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Abstract. We find all finite unavoidable ordered sets, finite unavoidable semilattices and
finite unavoidable lattices.

1. Introduction

If a structure A cannot be embedded into a structure B, we also say that B

avoids A. Two structures are said to be incomparable if each of them avoids the
other.

Let K be a class of structures of a given signature. A finite structure A ∈ K

is said to be avoidable in K if there exists an infinite set S of pairwise incompa-
rable finite structures from K such that S avoids A (i.e., every structure from S

avoids A).
For example, it is easy to see that in the class of all groupoids, every finite al-

gebra is avoidable. Since a nontrivial finite group is avoided by a set of sufficiently
large cyclic groups of prime orders, the only unavoidable finite algebra in the class
of groups is the one-element group. The same argument shows that the only un-
avoidable finite algebra in the class of semigroups is the one-element semigroup.

For other classes K of algebras, the question of determining which finite objects
are avoidable in K may be more interesting. In this paper we are going to answer
this question for the classes of ordered sets, semilattices, lattices and 0, 1-lattices.

It is easy to see that a finite structure A ∈ K is unavoidable in K if and only if
the class of finite structures from K avoiding A is well-quasi-ordered by the relation
of embeddability.

A quasi-ordered set A = 〈A,≤〉 is said to be well-quasi-ordered if it contains no
infinite antichains and no infinite descending chains. By a bad sequence for A we
mean an infinite sequence an (n ≥ 0) of elements of A such that ai � aj whenever
i < j. It is easy to see that a quasi-ordered set is well-quasi-ordered if and only if
it has no bad sequence. We will need the following theorem, which is one of the
basic well-known results in the theory of well-quasi-orderings.
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1.1. Theorem. Let A = 〈A,≤〉 be a quasi-ordered set containing no infinite de-

scending chains. If A is not well-quasi-ordered, then there exists a bad sequence an

(n ≥ 0) for A such that the set {a ∈ A : a < ai for some i} is well-quasi-ordered

by ≤.

Proof. Define an by induction on n as follows: if ai has been defined for all i < n

then let an be a minimal element (with respect to ≤) with the property that there
exists a bad sequence b0, b1, . . . with bi = ai for all i ≤ n. Clearly, an (n ≥ 0)
is a bad sequence. Put B = {a ∈ A : a < ai for some i} and suppose that there
is a bad sequence c0, c1, . . . of elements of B. Denote by n the least number such
that ci < an for some i. Denote by m the least number such that cm < an. It is
easy to see that the sequence a0, . . . , an−1, cm, cm+1, . . . is bad, contradicting the
minimality of an. �

A bad sequence an with the property formulated in the conclusion of 1.1 will
be called a minimal bad sequence for A. Observe that an infinite subsequence of a
minimal bad sequence is also minimal bad.

It may not be completely clear what we mean by an embedding of a structure
into a structure, if the structures are not algebras. By an embedding of an ordered
set A into an ordered set B we mean an injective mapping f of A into B such that
x ≤ y in A if and only if f(x) ≤ f(y) in B.

By a semilattice we shall mean a meet-semilattice. The least element of a finite
semilattice A is denoted by 0A, or just by 0.

By a forest we mean an ordered set every principal order ideal of which is a
chain. A tree is a forest with a least element. Dual forests and dual trees are
defined dually. Observe that every finite tree is a semilattice; finite forests can be
considered as partial meet-semilattices, where a∧ b is defined if and only if the two
elements belong to the same tree-component.

We will make use of the following Kruskal’s Tree Theorem [3].

1.2. Theorem. Let 〈Q,≤〉 be a well-quasi-ordered set. Then the class of finite

Q-labeled forests F = 〈F,≤, λ〉 (λ is a mapping of F into Q) is well-quasi-ordered

with respect to the quasi-ordering ≤ defined as follows: F1 ≤ F2 if and only if there

exists an injective mapping h of F1 into F2 such that λ(a) ≤ λ(h(a)) in Q for all

a ∈ F1, and a ∧ b = c in F1 if and only if h(a) ∧ h(b) = h(c) in F2.

Sometimes we need to work with proper classes of finite structures as if they
were sets. This could be easily avoided, but with technical difficulties, if instead of
the structures, their isomorphism types were considered.

