 ML−1 ML

- - - -

Fig. 1. 3C construction of hash function

Thus if IVi is the chaining variable obtained as the result of i-th
iteration of the compression function (IV0 is the initialization vector),
then the value of the additional accumulation registers (denoted by Ci)
after the i-th iteration of the compression function is C1 = IV1 and

Ci = Ci−1 ⊕ IVi = IV1 ⊕ IV2 ⊕ · · · ⊕ IVi

for i = 2, . . . , L, where L is the number of blocks of the message. The
authors also suggest in their paper [2] that different variants can be ob-
tained for 3C by replacing the xor function in the accumulation chain by
other non-linear functions.

The 3C+ construction is a different modification of the 3C construc-
tion in which yet another chain Di, i = 1, . . . , L of additional registers ac-
cumulating the values of chaining variables is added. This time D1 = IV0

and

Di = Di−1 ⊕ IVi = IV0 ⊕ IV2 ⊕ · · · ⊕ IVi

for i = 2, . . . , L. Thus

Di = Ci ⊕ IV1 ⊕ IV0

for every i = 2, . . . , L.

4

@@f
@@f

@@f
@@f

@@f

⊕ ⊕ ⊕

⊕ ⊕ ⊕

- - - --

6 6 6

6 6 6

??
C-

�

H

P
A
D -

- - -

- - -

IV0 IV1 IV2 IV3 IVL

- - - -

M1 M2 M3 ML

-

C1 C2 C3 CL−1 CL

D1 D2 D3 DL−1 DL

Fig. 2. 3C+ construction of hash function

3 Recent multi-block collision attacks

The hash function MD5 uses four 32-bit registers to keep the value of each
chaining variable IVi. We denote them by IVi,0, IVi,1, IVi,2, IVi,3. Thus

IVi = (IVi,0||IVi,1||IVi,2||IVi,3).

Wang et al presented in [7] an algorithm for finding 2-block collisions
in the hash function MD5. Their algorithm works for an arbitrary initial-
ization vector IV0. If (M1||M2) and (M ′

1||M ′
2) are two colliding messages

found by their algorithm then the modular differences of the chaining
variables after processing the first blocks M1 and M ′

1 are

∆i,0 = IV′
1,0 − IV1,0 = 231

∆i,1 = IV′
1,1 − IV1,1 = 231 + 225

∆i,2 = IV′
1,2 − IV1,2 = 231 + 225

∆i,3 = IV′
1,3 − IV1,3 = 231 + 225, (1)

where

IV1 = f(IV0,M1)
IV′

1 = f(IV0,M
′
1)

and f is the compression function used in MD5.
Wang et al in [7] also presented a set of so-called sufficient conditions

for registers in computation of f(IV,M1) to produce the first blocks of
a pair of colliding messages. These conditions in fact were not sufficient
and various authors, e.g. [5] [6] offered their sets of sufficient conditions.
For our purposes only the conditions for IV1 are important and these

5

conditions were the same for all authors. In fact, we need only four of
the sufficient conditions for IV1 and these four conditions are described
in the Table 1.

IV1,0

IV1,10.

IV1,201.

IV1,30.

Table 1. Prescribed conditions for IV1

The exact value of IV1 ⊕ IV′
1 then follows from given modular differ-

ences (1) and prescribed conditions for IV1 in the Table 1. Thus IV1⊕IV′
1

is a constant independent of the initialization vector IV0 and the first
blocks M1 and M ′

1 of the colliding messages (M1||M2) and (M ′
1||M ′

2).

δ1,0 = IV1,0 ⊕ IV′
1,0 10000000 00000000 00000000 00000000

δ1,1 = IV1,1 ⊕ IV′
1,1 10000010 00000000 00000000 00000000

δ1,2 = IV1,2 ⊕ IV′
1,2 10000110 00000000 00000000 00000000

δ1,3 = IV1,3 ⊕ IV′
1,3 10000010 00000000 00000000 00000000

Table 2. Prescribed δ for IV1

The collision finding algorithm for SHA-0 by Wang et al [8] also finds
2-block colliding messages but the structure of the messages in this attack
is different than in the case of MD5. The first blocks of the colliding
messages (M1||M2) and (M1||M ′

2) are the same and serve to obtain the
chaining variable IV1 satisfying the conditions sufficient for finding the
second blocks M2 and M ′

2. The algorithm again works for an arbitrary
IV0.

In another paper [9] Wang et al propose an algorithm for finding 2-
block collisions in SHA-1 that is faster than the generic birthday attack.
Although no real collisions in SHA-1 have been found so far, the form of
colliding messages of the proposed attack is in fact the same as in the
case of MD5. It means that the algorithm should work for any IV0 and
IV1 ⊕ IV′

1 should be a constant independent of IV and M1 and M ′
1.