This paper is rather self-contained; see [5] for the necessary background in uni-
versal algebra and lattice theory. Also, see Kriz and Thomas [2] and Kruskal [4]
for the general theory of well-quasi-orderings.

There is a related paper [1], in which we solve similar problems for the class of
finite distributive lattices.
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2. Ordered sets

For every integer n ≥ 3 denote by Cn the ordered set with elements a1, · · · , an,

b1, · · · , bn and covers ai < bi (1 ≤ i ≤ n), ai < bi+1 (1 ≤ i ≤ n − 1) and an < b1.
These ordered sets are called crowns.

For every integer n ≥ 4 denote by Dn the ordered set with elements a1, · · · , an,

b1, · · · , bn and covers ai < ai+1 (1 ≤ i < n), bi < bi+1 (1 ≤ i < n), ai < bi

(1 < i < n) and bi < ai+3 (1 ≤ i ≤ n − 3).
For example, the ordered sets C4 and D6 are shown in Fig. 1.

C4 D6

Fig. 1

2.1. Proposition. The ordered sets Cn (n ≥ 3) are pairwise incomparable. Like-

wise, the ordered sets Dn (n ≥ 4) are pairwise incomparable.

Proof. For the first sequence of ordered sets the statement is easier, so we will prove
it for the second only. Suppose, on the contrary, that there are indexes 4 ≤ k < m

such that there exists an embedding f of Dk into Dm. In every Dn, the element b1

is the only non-maximal element which is incomparable with at least three elements,
so we must have f(b1) = b1. The three elements incomparable with b1 form a chain,
so we must have f(ai) = ai for i ≤ 3. The only element incomparable with a3,
except b1, is the element b2; so, f(b2) = b2. The only element incomparable with
b2, except a3, is the element a4; so, f(a4) = a4. We can proceed in this way to
conclude that f(ai) = ai for all i ≤ k. But ak has three incomparable elements in
Dk, while only two incomparable elements in Dm, a contradiction. �
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We denote by N the ordered set with four elements a, b, c, d and the only covers
a < b, c < b and c < d.

2.2. Lemma. Every unavoidable finite ordered set is embeddable into N.

Proof. It follows from 2.1 that an unavoidable ordered set must be isomorphic to
a proper subset of Cn for some n; so, it must be a subset of a fence. It follows also
from 2.1 that an unavoidable ordered set must be properly embeddable into Dm for
some m. However, Dm has no three-element antichains and so it avoids all fences
with more than four elements. Also, Dm avoids the cardinal sum of two copies of
the two-element chain. Thus an unavoidable ordered set must be embeddable into
the fence with four elements, i.e., the ordered set N. �

2.3. Theorem. A finite ordered set is unavoidable if and only if it is embeddable

into N.

Proof. The direct implication follows from 2.2. The converse follows from the result
of Pouzet [6] which says that the class of finite ordered sets avoiding N is well-quasi-
ordered by embeddability; see also Thomassé [7] for a more general result. �

We want to thank a referee for providing us the information that the class of
finite ordered sets avoiding N has a well-known and nice characterization (see for
example Valdes, Tarjan, and Lawler [8] or Thomassé [7]). The class is the least
class of finite ordered sets which contains the one-element ordered set and is closed
under both the disjoint unions and ordinal sums of ordered sets.

3. Semilattices

For every integer n ≥ 3 denote by C0
n the crown Cn with the least element

added.
For every integer n ≥ 2 denote by Pn and Qn the semilattices with elements

0, c, d, 1, e, f, ai (0 ≤ i ≤ n) and bj (1 ≤ j ≤ n − 1) and covers

(1) ai < ai+1 (0 ≤ i ≤ n − 1),
(2) ai < bi+1 < ai+2 (0 ≤ i ≤ n − 2),
(3) 0 < a0, 0 < c < d < a1, an < 1, an−1 < e < f < 1 for Pn,
(4) 0 < a0, 0 < c < a1, 0 < d < a1, an < 1, an−1 < e < 1, an−1 < f < 1 for

Qn.

For example, C0
4, P5 and Q5 are pictured in Fig. 2.

3.1. Proposition. The semilattices C0
n (n ≥ 3) are pairwise incomparable. The

semilattices Pn (n ≥ 2) are pairwise incomparable. The semilattices Qn (n ≥ 2) are

pairwise incomparable. Consequently, every unavoidable semilattice is isomorphic

to a proper subsemilattice of C0
n for some n ≥ 3; it is also isomorphic to a proper

subsemilattice of Pm for some m ≥ 2 and to a proper subsemilattice of Qk for

some k ≥ 2. In particular, every unavoidable semilattice S is of height at most 2,
every element of S has at most two covers and at most two subcovers and S has

no three-element antichains.
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Proof. It is obvious. �

C0
4 P5 Q5

Fig. 2

3.2. Proposition. Every unavoidable semilattice is isomorphic to a subsemilattice

of the semilattice N0 with elements a, b, c, d, e and covers a < b < c, a < d < c,

d < e (the ordered set N with the least element added).

Proof. Denote by U the semilattice with elements a, b, c, d, e and covers a < b < c,
a < d < e. Let S be an avoidable semilattice. By 3.1, S is of height at most 2
and S has no three-element antichains. These two properties of S imply that S is
either isomorphic to a sublattice of N0 or S is isomorphic to U. The conclusion of
the proposition now follows from the observation that the semilattices Qn (n ≥ 2)
avoid U. �

N0 U

Fig. 3
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The ordinal sum of two semilattices A,B is their disjoint union with the opera-
tion defined so that both A and B are subsemilattices and a < b whenever a ∈ A

and b ∈ B.
The 0-amalgamated sum of two finite semilattices A,B is their almost disjoint

union, with only the two least elements identified, such that both A and B are
subsemilattices and a ∧ b = 0 (where 0 is the common least element) whenever
a ∈ A and b ∈ B. (For example, the semilattice U is the 0-amalgamated sum of
two three-element chains.)

3.3. Theorem. The class of finite semilattices avoiding N0 is the least class of

semilattices containing the one-element semilattice and closed under ordinal and

0-amalgamated sums.

Proof. Denote by K1 the first class and by K2 the second. Clearly, K2 ⊆ K1. We
need to prove that K1 ⊆ K2.

Claim 1. Let a be the meet of all maximal elements of a semilattice A ∈ K1.

Then a is comparable with every element of A. Suppose that there is an element
b incomparable with a. There exist two maximal elements c, d of A such that
b < c and b � d. One can easily check that the five elements b, c, d, c ∧ d and
b∧ d = b∧ (c ∧ d) constitute a subsemilattice isomorphic with N0, a contradiction.

Claim 2. Let A ∈ K1 have at least two maximal elements and let the meet of the

set M of maximal elements of A be 0, the least element. Define a relation ∼ on M

by x ∼ y iff x∧ y 6= 0. Then ∼ is an equivalence with at least two blocks. Clearly,
the relation ∼ is reflexive and symmetric. Let a ∼ b and b ∼ c, so that a ∧ b > 0
and b ∧ c > 0. If a ∧ b is incomparable with b ∧ c then the five elements b, c, a ∧ b,
b∧ c and a∧ b∧ c constitute a subsemilattice isomorphic with N0, a contradiction.
Hence a ∧ b, b ∧ c are comparable and a ∧ b ∧ c is the smaller of the two elements.
We get a ∧ c > 0 and thus a ∼ c. Thus ∼ is an equivalence. Suppose that it has
only one block, i.e., x ∧ y > 0 for all x, y ∈ M . Let M0 be a maximal subset of M

such that
∧

M0 > 0. Then M0 has at least two elements and there is an element
a ∈ M −M0. Take an element b ∈ M0. We have 0 < a∧b < a and a∧

∧
M0 = 0, so

that the five elements a, b, 0, a∧b and
∧

M0 constitute a subsemilattice isomorphic
with N0, a contradiction.