6

4 Multi-block collision attacks on 3C and 3C+

The idea of the attack on the 3C construction when the compression
function is the same as in MD5 is very simple. First, we find 2-block
colliding messages (M1||M2) and (M ′

1||M ′
2) in MD5 using the attack by

Wang et al [7]. Then we take the chaining variable IV2 = IV′
2 as the

initialization vector for the second run of the Wang et al algorithm. In
this way we obtain another pair of messages (M3||M4) and (M ′

3||M ′
4). The

4-block messages (M1||M2||M3||M4) and (M ′
1||M ′

2||M ′
3||M ′

4) then form a
collision for the 3C construction based on the MD5 compression function.
The scheme of the attack and the distribution of differences are shown on
Figure 3.

@@f
@@f

@@f
@@f

⊕ ⊕ ⊕

- - - -

6 6 6

- - - -

-
IV0

- - - -
δ 0 δ 0δ 0 δ 0

δ δ 0 0

0 δ 0

Fig. 3. 4-block internal collision attack on 3C without the final processing

A formal verification of the idea is contained in the following theorem.

Theorem 1 Let H be an MD hash function based on a compression func-
tion f . Suppose that for some n ≥ 2 there exists an algorithm finding
n-block collisions for H that works for any initialization vector IV0 and
has the property that IVi ⊕ IV′

i for i = 1, . . . , n is a constant independent
of IV0 and the actual colliding messages (but can be dependent on i).
Then there exists an algorithm that finds (2n)-block collisions for the 3C
construction based on the same compression function f .

The running time of the algorithm for finding collisions in the 3C con-
struction is twice the running time of the algorithm for finding collisions
in the MD construction using the same compression function.

Proof. Let (M1||M2|| · · · ||Mn) and (M ′
1||M ′

2|| · · · ||M ′
n) be two colliding

messages obtained by the first run of the algorithm finding collisions
in H. Thus IVn = IV′

n. We use this value as the initialization vec-
tor for the second run of the collision search algorithm for H. We ob-
tain another pair of colliding messages (Mn+1||Mn+2|| · · · ||Mn+n) and

7

(M ′
n+1||M ′

n+2|| · · · ||M ′
n+n). We denote the chaining variables in the sec-

ond run of the algorithm by IVn+i and IV′
n+i for i = 1, . . . , n.

By our assumption on the collision search algorithm for H we can
write

IVi ⊕ IV′
i = IVn+i ⊕ IV′

n+i

for every i = 1, . . . , n. Thus we obtain

C2n =
2n⊕
i=1

IVi

and

C ′
2n =

2n⊕
i=1

IV′
i.

Hence

C2n ⊕ C ′
2n =

2n⊕
i=1

IVi ⊕
2n⊕
i=1

IV′
i =

2n⊕
i=1

(IVi ⊕ IV′
i)

=
n⊕

i=1

(IVi ⊕ IV′
i)⊕ (IVn+i ⊕ IV′

n+i)

= 0.

Since IV2n = IV′
2n, the messages (M1|| · · · ||Mn||Mn+1|| · · · ||M2n) and

(M ′
1|| · · · ||M ′

n||M ′
n+1|| · · · ||M ′

2n) form a collision for the 3C construction
based on f . ut

In Section 3 we explained that the Wang et al [7] collision search
algorithm for MD5 satisfied the assumptions of Theorem 1 for n = 2. Thus
there exists an algorithm finding 4-block collisions in the 3C construction
based on the MD5 compression function. The fastest implementation of
the Wang et al algorithm known in the moment of writing the paper is
by Klima [4] and finds collisions in MD5 in about 30 seconds in average.
Thus at this moment collisions in the 3C construction based on the MD5
compression function can be found within a minute.