Suppose that K1 is not contained in K2. Let A be a semilattice of the least
cardinality belonging to K1 − K2. Clearly, A has at least two elements. Denote
by M the set of maximal elements of A and put a =

∧
M . By Claim 1, a is

comparable with every element of A. Thus if a > 0 then A is the ordinal sum of
its two proper subsemilattices A−B and B, where B = {x ∈ A : x ≥ a}; but both
A−B and B belong to K2 by the minimality of A and then also A ∈ K2 (since K2

is closed under ordinal sums), a contradiction. Hence
∧

M = 0 and M has at least
two elements. Define the equivalence ∼ on M as in Claim 2. Denote by B1, . . . , Bn

the blocks of ∼, so that n ≥ 2. For every i = 1, . . . , n denote by Fi the set of the
elements x ∈ A for which there exists an element y ∈ Bi with x ≤ y. Then Fi are
subsemilattices of A; by the minimality of A, Fi ∈ K2 for all i. Clearly, if x ∈ Fi

and y ∈ Fj where i 6= j, then x ∧ y = 0. Thus A is the 0-amalgamated sum of
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its subsemilattices Fi ∈ K2; since K2 is closed under 0-amalgamated sums, we get
A ∈ K2. �

Let A be a semilattice avoiding N0. We denote by TA the set of the elements
x ∈ A such that for every y ∈ A, either x∧ y = 0 or y is comparable with x. Notice
that TA is a subsemilattice of A.

3.4. Theorem. Let A be a nontrivial finite semilattice avoiding N0. Then TA−{0}
is a dual forest containing all atoms of A. For every x ∈ A the set {y ∈ TA : y ≤ x}
contains a largest element. Denote this largest element by τ(x). Then τ is a meet-

preserving mapping of A onto TA.

For every element t ∈ TA denote by At the subsemilattice τ−1{t} of A. Then

A0 = {0}, t < s implies that every element of At is less than s, t 6= s implies

that At ∩ As is empty, and if x ∈ At and y ∈ As where t, s are incomparable then

x ∧ y = 0.

Proof. Since any two incomparable elements of TA meet to 0, for every element
a ∈ TA − {0} the set {x ∈ A : x ≥ a} is a chain. This means that TA − {0} is a
dual forest. Clearly, every atom belongs to TA.

Let x ∈ A and a, b be two incomparable elements from TA below x. The join
c of a and b exists and is also below x. In order to prove that there is a largest
element in TA below x, it is sufficient to prove that c ∈ TA. Suppose, on the
contrary, that there exists an element d ∈ A incomparable with c, such that c ∧
d > 0. If d is incomparable with a then a ∧ d = 0 (since a ∈ TA) and thus
the five elements a, c, d, 0, c ∧ d constitute a subsemilattice isomorphic with N0, a
contradiction. Similarly, d cannot be incomparable with b. Since c is incomparable
with d, we have d � a and d � b. Thus d ≥ a and d ≥ b, so that d ≥ c, a
contradiction.

It is easy to see that τ(x ∧ y) = τ(x) ∧ τ(y) for all x, y ∈ A.
The set A0 contains no element other than 0, because every non-zero element is

above an atom. If t < s where t, s ∈ TA and x ∈ At, then either t = 0 in which
case x = 0 < s, or else s is comparable with x and thus x < s. It is clear that
if t, s are distinct then At ∩ As = ∅. Let t, s be two incomparable elements of TA

and suppose that there exist elements x ∈ At and y ∈ As with x ∧ y > 0. Since
t∧ s = 0, we have {x, y} 6= {t, s} and we can assume without loss of generality that
x > t. Since t is incomparable with y, we have t ∧ y = 0. But then the elements
x, t, 0, x∧ y, y constitute a subsemilattice isomorphic with N0, a contradiction. �

3.5. Theorem. Let A,B be two semilattices avoiding N0. Let λ : TA → TB be

an order embedding with λ(0) = 0, and for every t ∈ TA let ϕt be a semilattice

embedding of At into Bλ(t). Then ϕ =
⋃
{ϕt : t ∈ TA} is a semilattice embedding

of A into B.

Proof. It follows easily from 3.4. �

3.6. Theorem. A finite semilattice is unavoidable if and only if it is isomorphic

to a subsemilattice of N0.
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Proof. By 3.2, it remains to prove that the class of semilattices avoiding N0 is
well-quasi-ordered by embeddability. Suppose that it is not. By 1.1 there exists
a minimal bad sequence Bn (n ≥ 0) for this class. Denote by U the set of the
semilattices that are a proper subsemilattice of Bn for some n. So, U is well-
quasi-ordered. By 3.4, every Bn can be considered as a dual forest TBn

labeled
by its proper subsemilattices, with an extra least element added. The labels are
elements of the well-quasiordered set U . It follows from (the dual of) 1.2 that TBn

is embeddable into TBm
(as a labeled forest) for some n < m. By 3.5, this implies

Bn ≤ Bm, a contradiction. �

4. Lattices

4.1. Theorem. There are, up to isomorphism, only seven unavoidable lattices:

the four chains of height at most three, the four-element Boolean lattice, the four-

element Boolean lattice with a top element added and the four-element Boolean

lattice with a bottom element added.

Proof. The amalgamated ordinal sum of two finite lattices A,B is the almost dis-
joint union of the two lattices, with only the top element of A identified with the
bottom element of B, such that A and B are sublattices and every element of A is
below every element of B. Denote by Rn (n ≥ 1) the amalgamated ordinal sum of
one copy of the pentagon, n copies of the four-element Boolean lattice, and one ad-
ditional copy of the pentagon. Denote by Sn (n ≥ 1) the amalgamated ordinal sum
of one copy of the lattice M3 (the five-element modular but non-distributive lat-
tice), n copies of the four-element Boolean lattice, and one additional copy of M3.
For example, R2 and S2 are pictured in Fig. 4.

R2 S2

Fig. 4
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The lattices Sn are not pairwise incomparable as semilattices, but they are pair-
wise incomparable as lattices. Suppose, on the contary, that there is a lattice
embedding f of Sn into Sm, where n < m. Clearly, the bottom copy of M3 in
Sn must be mapped onto the bottom copy of M3 in Sm, and similarly the top
copy must be mapped onto the top copy. Denote by a0, a1, . . . , an+2 the chain of
the elements of Sn that are comparable with each element of Sn, and denote by
b0, b1, . . . , bm+2 the similar chain in Sm. Thus f(a1) = b1. The two covers of a1 are
the only pair of incomparable elements that meet to a, so they must be mapped
onto the two covers of b1. But then their join must be mapped onto the join of the
images, i.e., f(a2) = b2. Similarly f(a3) = b3, . . . , f(an+1) = bn+1. But an+1 is
the meet of three incomparable elements while bn+1 is not, a contradiction.

Quite similarly, also the lattices Rn are pairwise incomparable. Clearly, the
crowns with both the top and the bottom elements added are also pairwise incom-
parable lattices. Thus every unavoidable lattice is of height at most three, is a
sublattice of some Rn and is a sublattice of some Sn. The only such lattices are
the (up to isomorphism) seven proper sublattices of the direct product D of the
two-element chain with the three-element chain, i.e., the above mentioned seven
lattices.

It remains to prove that the seven lattices are unavoidable. The four-element
chain is unavoidable because the only lattices avoiding it are the lattices of height
at most two, and these are comparable with each other. The four-element Boolean
lattice is unavoidable because the only lattices avoiding it are the chains, and chains
are again comparable with each other.

Lattices avoiding the four-element Boolean lattice with top element added are
precisely the lattices that become trees after removing the top element. Thus the
unavoidability of this five-element lattice follows from 1.2.

The remaining lattice is dual to this last one, so it is also unavoidable. �

5. 0, 1-lattices

5.1. Theorem. There are, up to isomorphism, precisely three finite unavoidable

0, 1-lattices: the three chains with at most four but at least two elements.

Proof. Similarly as in the case of lattices, every unavoidable 0, 1-lattice must be one
of the seven unavoidable lattices. The one-element 0, 1-lattice is avoidable since it
is not embeddable into any nontrivial 0, 1-lattice. The four-element Boolean 0, 1-
lattice is avoidable because it is avoided by the 0, 1-lattices Rn. The four-element
Boolean lattice with the top element added is, as a 0, 1-lattice, avoidable because
it is avoided by the 0, 1-lattices that are the ordinal sum of the one-element lattice
with the lattice Rn, and these 0, 1-lattices are also pairwise incomparable. The four-
element Boolean lattice with the bottom element added is avoidable by a similar
reason. �
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6. Four open problems

Naturally related to the above results are the following four problems.
Let K be any of the four classes: ordered sets, semilattices, lattices, and 0, 1-

lattices. Decide which finite sets of finite structures from K are avoidable in K,
i.e., which finite sets of finite structures from K can be extended to an infinite set
of pairwise incomparable finite structures from K.