As for the 3C construction based on the SHA-0 compression function
there is no need for running the algorithm twice to obtain a collision.
Since the collision search algorithm for SHA-0 finds colliding messages
of the form (M1||M2) and (M1||M ′

2), we get IV1 = IV′
1 and IV2 = IV′

2,
thus C2 = C ′

2. Hence the SHA-0 collisions found by the algorithm are
simultaneously collisions for the 3C construction based on the SHA-0
compression function.

8

Since the theoretical algorithm for finding collisions in SHA-1 pro-
posed by Wang et al in [9] also satisfies the assumption of Theorem 1
running the algorithm twice should again produce a 4-block collision in
the 3C construction based on the SHA-1 compression function.

@@f
@@f

@@f
@@f

@@f

⊕ ⊕ ⊕ ⊕

- - - - -

6 6 6 6

- - - - -

-
IV0

- - - - -

- - - - -

6 6 6 6
⊕ ⊕ ⊕ ⊕

0 δ 0 δ 00 δ 0 δ 0

0 δ δ 0 0

δ 0 δ 0

0 δ δ 0 0

δ 0 δ 0

Fig. 4. 5-block collision attack on 3C+ without the final processing

The Figure 4 shows how a 5-block collision for the 3C+ construction
based on the MD5 compression function can be found. The only differ-
ence with the collision search algorithm for the 3C construction is that
we start with an arbitrary message block M1, calculate the value of the
compression function for the block with given IV0 to obtain a new initial-
ization vector IV1 and then we run the collision search algorithm for the
3C construction with the initialization vector IV1. We obtain messages
(M1||M2||M3||M4||M5) and (M1||M ′

2||M ′
3||M ′

4||M ′
5) such that C5 = C ′

5

and IV5 = IV′
5. Since D5 = C5 ⊕ IV1 ⊕ IV0 and D′

5 = C ′
5 ⊕ IV1 ⊕ IV0, we

obtain also D5 = D′
5.

From this observation one obtains the following theorem.

Theorem 2 Suppose there exists an algorithm finding k-block collisions
in the 3C construction based on a compression function f . Then there
exists an algorithm for finding (k + 1)-block collisions in the 3C+ con-
struction based on the same compression function f .

The running time of the algorithm for the 3C+ construction is equal
the running time of the algorithm for the 3C+ construction plus the run-
ning time of the one calculation of the compression function.

5 Conclusion

In this paper, we have shown how to find collisions for 3C and 3C+ con-
structions based on a compression function f provided a collision search

9

algorithm for the MD construction based on f is known. We also present
concrete collisions for the 3C and 3C+ constructions based on the MD5
compression function.

Acknowledgment

The authors thank to Praveen Gauravaram for sending them the prelim-
inary version of [2] and [3] which motivated this paper.

References

1. Eli Biham, Rafi Chen, Antonie Joux, Patrick Carribault, Christophe Lemuet, and
William Jalby. Collisions of SHA-0 and reduced SHA-1. In Ronald Cramer, editor,
Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in
Computer Science, pages 36–57. Springer, 2005.

2. Praveen Gauravaram, William Millan, Ed Dawson, and Kapali Viswanathan. Con-
structing Secure Hash Functions by Enhancing Merkle-Damg̊ard Construction. In
Lynn Batten, Reihaneh Safavi-Naini, editors, Information Security and Privacy,
volume 4058 of Lecture Notes in Computer Science, pages 407–420. Springer, 2006.

3. Praveen Gauravaram, William Millan, Ed Dawson, and Kapali Viswanathan.
Constructing Secure Hash Functions by Enhancing Merkle-Damg̊ard Con-
struction (Extended Version). Information Security Institute (ISI), Queens-
land University of Technology (QUT), number QUT-ISI-TR-2006-013,
http://www.isi.qut.edu.au/research/publications/technical/qut-isi-tr-2006-
013.pdf, July 2006.

4. Vlastimil Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute,
Cryptology ePrint Archive: Report 105/2006, http://eprint.iacr.org/2006/105.

5. Jie Liang, Xuejia Lai Improved collision attack on hash function MD5, Cryptology
ePrint Archive: Report 425/2005, http://eprint.iacr.org/2005/425.

6. Jun Yajima, Takeshi Shimoyama. Wangs sufficient conditions of
MD5 are not sufficient, Cryptology ePrint Archive: Report 263/2005,
http://eprint.iacr.org/2005/263.

7. Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for Hash
Functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive,
Report 2004/199, 2004. http://eprint.iacr.org/2004/199.

8. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Effcient collision search attacks
on SHA-0. In Victor Shoup, editor, Advances in Cryptology - CRYPTO – 05,
volume 3621 of Lecture Notes in Computer Science, pages 1–16. Springer, 2005,
14–18 August 2005.

9. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
SHA-1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO – 05, volume
3621 of Lecture Notes in Computer Science, pages 17–36. Springer, 2005, 14–18
August 2005.

10. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.
In Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 19–35. Springer, 2005.

10

A Examples of Collisions

IV 0x67452301 0x10325476 0x98badcfe 0xefcdab89

M1 0x4e1a8245 0x5fe0e55d 0xfe3faa53 0x0d8546b3

0x18ccad34 0xac0bae59 0xd59d3352 0x4805693e

0x06342cd5 0x81b41206 0x83c2bea3 0x8fd22557

0xc41a4cd6 0x9e9a4fe1 0x818ae34d 0x1a97e731

N1 0x4e1a8245 0x5fe0e55d 0xfe3faa53 0x0d8546b3

0x98ccad34 0xac0bae59 0xd59d3352 0x4805693e

0x06342cd5 0x81b41206 0x83c2bea3 0x8fd2a557

0xc41a4cd6 0x9e9a4fe1 0x18ae34d 0x1a97e731

IV1 0xadebbbec 0xc85d058e 0xa2672e58 0xb91d144b

IV′
1 0x2debbbec 0x4a5d058e 0x24672e58 0x3b1d144b

IV1 ⊕ IV′
1 0x80000000 0x82000000 0x86000000 0x82000000

M2 0x06faa233 0x1c84a4bf 0xf38ee5f1 0x08deb9af

0x467ad36b 0x4c900712 0xd6a37d26 0x11f6de56

0x8577e045 0x299991d5 0x5940588e 0x3fd25887

0x301fc8fa 0x77dc0e81 0xe8c1a1a7 0x13d51d82

N2 0x06faa233 0x1c84a4bf 0xf38ee5f1 0x08deb9af

0xc67ad36b 0x4c900712 0xd6a37d26 0x11f6de56

0x8577e045 0x299991d5 0x5940588e 0x3fd1d887

0x301fc8fa 0x77dc0e81 0x68c1a1a7 0x13d51d82

IV2 = IV′
2 0xa918ce8d 0xb7ea0df6 0x69bdb806 0x713af4de

M3 0xcd71fe0c 0x58d0f463 0xa9399e1d 0x7db79e98

0x3622a432 0x736cb277 0x011cb460 0x6a04e9b4

0x06332d55 0x23f47e02 0x799ab597 0xd3ba5325

0xb9e866e6 0xde6b9cd3 0xde6cebbb 0x0b4c3783

N3 0xcd71fe0c 0x58d0f463 0xa9399e1d 0x7db79e98

0xb622a432 0x736cb277 0x011cb460 0x6a04e9b4

0x06332d55 0x23f47e02 0x799ab597 0xd3bad325

0xb9e866e6 0xde6b9cd3 0x5e6cebbb 0x0b4c3783

IV3 0x2b30549a 0x089c590a 0x52710661 0x6932f794

IV′
3 0xab30549a 0x8a9c590a 0xd4710661 0xeb32f794

IV3 ⊕ IV′
3 0x80000000 0x82000000 0x86000000 0x82000000

M4 0x96ded638 0x4c1be33a 0xd46e6a5f 0xdbc8da73

0x473af92b 0x4d0da98e 0x56dd6d3e 0xd19e7bd1

0x53f857cd 0x4c25f191 0x918be4da 0xc09e206c

0x320b28d4 0xcc6c0e7a 0x68515c76 0x57840834

N4 0x96ded638 0x4c1be33a 0xd46e6a5f 0xdbc8da73

0xc73af92b 0x4d0da98e 0x56dd6d3e 0xd19e7bd1

0x53f857cd 0x4c25f191 0x918be4da 0xc09da06c

0x320b28d4 0xcc6c0e7a 0xe8515c76 0x57840834

IV4 = IV′