These questions (also for more general classes) are particularly interesting in
the case when the class is a locally finite universal class. A class K of structures
is called locally finite if every finitely generated structure from K is finite; it is
called universal if it is axiomatizable by a set of universal sentences (i.e., universal
closures of quantifier-free formulas). A locally finite class is universal if and only
if it is closed under substructures and contains every structure A such that every
finite substructure of A belongs to K. Notice that the four classes investigated in
this paper are all universal, and two of them are locally finite: the class of ordered
sets and the class of semilattices.

Let K be a locally finite universal class of structures of a finite signature. Denote
by F the set of finite members of K and consider F as a quasi-ordered set with
respect to the quasi-ordering ≤, where A ≤ B if and only if A is embeddable into B.
It is easy to see that the mapping U 7→ F ∩ U is an isomorphism of the lattice of
universal subclasses of K onto the lattice of order ideals of F . (Strictly speaking, F

is not a set and it is illegitimate to form the lattice of proper subclasses of K; this
inconvenience could be corrected easily but at the cost of technical difficulties.)

For an antichain X in F denote by F 	 X the set of the structures from F

that avoid all members of X . This is an order ideal of F . Since descending chains
in F are all finite, every order ideal of F can be expressed as F 	 X for some
antichain X . It is natural to ask what can be said, in terms of the size of X and the
order properties of F 	X , about the universal subclass U of K corresponding to the
order ideal F 	 X . The following five observations are answers to such questions.

(1) U has 2ℵ0 universal subclasses if and only if F 	X is not well-quasi-ordered,
if and only if F 	 X contains an infinite antichain.

(2) U has at most ℵ0 universal subclasses if and only if F 	 X is well-quasi-
ordered.

(3) U is finitely axiomatizable relative to K if and only if X is finite.

(4) Every universal subclass of U , including U , is finitely axiomatizable relative
to K if and only if X is finite and F 	 X is well-quasi-ordered.

In order to formulate the last observation, we need to state some definitions.
A formula (not necessarily a sentence) is said to be valid in K if it is satisfied in
every structure from K under any interpretation of its free variables. A clause is a
disjunction of atomic formulas and/or their negations. By a K-maximal clause we
mean a clause C such that C is not valid in K but whenever f is an atomic formula
containing no variables other than those in C then either C ∨ f or C ∨ ¬f is valid
in K.
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(5) Let K be a locally finite quasivariety of a finite signature. U is axiomatizable
relative to K by a single K-maximal clause while its every proper universal subclass
is finitely axiomatizable relative to K, if and only if |X | = 1 and F 	 X is well-
quasi-ordered.

The proofs of (1) through (4) are simple. Here is a hint for the proof of (5).
Let U be axiomatized relative to K by a K-maximal clause C. Denote by Y the

set of variables occurring in C and denote by Γ the set of the atomic formulas f

such that ¬f occurs in C. Denote by A the finitely presented structure in K with
defining relations Γ on the set Y . One can check that a structure from K belongs
to U if and only if it avoids A.

Conversely, let X = {A} and let F 	 X be well-quasi-ordered. Let us fix a
bijection β of a set Y of variables onto the set A. There is a finite set T of terms
over Y such that every term over Y is K-equivalent to precisely one term from T .
Denote by B the set of atomic formulas with the term-components all in T . Denote
by C the clause ¬f1∨· · ·∨¬fn∨g1∨· · ·∨gm where fi are all the atomic formulas from
B that are satisfied in A under the interpretation β and gj are all the remaining
atomic formulas from B. One can check that C is a K-maximal clause and U is
axiomatized relative to K by (the universal closure of) C.

One can now also observe that a universal subclass of K is finitely axiomatizable
relative to K if and only if it is axiomatized relative to K by a finite set of K-
maximal clauses.

Theorems 2.3 and 3.6 characterize those finite ordered sets or finite semilattices
for which the corresponding universal classes of ordered sets or semilattices, re-
spectively, possess the property described in (5). The first four observations are a
motivation for our above formulated open problems in the cases of ordered sets and
semilattices.
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MFF UK, Sokolovská 83, 18600 Praha 8, Czech Republic

E-mail address: jezek@karlin.mff.cuni.cz

Department of Mathematics, Vanderbilt University, Nashville, U.S.A.

E-mail address: ralph.mckenzie@vanderbilt.edu