4 0x6a1a021a 0xc81fe980 0x88e1db5b 0x512e7c88

Table 3. Collision in 3C invoked with MD5 compression function

11

IV 0x67452301 0x10325476 0x98badcfe 0xefcdab89

M1 0x0634add5 0x4074c002 0x7baaf717 0x0f522d75

0xbf6ac0ec 0xa4885903 0x7349e78b 0x2aad1b45

0x281dfb7e 0x173e6c0c 0xab79fc54 0x39453670

0x44fb372b 0x4d5259c8 0xf7ad2d48 0xd1254b51

N1 0x0634add5 0x4074c002 0x7baaf717 0x0f522d75

0xbf6ac0ec 0xa4885903 0x7349e78b 0x2aad1b45

0x281dfb7e 0x173e6c0c 0xab79fc54 0x39453670

0x44fb372b 0x4d5259c8 0xf7ad2d48 0xd1254b51

IV1 = IV′
1 0xd3f4b63c 0x595f4645 0xa890d3d0 0x9cc907db

M2 0xa72fc176 0x64b7a050 0xe266ae7a 0x1b21009e

0xfac1ee4c 0x9e588e8e 0x076d346d 0x805529b7

0x0633ad55 0x02342602 0x83b4ba0b 0x56d1d924

0x82d9651a 0xba9c8de6 0xebbbe37e 0xb78c63d5

N2 0xa72fc176 0x64b7a050 0xe266ae7a 0x1b21009e

0x7ac1ee4c 0x9e588e8e 0x076d346d 0x805529b7

0x0633ad55 0x02342602 0x83b4ba0b 0x56d25924

0x82d9651a 0xba9c8de6 0x6bbbe37e 0xb78c63d5

IV2 0xead1c69e 0xd19e34c2 0xca2e528e 0xb1790589

IV′
2 0x6ad1c69e 0x539e34c2 0x4c2e528e 0x33790589

IV2 ⊕ IV′
2 0x80000000 0x82000000 0x86000000 0x82000000

M3 0x6dbb34a0 0x9c1b815b 0x7ceb8ffd 0x1502296c

0x467d585b 0x4d0d8038 0xc6db2d16 0x00d11ad5

0xd2b2eeed 0x4a04145b 0x2f79d4aa 0x00be08a0

0xf2e830f3 0x10bc0a85 0xe9019cb8 0x4fd512a2

N3 0x6dbb34a0 0x9c1b815b 0x7ceb8ffd 0x1502296c

0xc67d585b 0x4d0d8038 0xc6db2d16 0x00d11ad5

0xd2b2eeed 0x4a04145b 0x2f79d4aa 0x00bd88a0

0xf2e830f3 0x10bc0a85 0x69019cb8 0x4fd512a2

IV3 = IV′
3 0x46321911 0x9d317bd2 0xfde6d50e 0xeb2170d8

M4 0x122cdc12 0x5f60de22 0xedac78fd 0xf506f854

0x2b85436b 0x3c980908 0xda4c144d 0x03344bbe

0x0634ad55 0x0113f402 0x80aab777 0x13888f67

0xadea26f7 0x623cc142 0x1192759e 0x0e74317c

N4 0x122cdc12 0x5f60de22 0xedac78fd 0xf506f854

0xab85436b 0x3c980908 0xda4c144d 0x03344bbe

0x0634ad55 0x0113f402 0x80aab777 0x13890f67

0xadea26f7 0x623cc142 0x9192759e 0x0e74317c

IV4 0x754b85c2 0x45386ef2 0x3adad7b7 0x61523316

IV′
4 0xf54b85c2 0xc7386ef2 0xbcdad7b7 0xe3523316

IV4 ⊕ IV′
4 0x80000000 0x82000000 0x86000000 0x82000000

M5 0x65171431 0x2615affc 0x2a2519e7 0xe2e99ce8

0x44bcf42b 0x4c4def0e 0x47aadd22 0x127d7d56

0x62bf776d 0x6cc9d58b 0x597058d6 0x602a5867

0x3e2bc8ce 0xb3ec1267 0x68716155 0x17a50429

N5 0x65171431 0x2615affc 0x2a2519e7 0xe2e99ce8

0xc4bcf42b 0x4c4def0e 0x47aadd22 0x127d7d56

0x62bf776d 0x6cc9d58b 0x597058d6 0x6029d867

0x3e2bc8ce 0xb3ec1267 0xe8716155 0x17a50429

IV5 = IV′
5 0x1453b7b0 0x803e8aee 0xfd85765e 0x176ca5d9

Table 4. Collision in 3C+ invoked with MD5 compression function

